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Abstract: A subset B of an algebra A of subsets of a set () has property (N) if each B-pointwise
bounded sequence of the Banach space ba(.A) is bounded in ba(.A), where ba(.A) is the Banach space
of real or complex bounded finitely additive measures defined on .A endowed with the variation
norm. B has property (G) [(VHS)] if for each bounded sequence [if for each sequence] in ba(A) the B-
pointwise convergence implies its weak convergence. I3 has property (sN) [(sG) or (sVHS)] if every
increasing covering { B, : n € N} of B contains a set B, with property (N) [(G) or (VHS)], and B has
property (wN) [(wG) or (wVHS)] if every increasing web {By,n,...n,, : 1; € N,1 <i < m,m € N}
of B contains a strand {Bp,,...p,, : m € N} formed by elements B, ,...,,, with property (N) [(G) or
(VHS)] for every m € N. The classical theorems of Nikodym-Grothendieck, Valdivia, Grothendieck
and Vitali-Hahn-Saks say, respectively, that every c-algebra has properties (N), (sN), (G) and
(VHS). Valdivia’s theorem was obtained through theorems of barrelled spaces. Recently, it has been
proved that every c-algebra has property (wN) and several applications of this strong Nikodym
type property have been provided. In this survey paper we obtain a proof of the property (wN) of a
o-algebra independent of the theory of locally convex barrelled spaces which depends on elementary
basic results of Measure theory and Banach space theory. Moreover we prove that a subset B of an
algebra A has property (wWHS) if and only if B has property (wN) and A has property (G).

Keywords: algebra and o-algebra of subsets; bounded finitely additive scalar measure; Nikodym;
strong and web Nikodym properties; Grothendieck; strong and web Grothendieck properties; Vitali—
Hahn-Saks; strong and web Vitali-Hahn-Saks properties

MSC: 28A60; 46G10

1. Introduction

In this paper A and S denote, respectively, an algebra and a o-algebra of subsets of a
set (). We will refer to an algebra and a c-algebra of subsets of () simply as an algebra and
a o-algebra, respectively. The real or complex linear hull L(.A) of the set

{e(B): B e A}
of characteristics functions of the elements of A with the norm

[ flleo = sup{|f(x)| : x € Q}, f € L(A)

is a normed space and its completion is the Banach space Lo (.A) of all A-measurable real
or complex bounded functions defined on ). By [1], Theorem 1.13, its dual endowed with
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the polar norm is the Banach space ba(.A) of scalar bounded finitely additive measures
defined on A, and the polar norm of every y € ba(.A) is the variation of y, given by

|| = sup{ZL {[u(A) [} : {Ai: 1 <i<n} e F},

where F is the family of finite partitions of () by elements of A and u(e(C)) := u(C). For
an element B of A the variation of # on B

|| (B) = sup{Zi_i{|u(Ai)|} : {Ai: 1 <i<n} € Fp},

defines a seminorm on ba(.A) and for each finite partition {B; : B; € A,1 <i < n} of Bwe
have [1(B) = Z{|p (B;) : 1< i < n}.

The polar set [2], §20, 8 (named absolute polar set), of a subset M of L(\A) or ba(.A) is
the subset M° defined by

M°:={pecba(A):|u(f)] <1, forevery f € M}, if M C L(A)

or
M :={feL(A):|u(f)| <1, forevery uy € M},if M C L(A).

The topology in ba(.A) of pointwise convergence on a subset B of A is denoted by
Ts(B) in ba(A). Clearly a subset M of ba(.A) is 7;(B)-bounded if and only if

sup{|u(C)| : p € M} < oo, forevery C € B.

In particular, 75(A) is the weak* topology in ba(.A).
By abscoH is denoted the absolutely convex hull of H and the gauge or Minkowski
functional of the subset G := absco({e(C) : C € A}) of L(\A) is anorm in L(.A) defined by

Ifllg == inf{[A] : f € AG}, f e L(A),

which is equivalent to the supremum norm ([3], Propositions 1 and 2). Its polar norm in
ba(A) is the supremum of the modulus, i.e., for every u € ba(.A) of uin A,

[Hleo := sup{[u(C)| : C € A}, € ba(A),

hence in ba(A) the norms variation and supremum are equivalent. For each B € A the
seminorms defined by the variation on B, |u|(B), and the supremum of the modulus on
{C € A:C C B}, [plep = sup{|u(C)| : C € A C C B}, are equivalent seminorms in
ba(A).

A subset B of an algebra A is a Nikodym set for ba(.A), or B has property (N), if the
7 (B)-boundedness of a subset M of ba(.A) implies

sup{|p|: p € M} < o0,

or, equivalently
sup{|pu(C)|:peM, Ce A} <o,

i.e., M is uniformly bounded in A. Note that B has property (N) if and only if {¢(C) : C €
B} is a uniform bounded deciding subset of L(.A) ([4], Example 2). We may suppose that
the subset M above is absolutely convex and weak*-closed. Clearly 3 has property (N) if
each B-pointwise bounded sequence of ba(.A) is uniformly bounded in .A. The above set B
is a strong Nikodym set for ba(.A), or B has property (sN), if each increasing countable
covering of B contains an element that has property (N), and B is a web Nikodym set
for ba(.A), or B has property (wN), if each increasing web {By,n,-..n,, : 1; € N,1 <0 <
m,m € N} of B contains a decreasing sequence {Bp,p,...p,, : m € N} formed by subsets
with property (N). Let us recall that by definition { By n,-..n,, : 1; € N,1 <i <m,m € N}is
an increasing web of B if the sequence {B,,, : n; € N} is an increasing covering of B and for
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each m € N and each (n1n; - - - n,,) € N the countable family { By, n,.-npip,y  Bmt1 € N}
is an increasing covering of By, p,...n,, - It is obvious that (wN) = (sN) = (N), and that B
has property (wN) if and only if each increasing web of B contains an increasing subweb
formed by sets that have property (wN). It is straightforward to prove that properties
(wN), (s(wN)), (w(sN)) and (w(wN)) are equivalent ([5], Proposition 1).

