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Abstract: A subset B of an algebra A of subsets of a set Ω has property (N) if each B-pointwise
bounded sequence of the Banach space ba(A) is bounded in ba(A), where ba(A) is the Banach space
of real or complex bounded finitely additive measures defined on A endowed with the variation
norm. B has property (G) [(VHS)] if for each bounded sequence [if for each sequence] in ba(A) the B-
pointwise convergence implies its weak convergence. B has property (sN) [(sG) or (sVHS)] if every
increasing covering {Bn : n ∈ N} of B contains a set Bp with property (N) [(G) or (VHS)], and B has
property (wN) [(wG) or (wVHS)] if every increasing web {Bn1n2···nm : ni ∈ N, 1 ≤ i ≤ m, m ∈ N}
of B contains a strand {Bp1 p2···pm : m ∈ N} formed by elements Bp1 p2···pm with property (N) [(G) or
(VHS)] for every m ∈ N. The classical theorems of Nikodým–Grothendieck, Valdivia, Grothendieck
and Vitali–Hahn–Saks say, respectively, that every σ-algebra has properties (N), (sN), (G) and
(VHS). Valdivia’s theorem was obtained through theorems of barrelled spaces. Recently, it has been
proved that every σ-algebra has property (wN) and several applications of this strong Nikodým
type property have been provided. In this survey paper we obtain a proof of the property (wN) of a
σ-algebra independent of the theory of locally convex barrelled spaces which depends on elementary
basic results of Measure theory and Banach space theory. Moreover we prove that a subset B of an
algebra A has property (wWHS) if and only if B has property (wN) and A has property (G).

Keywords: algebra and σ-algebra of subsets; bounded finitely additive scalar measure; Nikodým;
strong and web Nikodým properties; Grothendieck; strong and web Grothendieck properties; Vitali–
Hahn–Saks; strong and web Vitali–Hahn–Saks properties

MSC: 28A60; 46G10

1. Introduction

In this paper A and S denote, respectively, an algebra and a σ-algebra of subsets of a
set Ω. We will refer to an algebra and a σ-algebra of subsets of Ω simply as an algebra and
a σ-algebra, respectively. The real or complex linear hull L(A) of the set

{e(B) : B ∈ A}

of characteristics functions of the elements of A with the norm

‖ f ‖∞ := sup{| f (x)| : x ∈ Ω}, f ∈ L(A)

is a normed space and its completion is the Banach space L∞(A) of all A-measurable real
or complex bounded functions defined on Ω. By [1], Theorem 1.13, its dual endowed with
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the polar norm is the Banach space ba(A) of scalar bounded finitely additive measures
defined on A, and the polar norm of every µ ∈ ba(A) is the variation of µ, given by

| µ | := sup{Σn
i=1{| µ(Ai)|} : {Ai : 1 ≤ i ≤ n} ∈ F},

where F is the family of finite partitions of Ω by elements of A and µ(e(C)) := µ(C). For
an element B of A the variation of µ on B

| µ |(B) := sup{Σn
i=1{| µ(Ai)|} : {Ai : 1 ≤ i ≤ n} ∈ FB},

defines a seminorm on ba(A) and for each finite partition {Bi : Bi ∈ A, 1 6 i 6 n} of B we
have |µ|(B) = Σ{|µ|(Bi) : 1 6 i 6 n}.

The polar set [2], §20, 8 (named absolute polar set), of a subset M of L(A) or ba(A) is
the subset M◦ defined by

M◦ := {µ ∈ ba(A) : |µ( f )| ≤ 1, for every f ∈ M}, if M ⊂ L(A)

or
M◦ := { f ∈ L(A) : |µ( f )| ≤ 1, for every µ ∈ M}, if M ⊂ L(A).

The topology in ba(A) of pointwise convergence on a subset B of A is denoted by
τs(B) in ba(A). Clearly a subset M of ba(A) is τs(B)-bounded if and only if

sup{|µ(C)| : µ ∈ M} < ∞, for every C ∈ B.