A subset B of an algebra A is a Grothendieck set for ba(.A) if each bounded sequence
in ba(A) that B-pointwise converges to the null measure converges weakly, and B is a
Vitaly-Hahn-Saks set for ba(.A) if in ba(.A) each sequence that B-pointwise converges to the
null measure converges weakly. In brief we will say that 13 has property (G) or property
(VHS), respectively. The above subset B3 has property (VHS) if and only if 53 has properties
(N) and (G) (see Proposition 6). Properties (sG), (wG), (sVHS) and (wVHS) are defined
as in the case of properties (sN) and (wN), changing N into G or VHS. For instance, B has
property (sG) if for each increasing covering {8, : n € N} of B there exists p € N such that
B, has property (G). Clearly (wG) = (sG) = (G), and (wVHS) = (sVHS) = (VHS).
Let us recall (see [6,7]) that a subset C of the closed dual unit ball Bg+ of a Banach space E
is a Rainwater set for E if for every bounded sequence {x, : n € N} the conditions

lim f(x,) =0, forevery f € C

n—o0

imply
lim f(x,) =0, forevery f € E*.

n—o0

Hence for a subset B of an algebra A the conditions B has property (G) and C =
{e(B) : B € B} is a Rainwater set for ba(.A) are equivalent ([8], Proposition 4.1) , where
e(B) is the element of the closed dual unit ball of ba(.A)* such that e(B)(u) := u(B), for
each measure u € ba(A).

The four classical theorems of Nikodym—-Grothendieck, Valdivia, Grothendieck and
Vitali-Hahn-Saks say, respectively, that each c-algebra S has properties (N), (sN), (G) and
(VHS) (see[1,3,9-15]). Equivalent definitions of properties (G) and (VHS) are givenin [14].
We may find in [11] that for each sequence in £, the weak* convergence implies the weak
convergence. Because of this deep property, a Banach space E is called a Grothendieck space
if for each sequence in its dual E* the weak* convergence implies its weak convergence,
so {« is a Grothendieck space. Notice that by the Banach—Steinhaus theorem every weak*
convergent sequence of the dual E* of a Banach space E is bounded, hence an algebra A has
property (G) if and only if Lo (A)* is a Grothendieck space. Recently it has been proved
that every c-algebra S has properties (wN) (see [16,17]) and (wG) (see [18] and ([19],
Theorem 1)). It has also property (wVHS), because a set BB has property (wVHS) if and
only if B has properties (wN) and (G) (Corollary 2).

The situation with algebras is different. There are many examples of algebras that
do not have property (N) ([1], Chapter I, Example 5). Schachermayer [14] proved that
the algebra 7 ([0,1]) of all Jordan measurable subsets of [0, 1] has property (N) but fails
property (G). In 2013, Valdivia proved that the algebra 7 ([0, 1]7) has property (sN) [15].
This result motivated paper [20] where if was proved that 7 ([0, 1]7) has property (wN). It
has been found recently in [8] that there exists a class of rings of sets with property (wN).

Valdivia improved some results concerning the range localization of vector measures
defined in a o-algebra by showing that each c-algebra has property (sN) [3]. The extension
of these new range localization results to vector measures defined on an algebra motivates
the following open problem proposed by Valdivia in 2013 [15]:

Is it true that in an algebra A that property (N) implies property (sN)?

Valdivia’s original proof that every c-algebra has property (sN) depends on properties
of locally convex barrelled spaces (contained among others in the books [21,22], and also in
the papers [23-25]). As a help to solve the mentioned open problem proposed by Valdivia,
in [19], Section 3, was given a new proof independent from barrelledness properties. In [19],
Problem 2, it was proposed to prove that every o-algebra has property (wN) using basic
results of Measure theory and Banach space theory. We give such proof in Section 3 of this
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paper. For the sake of completeness we include several proofs of previous known results
with the corresponding references.

The last section is motivated by [26,27]. We prove that for a subset B of an algebra
A properties (sN) and (G) imply property (sVHS) and properties (wN) and (G) imply
property (wVHS) (Corollaries 1 and 2). Therefore in a class of algebras where property
(N) implies property (sN) we will have also that property (VHS) imply property (sVHS).

2. Preliminary Results

The next well known proposition characterizes when a subset 5 of an algebra A has
property (N) (see [19], Proposition 1). We give a reduced proof for the sake of completeness.

Proposition 1. B has property (N) if and only if for each increasing covering {B, : n € N} of B
there exists By such that

absco{e(A): A € Bp}L(A)
is a neighborhood of zero in L(A).

Proof. If B does not have property (N) there exists a subset M in ba(.A) such that

sup{|pu|:p € M} =0

and
sup{|p(C)|: uy € M} < o0, foreachC € B.

The first equality implies that M° is not a neighborhood of zero in L(.A). The above
inequalities imply that the sets

B, ={AeB:sup|u(A)| <n}, neN,
ueM

are increasing, cover B and

{e(A): AeB,} cnM°, foreachn e N.