In particular, τs(A) is the weak∗ topology in ba(A).
By abscoH is denoted the absolutely convex hull of H and the gauge or Minkowski

functional of the subset G := absco({e(C) : C ∈ A}) of L(A) is a norm in L(A) defined by

‖ f ‖G := inf{|λ| : f ∈ λG}, f ∈ L(A),

which is equivalent to the supremum norm ([3], Propositions 1 and 2). Its polar norm in
ba(A) is the supremum of the modulus, i.e., for every µ ∈ ba(A) of µ in A,

|µ|∞ := sup{|µ(C)| : C ∈ A}, µ ∈ ba(A),

hence in ba(A) the norms variation and supremum are equivalent. For each B ∈ A the
seminorms defined by the variation on B, |µ|(B), and the supremum of the modulus on
{C ∈ A : C ⊂ B}, |µ|∞,B := sup{|µ(C)| : C ∈ A, C ⊂ B}, are equivalent seminorms in
ba(A).

A subset B of an algebra A is a Nikodým set for ba(A), or B has property (N), if the
τs(B)-boundedness of a subset M of ba(A) implies

sup{|µ| : µ ∈ M} < ∞,

or, equivalently
sup{|µ(C)| : µ ∈ M, C ∈ A} < ∞,

i.e., M is uniformly bounded in A. Note that B has property (N) if and only if {e(C) : C ∈
B} is a uniform bounded deciding subset of L(A) ([4], Example 2). We may suppose that
the subset M above is absolutely convex and weak*-closed. Clearly B has property (N) if
each B-pointwise bounded sequence of ba(A) is uniformly bounded in A. The above set B
is a strong Nikodým set for ba(A), or B has property (sN), if each increasing countable
covering of B contains an element that has property (N), and B is a web Nikodým set
for ba(A), or B has property (wN), if each increasing web {Bn1n2···nm : ni ∈ N, 1 ≤ i ≤
m, m ∈ N} of B contains a decreasing sequence {Bp1 p2···pm : m ∈ N} formed by subsets
with property (N). Let us recall that by definition {Bn1n2···nm : ni ∈ N, 1 ≤ i ≤ m, m ∈ N} is
an increasing web of B if the sequence {Bn1 : n1 ∈ N} is an increasing covering of B and for
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each m ∈ N and each (n1n2 · · · nm) ∈ Nm the countable family {Bn1n2···nmnm+1 : nm+1 ∈ N}
is an increasing covering of Bn1n2···nm . It is obvious that (wN)⇒ (sN)⇒ (N), and that B
has property (wN) if and only if each increasing web of B contains an increasing subweb
formed by sets that have property (wN). It is straightforward to prove that properties
(wN), (s(wN)), (w(sN)) and (w(wN)) are equivalent ([5], Proposition 1).

A subset B of an algebra A is a Grothendieck set for ba(A) if each bounded sequence
in ba(A) that B-pointwise converges to the null measure converges weakly, and B is a
Vitaly-Hahn-Saks set for ba(A) if in ba(A) each sequence that B-pointwise converges to the
null measure converges weakly. In brief we will say that B has property (G) or property
(VHS), respectively. The above subset B has property (VHS) if and only if B has properties
(N) and (G) (see Proposition 6). Properties (sG), (wG), (sVHS) and (wVHS) are defined
as in the case of properties (sN) and (wN), changing N into G or VHS. For instance, B has
property (sG) if for each increasing covering {Bn : n ∈ N} of B there exists p ∈ N such that
Bp has property (G). Clearly (wG) ⇒ (sG) ⇒ (G), and (wVHS) ⇒ (sVHS) ⇒ (VHS).
Let us recall (see [6,7])̇ that a subset C of the closed dual unit ball BE∗ of a Banach space E
is a Rainwater set for E if for every bounded sequence {xn : n ∈ N} the conditions

lim
n→∞

f (xn) = 0, for every f ∈ C

imply
lim

n→∞
f (xn) = 0, for every f ∈ E∗.

Hence for a subset B of an algebra A the conditions B has property (G) and C =
{e(B) : B ∈ B} is a Rainwater set for ba(A) are equivalent ([8], Proposition 4.1) , where
e(B) is the element of the closed dual unit ball of ba(A)∗ such that e(B)(µ) := µ(B), for
each measure µ ∈ ba(A).