Hence the inclusions D, := absco{e(A) : A € Bn}L(A) C nM?°, for each n € N, imply

that for each natural number 7 the set D, is not a neighborhood of zero in L(.A).
Conversely, if there exists an increasing covering {8, : n € N} of B such that

absco{e(A): A € Bn}L(A)

is not a neighborhood of zero in L(.A) for every n € N, then there exists y, € {e(A): A €
B, }° such that |u,| > n, for each n € N, and, by definition of polar set,

sup{|un(A)|: A€ By} <1

Hence M = {u, : n € N} is an unbounded subset of ba(.A) and if C € B there exists
gc € Nsuch that C € B, for each n > g¢, hence

sup{|p(C)| : p € M} <1+ E{|pn(C)| : 1 < gc} < oo,

so B does not have property (N). [

In particular, if B is a Nikodym set for ba(A) then absco{e(A): A € B}L(A) is a

neighborhood of zero in L(A) and span{e(A) : A € B}L(A) =L(A).
We need to complement Proposition 1 with Proposition 2, which provides a property
of a subset B of an algebra A that has property (N) but fails property (sN).
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Let B and C be two subsets of a vector space E. Note that if the sum span B + span C
is not direct there exists x € C\{0} such that

X = Zle,gi]/i + Z?:l’y]‘z]’,

withy; € B,1 <i<p,andz; € C\{x},1 <j < g. Then each w € absco(B U C) may be
represented as
w = Z?Zléisi +ex+ Z]t-:lejtj,
with X5, [6;| + |e| + Z§:1|e]«’ < 1land (s;,t;) € B x (C\{x}). The two above equalities
imply that
x = X5 0+ 2 eBiyi + T ez + Zi_qejty,

hence
x € (14 h)absco(BU (C\{x})),

with h = Zle |Bi| + Z?zl |'yj |. This relation proves the non trivial inclusion in

absco(BU (C\{g1})) C absco(BUC) C (1 + h)absco(BU (C\{x})). (1)

From (1) it follows that the gauges defined by absco(B U C) and absco(B U C\{x}) are
equivalent and
spanB + spanC = spanB + span(C\{x}).

By a direct finite induction we deduce the well known property ([19], Claim 2) that
each finite subset C of E contains a subset D such that span(B U C) is equal to the direct
sum span B @ span D and the gauges of absco(B U C) and absco(B U D) are equivalent.
This property is used in the following Remark 1 ([19], Claim 3), that implies Proposition 2
obtained in [19], Proposition 3. To help the reader we present simplified proofs.

Remark 1. Let E be a normed space and let B be a closed absolutely convex subset of E which is
not a zero neighborhood in E and such that its linear hull is dense in E. Then for each finite subset
C of E the absolutely convex hull of B U C is not a zero neighborhood in E.

Proof. If absco(B U C) is a neighborhood of 0 in E then C contains a subset D such that
absco(B U D) is a neighborhood of 0 in E and E = spanB @ spanD. Then (absco(BU D)) N
(spanB) = B is a zero neighborhood in spanB, implying that B = B'isa neighborhood
of zero in ME, since for each x € E with 0 < [|x|| < r there exists a sequence (x)5,
in spanB with ||x,|| < r, n € N, and lim;,_,e X, = x. We get the contradiction that B is

neighborhood of zeroin E. O

Proposition 2. Let A be an algebra that has a subset BB enjoying property (N) with an increasing
covering { B, : n € N} of B such that each B,, does not have property (N). Then there exists p € N
such that for every n > p the space ba(.A) contains a weak*-closed, absolutely convex, B,-pointwise
bounded subset M,, such that for each finite subset Q of A we have that M, N {e(A) : A € Q}° is
unbounded in ba(A), i.e.,

sup {lul(Q)} = 0. )
neMun{e(A):AeQ}°

Proof. Since B, does not have property (N) there exists an unbounded, weak* closed,
absolutely convex subset M,, of ba(.A) which is B,-pointwise bounded. Hence the polar
set Mj, is a closed absolutely convex subset of L(.A) which is not neighborhood of zero and
span{e(A) : A € B, } C spanM;,. By Proposition 1 there exists p such that for eachn > p

span{e(A): A€ Bl Y = (), 3)
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hence, for each n > p, the relation (3) implies that spanM,‘;L(A) = L(A), so the set

absco(Mj, U {e(A) : A € Q}) is not a zero neighborhood in L(.A), implying the un-
boundedness of its polar set

{absco(M; U{e(A): A€ Q})}° =M nN{e(A): AeQ}°,
and the proof follows from the equality M = M°°. O

Assume that an element B of an algebra A and an absolutely convex a subset M of
ba(A) verify that for each finite subset Q of A

sup {lu(B)} = e )
ueMn{e(A):AcQ}°

then for each finite partition {By, By, ..., By} of B by elements of A the equality
[ul(B) = |p[(B1) + [u|(B2) + - - -+ [u|(By)
implies that there exists B;, with 1 < j < g, such that for each finite subset Q of A

sup {Iu|(B;j)} = oo.
neMn{e(A):AcQ}®

This observation implies that for each « € R™ and each finite subset {P; : 1 <i < n}
of A there exists (i1, B1) € M x A, By C B such that

[u1(e(B1))| > &, [u1(e(B\B1))| > &, Tiq|pa(e(P))| <1

and for each finite subset Q of A

sup |1|(B\By) = o0,
peMn{e(A):AcQ}°

because by (4) with Q = {B, Py, - - - , P, } there exists
(1/1,P11) c (Mﬂ {E(D) :D e Q}O) x A,
with Pj; C B such
lvi(Pi)| > n(a+1), 1(B)] <1 and |ny(Pj)| <1,forl<j<n
Let Py := B\Pj and py = n~1v;. The measure #1 € M and verifies that

1 (Pr)| >a+1, [m(B)] <1, B |ui(e(P)] <1,
hence
1 (Pr2)| = [p1(B) — pa(Prn)| = [pa ()| = [ (B)] > .
Moreover, it holds at least one of the equalities
sup {|p|(P11)} = oo, for each finite subset Q € A
ueMn{e(D):DeQ}°

or
sup {|u|(P12)} = oo, for each finite subset Q € A
neMn{e(D):DeQ}°
If the first equality holds we define By := Pj, and if this is not the case we take
By := Py to get this Claim. Proposition 3 follows from this observation.