The four classical theorems of Nikodým–Grothendieck, Valdivia, Grothendieck and
Vitali–Hahn–Saks say, respectively, that each σ-algebra S has properties (N), (sN), (G) and
(VHS) (see [1,3,9–15]). Equivalent definitions of properties (G) and (VHS) are given in [14].
We may find in [11] that for each sequence in `∗∞ the weak* convergence implies the weak
convergence. Because of this deep property, a Banach space E is called a Grothendieck space
if for each sequence in its dual E∗ the weak* convergence implies its weak convergence,
so `∞ is a Grothendieck space. Notice that by the Banach–Steinhaus theorem every weak*
convergent sequence of the dual E∗ of a Banach space E is bounded, hence an algebraA has
property (G) if and only if L∞(A)∗ is a Grothendieck space. Recently it has been proved
that every σ-algebra S has properties (wN) (see [16,17]) and (wG) (see [18] and ([19],
Theorem 1)). It has also property (wVHS), because a set B has property (wVHS) if and
only if B has properties (wN) and (G) (Corollary 2).

The situation with algebras is different. There are many examples of algebras that
do not have property (N) ([1], Chapter I, Example 5). Schachermayer [14] proved that
the algebra J ([0, 1]) of all Jordan measurable subsets of [0, 1] has property (N) but fails
property (G). In 2013, Valdivia proved that the algebra J ([0, 1]p) has property (sN) [15].
This result motivated paper [20] where if was proved that J ([0, 1]p) has property (wN). It
has been found recently in [8] that there exists a class of rings of sets with property (wN).

Valdivia improved some results concerning the range localization of vector measures
defined in a σ-algebra by showing that each σ-algebra has property (sN) [3]. The extension
of these new range localization results to vector measures defined on an algebra motivates
the following open problem proposed by Valdivia in 2013 [15]:

Is it true that in an algebra A that property (N) implies property (sN)?
Valdivia’s original proof that every σ-algebra has property (sN) depends on properties

of locally convex barrelled spaces (contained among others in the books [21,22], and also in
the papers [23–25]). As a help to solve the mentioned open problem proposed by Valdivia,
in [19], Section 3, was given a new proof independent from barrelledness properties. In [19],
Problem 2, it was proposed to prove that every σ-algebra has property (wN) using basic
results of Measure theory and Banach space theory. We give such proof in Section 3 of this



Mathematics 2021, 9, 526 4 of 17

paper. For the sake of completeness we include several proofs of previous known results
with the corresponding references.

The last section is motivated by [26,27]. We prove that for a subset B of an algebra
A properties (sN) and (G) imply property (sVHS) and properties (wN) and (G) imply
property (wVHS) (Corollaries 1 and 2). Therefore in a class of algebras where property
(N) implies property (sN) we will have also that property (VHS) imply property (sVHS).

2. Preliminary Results

The next well known proposition characterizes when a subset B of an algebra A has
property (N) (see [19], Proposition 1). We give a reduced proof for the sake of completeness.

Proposition 1. B has property (N) if and only if for each increasing covering {Bn : n ∈ N} of B
there exists Bp such that

absco{e(A) : A ∈ Bp}
L(A)

is a neighborhood of zero in L(A).

Proof. If B does not have property (N) there exists a subset M in ba(A) such that

sup{|µ| : µ ∈ M} = ∞

and
sup{|µ(C)| : µ ∈ M} < ∞, for each C ∈ B.

The first equality implies that M◦ is not a neighborhood of zero in L(A). The above
inequalities imply that the sets

Bn = {A ∈ B : sup
µ∈M
|µ(A)| ≤ n}, n ∈ N,

are increasing, cover B and

{e(A) : A ∈ Bn} ⊂ nM◦, for each n ∈ N.

Hence the inclusions Dn := absco{e(A) : A ∈ Bn}
L(A) ⊂ nM◦, for each n ∈ N, imply

that for each natural number n the set Dn is not a neighborhood of zero in L(A).
Conversely, if there exists an increasing covering {Bn : n ∈ N} of B such that

absco{e(A) : A ∈ Bn}
L(A)

is not a neighborhood of zero in L(A) for every n ∈ N, then there exists µn ∈ {e(A) : A ∈
Bn}◦ such that |µn| ≥ n, for each n ∈ N, and, by definition of polar set,

sup{|µn(A)| : A ∈ Bn} ≤ 1.

Hence M = {µn : n ∈ N} is an unbounded subset of ba(A) and if C ∈ B there exists
qC ∈ N such that C ∈ Bn for each n ≥ qC, hence

sup{|µ(C)| : µ ∈ M} ≤ 1 + Σ{|µn(C)| : n < qC} < ∞,

so B does not have property (N).

In particular, if B is a Nikodým set for ba(A) then absco{e(A) : A ∈ B}L(A)
is a

neighborhood of zero in L(A) and span{e(A) : A ∈ B}L(A)
= L(A).

We need to complement Proposition 1 with Proposition 2, which provides a property
of a subset B of an algebra A that has property (N) but fails property (sN).
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Let B and C be two subsets of a vector space E. Note that if the sum span B + span C
is not direct there exists x ∈ C\{0} such that

x = Σp
i=1βiyi + Σq

j=1γjzj,

with yi ∈ B, 1 ≤ i ≤ p, and zj ∈ C\{x}, 1 ≤ j ≤ q. Then each w ∈ absco(B ∪ C) may be
represented as

w = Σs
i=1δisi + εx + Σt

j=1εjtj,

with Σs
i=1|δi|+ |ε|+ Σt

j=1

∣∣εj
∣∣ ≤ 1 and (si, tj) ∈ B× (C\{x}). The two above equalities

imply that
x = Σs

i=1δisi + Σp
i=1εβiyi + Σq

j=1εγjzj + Σt
j=1εjtj,

hence
x ∈ (1 + h)absco(B ∪ (C\{x})),

with h = Σp
i=1|βi|+ Σq

j=1

∣∣γj
∣∣. This relation proves the non trivial inclusion in

absco(B ∪ (C\{q1})) ⊂ absco(B ∪ C) ⊂ (1 + h)absco(B ∪ (C\{x})). (1)

From (1) it follows that the gauges defined by absco(B∪C) and absco(B∪C\{x}) are
equivalent and

spanB + spanC = spanB + span(C\{x}).

By a direct finite induction we deduce the well known property ([19], Claim 2) that
each finite subset C of E contains a subset D such that span(B ∪ C) is equal to the direct
sum span B⊕ span D and the gauges of absco(B ∪ C) and absco(B ∪ D) are equivalent.
This property is used in the following Remark 1 ([19], Claim 3), that implies Proposition 2
obtained in [19], Proposition 3. To help the reader we present simplified proofs.

Remark 1. Let E be a normed space and let B be a closed absolutely convex subset of E which is
not a zero neighborhood in E and such that its linear hull is dense in E. Then for each finite subset
C of E the absolutely convex hull of B ∪ C is not a zero neighborhood in E.

Proof. If absco(B ∪ C) is a neighborhood of 0 in E then C contains a subset D such that
absco(B∪D) is a neighborhood of 0 in E and E = spanB⊕ spanD. Then (absco(B∪D))∩
(spanB) = B is a zero neighborhood in spanB, implying that B = BE is a neighborhood
of zero in spanBE, since for each x ∈ E with 0 < ‖x‖ < r there exists a sequence (xn)∞

n=1
in spanB with ‖xn‖ < r, n ∈ N, and limn→∞ xn = x. We get the contradiction that B is
neighborhood of zero in E.

Proposition 2. Let A be an algebra that has a subset B enjoying property (N) with an increasing
covering {Bn : n ∈ N} of B such that each Bn does not have property (N). Then there exists p ∈ N
such that for every n ≥ p the space ba(A) contains a weak∗-closed, absolutely convex, Bn-pointwise
bounded subset Mn such that for each finite subset Q of A we have that Mn ∩ {e(A) : A ∈ Q}◦ is
unbounded in ba(A), i.e.,

sup
µ∈Mn∩{e(A):A∈Q}◦

{|µ|(Ω)} = ∞. (2)

Proof. Since Bn does not have property (N) there exists an unbounded, weak* closed,
absolutely convex subset Mn of ba(A) which is Bn-pointwise bounded. Hence the polar
set M◦n is a closed absolutely convex subset of L(A) which is not neighborhood of zero and
span{e(A) : A ∈ Bn} ⊂ spanM◦n. By Proposition 1 there exists p such that for each n ≥ p

span{e(A) : A ∈ Bn}
L(A)

= L(A), (3)
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hence, for each n ≥ p, the relation (3) implies that spanM◦n
L(A)

= L(A), so the set
absco(M◦n ∪ {e(A) : A ∈ Q}) is not a zero neighborhood in L(A), implying the un-
boundedness of its polar set

{absco(M◦n ∪ {e(A) : A ∈ Q})}◦ = M◦◦ ∩ {e(A) : A ∈ Q}◦,

and the proof follows from the equality M = M◦◦.