Mathematics 2021, 9, 526

7 of 17

Proposition 3. Let A be an algebra and let M be a weak*-closed and absolutely convex subset of
ba(A). If there exists B € A such that for each finite subset Q of A

sup [1|(B) = oo,
peMn{e(A):AcQ}e

then for each natural number p > 1, each &« € R and each finite subset {P; : 1 < i < n} of
A there exists a partition {B; : B; € A,1 <i < p} of Band asubset {y; : 1 <i < p}of M
such that

|ni(e(Bi))| > and iy [ui(e(P)))| <1, for1<i<p ®)

Proof. We have seen that there exists in B a partition {B;, B\B;} € A x A and a measure
#1 € M such that

|1 (e(B1))| > &, |u1(e(B\B1))| > &, Ejy[pua(e(P))] <1

and for each finite subset Q of A

sup [u|(B\By) = 0.
neMn{e(A):AeQ}°

This equality implies that there exists in B\ By a subset B, € A and a measure pp € M
such that

|n2(e(B2))| > a, |ua(e(B\(B1UB2)))| > &, Eiy|pa(e(Py))| <1

and for each finite subset Q of A

sup |u|(B\(B1UBy)) = co.
ueMn{e(D):DeQ}°

Repeating this method we getin B\(By UBy U - - - U B,_) a partition {B, 1, B\(B; U
ByU---UB, 2UB,_ 1)} € Ax Aand ameasure i, 1 € M such that

|.“pfl(e(Bp71))| >, |fol(e(B\(Bl u---u Bpfl))>| >, 27:1|;1p,1(e(Pj))| <1

To finish the proof we define B, := B\(BiUByU---UB, 2UB, 1) and pp :=
Vp—l- O

3. A Proof of the Web Nikodym Property of c-Algebras

Let N<® := U{N°:s € N} be the set of finite sequences of natural numbers, let
t = (t,to,...,tp) and s = (sy,sy,...,54) be two elements of N<* and let T and U be two
subsets of N<®. Then the element

(t,8) := (t1,ta, ..., tp,51,52,...,5g)

is a proper continuation of ¢ and the sets (t,U) := {(t,u) : u € U} and (T, U) := {(t,u) :
t € T,u € U} are named the concatenations of t and U, and T and U, respectively.
The element (i) := (,f,...,5),if 1 < i < pand £(i) := @ if i > p, and the set
T(i) := {t(i) : t € T} are named the sections of length i of t and T. A sequence (" : n € N)
formed by elements of N<® is a strand if t"*!(n) = t"(n), for each n € N. For simplicity (1)
will be represented by t; and when U = @ then, by agreement, (t,U) = tand (T,U) = T.

A non-void subset U of N<* is increasing at t = (1, f,...,t,) € N<% if there exists p
scalars tﬁ verifying t; < tf, forl1 <i< p,and p — 1 elements v of N<®°, 1< i< p —1,such
that (t],0!) € U, ((t1,ta, ..., ti_1,11),0') € U, 1 <i < p,and (t,tp,...,t,_1,tp) € U(p).
U is increasing (increasing respect to a subset V of N<*) if U is increasing at each t € U (at
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each t € V). Clearly U is increasing if and only if for each t = (ty,t5,...,ty) € U the sets
U(1l)and {n € N: (t(i),n) e U(i+1)},1 < i< p, are infinite.

The next definition provides a particular type of increasing subsets U of N<* con-
sidered in [16], Definition 2, and [5], Definition 1, and named NV-trees, reminding O.M.
Nikodym and M. Valdivia.

Definition 1. An NV-tree is a non-void increasing subset T of N<* without strands and such
that every t = (t1,t3,...,tp) € T has no proper continuation in T.

An NV-tree T is an infinite subset of N if and only if T = T(1). Then it is said that
T is an NV-tree trivial. The sets N/, i € N\{1}, and the set U{(i,N) : i € N} are non
trivial NV-trees.

If T is an increasing subset of N<* and {B,, : u© € N<®} is an increasing web in B then
(By(1))uer is an increasing covering of B and for each u = (uy,uy,...,up) € T and each
i < p the sequence (B,,(j)xn)u(i)xneT(i+1) 1S an increasing covering of B, ;). In particular if
T is an NV-tree then B = U{B; : t € T} because T does not contain strands.

As every increasing subset S of an NV-tree T is an NV-tree, then we have that if
(Sn)n is a sequence of non-void subsets of an NV-tree T such that each S, ;1 is increasing
with respect to S;; then Uy, S;, is an N'V-tree. The following Proposition 4 may be found in
([5], Proposition 2) with a long detailed inductive proof. For the sake of completeness we
present here only a sketch of its proof.

Proposition 4. Let U be a subset of an NV-tree T. If U does not contain an NV-tree then T\U
contains an NV-tree.

Proof. This proposition is obvious if T is a trivial NV-tree, so we suppose that T is a
non-trivial NV-tree.

By hypothesis on U there exists m} € T(1) such that for each n; > m] the set {v €
N<®: (n1,v) € U} does not contain an NV-tree. We define Q; := @ and Q] := {m €
T(D)\T : ny > my}.