Assume that an element B of an algebra A and an absolutely convex a subset M of
ba(A) verify that for each finite subset Q of A

sup
µ∈M∩{e(A):A∈Q}◦

{|µ|(B)} = ∞ (4)

then for each finite partition {B1, B2, . . . , Bq} of B by elements of A the equality

|µ|(B) = |µ|(B1) + |µ|(B2) + · · ·+ |µ|(Bq)

implies that there exists Bj, with 1 ≤ j ≤ q, such that for each finite subset Q of A

sup
µ∈M∩{e(A):A∈Q}◦

{
|µ|(Bj)

}
= ∞.

This observation implies that for each α ∈ R+ and each finite subset {Pi : 1 ≤ i ≤ n}
of A there exists (µ1, B1) ∈ M×A, B1 ⊂ B such that

|µ1(e(B1))| > α, |µ1(e(B\B1))| > α, Σn
j=1
∣∣µ1(e(Pj))

∣∣ ≤ 1

and for each finite subset Q of A

sup
µ∈M∩{e(A):A∈Q}◦

|µ|(B\B1) = ∞,

because by (4) with Q = {B, P1, · · · , Pn} there exists

(ν1, P11) ∈ (M ∩ {e(D) : D ∈ Q}◦)×A,

with P11 ⊂ B such

|ν1(P11)| > n(α + 1), |ν1(B)| ≤ 1 and
∣∣ν1(Pj)

∣∣ ≤ 1, for 1 ≤ j ≤ n.

Let P12 := B\P11 and µ1 = n−1ν1. The measure µ1 ∈ M and verifies that

|µ1(P11)| > α + 1, |µ1(B)| ≤ 1, Σn
j=1
∣∣µ1(e(Pj))

∣∣ ≤ 1,

hence
|µ1(P12)| = |µ1(B)− µ1(P11)| ≥ |µ1(P11)| − |µ1(B)| > α.

Moreover, it holds at least one of the equalities

sup
µ∈M∩{e(D):D∈Q}◦

{|µ|(P11)} = ∞, for each finite subset Q ∈ A

or
sup

µ∈M∩{e(D):D∈Q}◦
{|µ|(P12)} = ∞, for each finite subset Q ∈ A

If the first equality holds we define B1 := P12 and if this is not the case we take
B1 := P11 to get this Claim. Proposition 3 follows from this observation.
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Proposition 3. Let A be an algebra and let M be a weak*-closed and absolutely convex subset of
ba(A). If there exists B ∈ A such that for each finite subset Q of A

sup
µ∈M∩{e(A):A∈Q}◦

|µ|(B) = ∞,

then for each natural number p > 1, each α ∈ R+ and each finite subset {Pi : 1 ≤ i ≤ n} of
A there exists a partition {Bi : Bi ∈ A, 1 ≤ i ≤ p} of B and a subset {µi : 1 ≤ i ≤ p} of M
such that

|µi(e(Bi))| > α and Σn
j=1
∣∣µi(e(Pj))

∣∣ ≤ 1, for 1 ≤ i ≤ p (5)

Proof. We have seen that there exists in B a partition {B1, B\B1} ∈ A×A and a measure
µ1 ∈ M such that

|µ1(e(B1))| > α, |µ1(e(B\B1))| > α, Σn
j=1
∣∣µ1(e(Pj))

∣∣ ≤ 1

and for each finite subset Q of A

sup
µ∈M∩{e(A):A∈Q}◦

|µ|(B\B1) = ∞.