Fix n; € Q] and then we have one of the following two possible cases:

e There exists p, € Nsuch that (n1,p) € T. As
{v e N*®: (ny,v) e U} = {v: (n1,v) € U}
does not contain an N'V-tree, there exists m;(n1) € N such that

Qa(n1) = {(n1,n2) € T :na > my(ny)} C T\U.

In this case we define Q) (1) = @.

*  Or for each p, € N we have that (11, p2) ¢ T. Then there exists m}(n1) € N such
that for each ny > m}(n) the set {v € U;N° : ((n1,n7),v) € U} does not contain an
NV-tree. In this case we define

Q5(n1) = {(n1,n2) € T(2) : g > my(ny)}
and Qx(n1) = @.
We finish this second step of the inductive process defining
Q2 = U{Qa(m) : my € Qj}and Q5 = U{Q5(ny1) : n1 € Q1 }.

The induction continues in an obvious way.

By construction Q = U{Q; : i € N} C T\U. As T does not have strands we have that
the set Q is non-void. Moreover Q is increasing because t = (t1,1,...,t,) € Q if and only
ift(i) e Q'(i) for1 <i < pandt € Q(p). Hence Q is an NV-tree contained in T\U. [
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Proposition 5 is a simplified version of Proposition 9 and 10 of [16].

Proposition 5. Let {B, Py, ..., P, } be a subset of an algebra A of subsets of Q) and {M; : t € T}
a family of absolutely convex subsets of ba(.A), indexed by a NV-tree T such that for each t € T
and for each finite subset Q of A

sup {[ul(B)} = co. (6)
neMin{e(A):AeQ}°

Then for each positive real number « and each finite subset {t/ : 1 < j < k} of T there exist k
pairwise disjoint sets B; € A that are subsets of B, k measures pj € My;, 1 < j < k, and a NV-tree
T* such that:

{H:1<j<k}cT CT

and for each t € T* and for each finite subset Q of A

sup  {|l(B\Urgjer B) | = oo,
neMin{e(A):AeQ}°

\#i(Bj)| > & and E{|p;(P)]|:1<i<r} <1, forj=1,2,...,k

Proof. Lett/ := (t{, té, cee t]’;j), for 1 < j < k. By Proposition 3 applied to
B, a, qg= 2+21<j<kl9j and Mp

there exist a partition {Cy, Cy, - - - ,C;} of B by elements of A and {A1, Ay, -+, Az} C Mp
such that:
[Ak(Cr)| >a and Zicic | A(P)| <1, for k=1,2,...,4. 7)

Let t be an element of T. Equality (6) enables us to fix one element
Cif S {Cl/ C2/ te /Cq}

such that for each finite subset Q of A

sup {{u|(Ci)) } = o0,
neMin{e(A):AeQ}e

and then there existsamap ¢ : T — {1,2,- - - ,q} defined by ¢(t) = i; with the following
properties:

1. T =uU{p (i) : 1 <i<q}. Hence there exists iy € {1,2,...,q} and an NV-tree T;,
contained in ¢! (ip). Then for each finite subset Q of A and each t € T;,

sup [1l(Ci) p = oo
yeMm{e(A):AeQ}o{ 0 }

2. LetS:=1{j:1<j<kt = (t]i,té,...,t;j) ¢ Tj,}. For each j € S, the element
@(t) =il € {1,2,...,q}. Hence for each finite subset Q of .A we have

sup {In(Cy) } = oo
yeMt,-m{e(A):AeQ}O

3. Foreachj € Sand foreachm, 2 < m < p]-,l <j< k,thesetW,];1 = {w € N=%°:
ti(m —1) x w € T} is an NV-tree. The map Pjm W), — {1,2,--- ,q} defined by

Pjm(w) = @(#/(m — 1) x w)
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verifies that W,]n = U{goj_ml(i) 1 é i < q}; hence, there exists i e {1,2,...,9} and
an NV-tree V), contained in goj;nl (i},) such that for each finite subset Q of A and each

v € V), we have

sup {Inlc;)} =

HEM ; N{e(A):AeQ}°

tl (m—1)xv

The number of sets defining
D := CiOU(U{CﬁUClJ 1jeS, 2<mg p]})

is less or equal than 2 + X ¢jkp; = g — 1, hence there exists C;, € {C1,Cy, - -+ ,Cy} such
that D C B\Cy,. By construction

T =T, U{t:jeSU{ti(m—1)xV}:jeS2<m<pj}

is an increasing subset of the NV-tree T, therefore Tj is also an NV-tree in T. By preceding
points 1, 2 and 3 for each ¢t € T7 and for each finite subset Q of A

sup {[ul(D)} = oo,
neMin{e(A):AcQ}°

hence

sup {[ul(B\Cy)} = co.
ueMin{e(A):AcQ}°

Inequalities (7) enable us to define By := C% and yj := Aj. With a repetition, changing
B by B\Bj, we get By, up and T,. After k repetitions we get the proof with T* := Ty. O

Lemma 1. Let {Bynye.n,, 2 i € N,1 < i < m,m € N} be an increasing web of the algebra A
such that for each sequence (p )5, there exists r € N such that By, p, ..., does not have property
(N). If A has property (N) then there exists an NV-tree T such that for each t = (t,tp,-- - ,tp) €
T there exists a Ts(A)-closed absolutely convex subset My of ba(A) which is Bs-pointwise bounded

and for each finite subset Q of A

sup {Iul(Q)} = oo.
neMin{e(A):AeQ}°

Proof. The increasing sequence { B, : n; € N} verifies one of the following two properties:

*  Each By, n1 € N, does not have property (N). Then by Proposition 2 there exists a
natural number p such that for each n; € N with p < n; there exists a 7;(A)-closed
absolutely convex subset My, of ba(.A) which is By, -pointwise bounded and such
that for each finite subset Q of A we have

sup {[ul(Q)} = oo
HEMu N{e(A):A€Q}°

Thenlet Ty := {n; € N:ny > p}and T; := @.

*  Or there exists m; € N such that B, has property (N) for each n; > m;.
In this case we write T} := @ and T} := {n; € N : ny > my} and we finish the first
step of the proof.

If T] := @ then the trivial NV-tree T = T; verifies this lemma.
If T{ # @ and n; € T then the increasing sequence {By,, : n; € N} may have one of
the two following two properties:

e Each By, 12 € N, does not have property (N). Again Proposition 2 implies that
there exists p(n1) € N such that for each n, € N with p(n1) < n, there exists a 7;(.A)-
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closed absolutely convex subset My, , of ba(A) which is By, ,-pointwise bounded
and such that for each finite subset Q of A we have

Sup {Inl(Q)} = oo
MGM(nl,nz)ﬂ{e(A);AeQ}o

Then we define Ty, := {(n1,n2) : np > p(n1)} and Ty, := .

e Or there exists my(n7) € N such that for each natural number ny, > mj(n7) the set
By, n, has property (N).
In this case let Ty, := @ and Ty, := {(n1,12) : np > ma(n1)}.

We finish this second step writing
T, = U{Tnl :n1 > mp} and Té = U{Tr/ll iny = mpl.

Notice that if (n1,1,) € T, we have determined a 7;(.A)-closed absolutely convex
subset My, of ba(.A) which is By, ,-pointwise bounded and such that for each finite
subset Q of A we have that

SUp {lul(Q)} = 0.
VGM(nl,nz)ﬂ{e(A);AgQ}o

If T} # @ we continue the induction in a natural way because if (n1,n2) € T}
considering as before the two cases in the increasing covering {By,nn, : 13 € N} of
Buyn, we get Ty n, := {(n1,n2,n3) : n3 > p(ny,n2)} and T, ,,, := @ in one case and
Tuymy = @ and Ty ,,, = {(n1,n2,n3) : n3 > m3(ny,nz)} in the other case. For each
(n1,n2,n3) € Tz := U{Tu,n, : (11,1n2) € T}} we have determined a 1;(.A)-closed abso-
lutely convex subset My, u,n, Of ba(A) which is By, ,n,-pointwise bounded and such that
for each finite subset Q of A we have

sup {I1l(Q)} = co.
ﬂeM(nl,nz)m{e(A):AeQ}o

This third step finish writing T} := U{Ty, », : (n1,n2) € T;}. For brevity, we omit the
clear and easy formalism of the induction.

Let T := U{T;:j € N}. If T = Ty then T is a trivial N'V-tree that verifies this lemma.
If T # Ty,ie., T1 = @, then according to the hypothesis of the increasing web

{Bungemy i €N, 1 <i <m,me N}

for each sequence (pm);,_; there exists » € N such that 3,,,...,, does not have property
(N), hence T := U{T; : j € N} is a non-void subset of N=* without strands. Moreover, by
construction T is increasing, because if t = (t1,t,--- ,t;) € T then t(i) € T/, for1 <i < h,
and t € Tj. Therefore T is an NV-tree that verifies the lemma, since, by construction,
for each t € T there exists a 7;(A)-closed absolutely convex subset M; of ba(.A) which is
Bi-pointwise bounded and such that for each finite subset Q of A we have obtained that

sup {u(Q)} = oo
ueMin{e(A):AeQ}e°

O
Theorem 1. A o-algebra S of subsets of a set () has property wN.

Proof. If the c-algebra S does not have property wN then there exists in S an increasing
web {Bm1m2---mp : p,my,my,---,my € N} such that for each sequence (m, : p € N)
there exists g such that By, m,..m, does not have property (N). By Nikodym theorem
S has property (N), hence by Lemma 1 there exists an NV-tree T such that for each
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t = (mqy,my,--- ,my) € T there exists a 7;(.A)-closed absolutely convex subset M; of ba(S)
which is B;-pointwise bounded and such that for each finite subset Q of S

sup {[u(Q)} = co.
ueMin{e(A):AeQ}e°

By induction on j we will determine a strictly increasing sequence of natural numbers
(kj)j, with k; =1, and a countable NV-tree

T = {t', 12, #R2, ffat] L. fks Loy

contained in T such that for each (i,j) € N? with i < k; there exists a set B;j € S and
ij € My that verify

Zs,v{’,uij(st)‘ is<ky, 1<0< ]}) <1, (8)

|pij(Bij)| > j, )
and Bl] N Bi’j’ =Qif (l,]) 75 (i/,j,).
In fact, select the number k; = 1 and an element t' € T. Proposition 5 with B := Q

and « = 1 provides By; € S, j11 € Mu and an NV-tree Tj such that |u11(B11)| > 1,
t! € T; C T and for each finite subset Q of Aand eacht € Ty

sup {Inl(Q)} = co.
neMin{e(A):AeQ}°

The first induction step finishes writing k1 := 1, S' := {#'} and B! := By;.

Let us suppose that for j = 1,2, - - - ,n we have obtained the natural numbers k; <
ko <ks <...<kpy the NV-treesTy D T» D Tz D ... D Ty, the elements {tl,tz,...,tk"},
the measures y;; € M, and the pairwise disjoint elements B;; € S,i < kjand j < 7,
such that
1. S={t:i<kj} C TjandS;:= {t-1"1,... 15} has the increasing property respect

to S/71, foreach 1 < j<mn,

2. {yi]-(Bi]-)| > jand Zs,v{’ﬂij(stH 15 <ky, 1<v<j}<lifi<kjandj<n,
3.  and the union B/ := U{Bsy : s < ky, 1 < v < j} verifies that for each finite subset Q of

A and for each t belonging to the NV-tree Tj, foreach j < n.

sup  {Iul(©@\B)} = oo,
neMin{e(A):AcQ}°

To finish the induction procedure select in T,\{# : i < k,} a subset
Spr1 = {tht1, .. th1} that has the increasing property respect to S". Then
Proposition 5 with
1. B=Q\B",

{Plr"' IPT‘} = {st 15 < ko1 <0< 7’1}/

the NV-tree T,

a=n+1

and the finite subset S"*1 := {t' : i < k, 41} of T,

SRR I

provides k;, 1 pairwise disjoint sets B;, ;1 € A that are subsets of Q\ B”, k,, 1 measures
Hing1 € Myi, 1 <i < kyqq, and an NV-tree T,, 1 such that

1.  §"*1 C T,.1 C T, and for each t € T, and for each finite subset Q of A the set M;

verifies that

sup  {|u[(@\B™)} = co, with B™ = B"U {Byy1 11 < kuia ),
neMin{e(A):AeQ}°
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2. ‘Vin+l(Bin+1)| >n+1and Zs,v{|,”in+l(st)| 15 <ky,1 <0< 7’1} <1l,forl1 <ig
kn-&-l'

From the increasing property of S, := {tkf o, tkiﬂ} with respect to
§i={t:i< k]-},

for each j € N, we get that T* := {#' : i € N} is an increasing subset of the NV-tree T.
Therefore T* is an NV-tree.

We claim that there exists a sequence (in, jn)yen such that (i, ),cn is the sequence of
first components of the sequence obtained ordering the elements of N? by the diagonal
order, i.e.,

(i1,1p,13,14, 15, 16,17, - - ) = (1,1,2,1,2,3,1,- - - ),

and (jn)en is a strict increasing sequence such that for each n € N

Wiy ju | (U{Bj,, j,, = m >mn}) < 1.

As the sequence (k, : n € N) is increasing then for each increasing sequence (jy :
n € N) we have iy < j, < kj,, n € N. To get the increasing sequence (ju),cn we fix
(i1,1) == (1,1) and if ;| < h1 € N then we split the set {j € N : j > 1} in /1y infinite
subsets Niq, - - -, Nyj,. At least one of this subsets, named Nj, verifies that

iy jn | (U{Bij i < Ky j € Ni}) <1,

because

hi > |piy i | = Za<pan | iy j [(UfBij 11 < kj,j € Nip}).

Then we define j, := inf{n : n € Ny }.
Suppose that we have obtained the natural number j, and the infinite subset N, of
theset {j € N:j > j,} such that

|:uin,jn (U{Bi’]’ 1 < k],] S Nn}) <1

Then we define j,41 = inf{n : n € Ny} and if |p; ;i ., | < hygq we split the set
{j € Nu 2 j > jup1} in hyyq infinite subsets Ny 1,1, -, Nyy1p,,,- At least one of this
subsets, named N, verifies that

’Vin+1,j,,+1’(U{Bi,j : l S k]’] € Nn+1}) S 1

because

hp1 = |Vin+1r]'n+1| 2 Zlﬁfﬁhnﬂ |yin+1/]'n+1’(u{Bir]' S kf’j € N”+1/7})'

The relation

B=U{B; ; :meN}eS (10)

m ,jm

and the property that T* := {t' : i € N} is an NV-tree imply that there exists r € N such
that B € B,. By construction there exists an increasing sequence (m; : s € N) such that
each iy, = r, s € N. Therefore the set of measures {y;,_ ;. s € N} = {p,; :s€N}isa
subset of M,, that it is pointwise bounded in B;. In particular

sup{‘y,'mS,jms (B)|:s e N} = sup{|y,/]-m5(B)| 15 € N} < oo (11)
But from
| Hing s (B)| = i jme (U Biju) | =
meN
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1<k<m<jmg m>jms

2 |Vimsr]'ms (Binlsrjn15)| - 2 ’yimsr]'ms (Bkm>| - ’#imsr]'m5| ( U Bimrjm) > jms -2

we get that lims e |p4j,,_ j,,. (B)| = 00, in contradiction with (11). O

Remark 2. In the preceding proof it has been used the fact that the B = U{B,, ; :m € N} € S
in (10) to get the final contradiction. In [20], Theorem 1, it is proved that the algebra J ([0,1]7) of
Jordan measurable subsets of [0, 1P has the property (wN) and the construction is made selecting a
sequence of sets (B;, i :m € N) of J([0,1]P) such that the UN Bi,jn € J([0,1]7.

me

imzjm

Remark 3. In [8], Theorem 3.3, it is given a class of ring of subsets that have the property (N) if
they have the property (wN), i.e., for this class of rings the Valdivia problem in [15] (N) = (sN)?)
has a positive answer.

Recall that a family R of subsets of a set Q) is a ring if @ € R and for every (A, B) € R?
we have that A\B € R and AU B € R. Hence a ring A of subsets of a set () is an algebra
ifand only if Q) € A.

The fact that the known algebras with property (sN) have the property (wN) suggests
the following problem as a natural complement to before mentioned Valdivia problem [15].

Problem 1. Is it true that in an algebra A property (sN) implies property (wN)?

4. Sets with (wG) and (wV HS) Properties

Let F be a subset of a Banach space E and let (y,)5’_; be a bounded sequence in its
dual E*. Then the F-pointwise convergence of the sequence to y implies the F-pointwise
convergence of the sequence to y. In fact, fix e > 0 and v € F, then by hypothesis there
exists f € F such that ||o — f|| < €(2(1 + |u| + sup,|ux|) !, and, again by hypothesis, for
this f there exists ne such that |(u, — ) (f)| < 27 ¢, for every n > ne. Hence for n > n,
we have that

e(|ul +sup,|un|) | €
|(pn — ) (0 = £+ [(pn — ) (f)] < 301+ [ £ sup_ i +5<e

hence
[(n = 1) (@) < [(pn — ) (0 = Ol + (1 — 1) ()] <€

so (un)_; converges pointwise to y in F.

In particular, if an algebra A contains a subset B with property (N) then each sequence
(pn )5y of ba(A) that converges B-pointwise to y is bounded and for each f € Lo (A) we
have that

lim 1, (f) = u(f) (12)

n—oo

In fact, as B has property (N) and the sequence (y,,)5_; is B-pointwise bounded,
the sequence ()5, is bounded in ba(A). The norm boundedness of the sequence
(pn)5_, the equality span{e(A): A € B}LW(A) = Lo (A) deduced from Proposition 1
and the hypothesis that lim, . y(C) = p(C), for each C € B, that it is equivalent to
limy—eo pn(f) = u(f), for each f € span{e(A) : A € B}, imply (12) for each f € Lo (A).

This result implies easily the following Proposition 6.

Proposition 6. A subset 3 of an algebra A has property (VHS) if and only if I3 has property (N)
and A has property (G).

Proof. We have seen that if 3 has property (N) and (u, ), is a sequence of ba(.A) that
converges B-pointwise to y then the sequence ()7 is bounded and (y,,(B));>_; con-

verges to j1(B) for each B € A. If additionally A has property (G) then (u, )5, converges
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weakly to y, i.e., (¢(un))5_, converges weakly to 1(u), for each i € ba(A)*. Therefore B
has property (VHS).

To prove the converse, let’s suppose that a subset B of an algebra A has property
(VHS). It is obvious that B has property (G) and then A has property (G). Moreover, if
(pn )5y is a sequence of ba(.A) that is B-pointwise bounded then for every scalar sequence
(€n);>; that converges to 0 we have that

Jim o () =0
for each B € B, hence as B has property (VHS) we have that the sequence (€,11,)$ 4
converges weakly to the null measure, implying that {3, : n € N} is a bounded subset of
ba(A). Therefore B has the property (N). O

Proposition 6 for B = A says that an algebra A has property (VHS) if and only if
A has the properties (N) and (G). In [14] (page 6, lines 23 and 24) it says that Diestel,
Faires and Huff obtained this equivalence in his 1976 preprint paper Convergence and
boundedness of measures on non-sigma complete algebras. It seems that this preprint has
never been published, but it is cited in many other papers, for instance in [28] (reference 9
in page 113).

Corollary 1. A subset B of an algebra A has property (sVHS) if and only if B has property (sN)
and A has property (G).

Proof. Let (B, : n € N) be an increasing covering of 3.
If B has property (sVHS) there exists p € N such that B, has property (VHS). By
Proposition 6 B, has property (N) and A has property (G). Hence B has property (sN).
The converse follows from the observation that if (B, : n € N) contains a set B, with
property (N) and A has property (G), then, by Proposition 6, B, has property (VHS), so
B has property (sVHS). O

Corollary 2. A subset B of an algebra A has property (wVHS) if and only if B has property
(wN) and A has property (G).

Proof. Let {By,n,-..n,, : 1i € N,1 <i < m,m € N} be an increasing web of 8.

If B has property (wV HS) then there exists a sequence (p; : i € N) such that B, p,...;,
has property (VHS) for every m € N. By Proposition 6 each By, p,...,,, m € N, has
properties (N) and (G). Hence B has property (wN) and A has property (G).

The converse follows from the observation that if A has property (G) and for the
increasing web { By ny...n,, : 1i € N,1 <i < m,m € N} there exists a sequence (g; : i € N)
such that each By,g,..4,,, m € N, has property (N), then Proposition 6 implies that each
B 45---g, m € N has property (VHS) property, hence B has property (wVHS). [

5. Conclusions

Let A be an algebra and let M be a subset of ba(.A). By the Banach-Steinhaus theorem
the inequalities
sup{u(f) : p € M} < oo, for each f € Luo(A),

imply that M is a bounded subset of ba(A). According to the Nikodym-Grothendieck the-
orem each c-algebra S has property (N), i.e., if a subset M of ba(S) verifies the inequalities
sup{p(C) : y € M} < o0, foreach C € S,

then M is a bounded subset of ba(S). This theorem is considered in ([29], Page 309) as
a “striking improvement of the Banach-Steinhaus theorem of uniform boundedness”. In
the frame of locally convex barrelled spaces Nikodym-Grothendieck theorem has been
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improved in [3,17], obtaining that every o-algebra S has properties (sN) and (wN), respec-
tively, and both properties enable us to get new results in Functional Analysis and Measure
theory.

There exists algebras with property (N) and algebras without property (N). It is
unknown if property (N) in an algebra implies property (sN) ([15], Problem 1) and it is
also unknown if property (sN) in an algebra implies property (wN) (see Problem 1).

As a step to solve these two open problems we have provide in Section 3 a proof of
the web Nikodym property of o-algebras which only depends on elementary basic results
of Measure theory and Banach space theory. Positive solutions of this two open questions
would provide new progress in Functional Analysis and Measure theory and will allow to
extend results for o-algebra S to results for algebras.

Moreover the results in Section 4 imply that if A is an algebra with property (VHS)
then A has property (sVHS) [(wVHS)] if and only if A has property (sN) [(wN)]. There-
fore the two above-mentioned open problems have an equivalent formulation for algebras
with property (VHS).
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