This equality implies that there exists in B\B1 a subset B2 ∈ A and a measure µ2 ∈ M
such that

|µ2(e(B2))| > α, |µ2(e(B\(B1 ∪ B2)))| > α, Σn
j=1
∣∣µ2(e(Pj))

∣∣ ≤ 1

and for each finite subset Q of A

sup
µ∈M∩{e(D):D∈Q}◦

|µ|(B\(B1 ∪ B2)) = ∞.

Repeating this method we get in B\(B1 ∪ B2 ∪ · · · ∪ Bp−2) a partition {Bp−1, B\(B1 ∪
B2 ∪ · · · ∪ Bp−2 ∪ Bp−1)} ∈ A×A and a measure µp−1 ∈ M such that∣∣µp−1(e(Bp−1))

∣∣ > α,
∣∣µp−1(e(B\(B1 ∪ · · · ∪ Bp−1)))

∣∣ > α, Σn
j=1
∣∣µp−1(e(Pj))

∣∣ ≤ 1.

To finish the proof we define Bp := B\(B1 ∪ B2 ∪ · · · ∪ Bp−2 ∪ Bp−1) and µp :=
µp−1.

3. A Proof of the Web Nikodým Property of σ-Algebras

Let N<∞ := ∪{Ns : s ∈ N} be the set of finite sequences of natural numbers, let
t = (t1, t2, . . . , tp) and s = (s1, s2, . . . , sq) be two elements of N<∞ and let T and U be two
subsets of N<∞. Then the element

(t, s) := (t1, t2, . . . , tp, s1, s2, . . . , sq)

is a proper continuation of t and the sets (t, U) := {(t, u) : u ∈ U} and (T, U) := {(t, u) :
t ∈ T, u ∈ U} are named the concatenations of t and U, and T and U, respectively.
The element t(i) := (t1, t2, . . . , ti), if 1 6 i 6 p and t(i) := ∅ if i > p, and the set
T(i) := {t(i) : t ∈ T} are named the sections of length i of t and T. A sequence (tn : n ∈ N)
formed by elements of N<∞ is a strand if tn+1(n) = tn(n), for each n ∈ N. For simplicity (t1)
will be represented by t1 and when U = ∅ then, by agreement, (t, U) = t and (T, U) = T.

A non-void subset U of N<∞ is increasing at t = (t1, t2, . . . , tp) ∈ N<∞ if there exists p
scalars ti

i verifying ti < ti
i, for 1 6 i 6 p, and p− 1 elements vi of N<∞, 1 ≤ i < p− 1, such

that (t1
1, v1) ∈ U, ((t1, t2, . . . , ti−1, ti

i), vi) ∈ U, 1 < i < p, and (t1, t2, . . . , tp−1, tp
p) ∈ U(p).

U is increasing (increasing respect to a subset V of N<∞) if U is increasing at each t ∈ U (at
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each t ∈ V). Clearly U is increasing if and only if for each t = (t1, t2, . . . , tp) ∈ U the sets
U(1) and {n ∈ N : (t(i), n) ∈ U(i + 1)}, 1 6 i < p, are infinite.

The next definition provides a particular type of increasing subsets U of N<∞ con-
sidered in [16], Definition 2, and [5], Definition 1, and named NV-trees, reminding O.M.
Nikodým and M. Valdivia.

Definition 1. An NV-tree is a non-void increasing subset T of N<∞ without strands and such
that every t = (t1, t2, . . . , tp) ∈ T has no proper continuation in T.

An NV-tree T is an infinite subset of N if and only if T = T(1). Then it is said that
T is an NV-tree trivial. The sets Ni, i ∈ N\{1}, and the set ∪{(i,Ni) : i ∈ N} are non
trivial NV-trees.

If T is an increasing subset of N<∞ and {Bu : u ∈ N<∞} is an increasing web in B then
(Bu(1))u∈T is an increasing covering of B and for each u = (u1, u2, . . . , up) ∈ T and each
i < p the sequence (Bu(i)×n)u(i)×n∈T(i+1) is an increasing covering of Bu(i). In particular if
T is an NV-tree then B = ∪{Bt : t ∈ T} because T does not contain strands.

As every increasing subset S of an NV-tree T is an NV-tree, then we have that if
(Sn)n is a sequence of non-void subsets of an NV-tree T such that each Sn+1 is increasing
with respect to Sn then ∪nSn is an NV-tree. The following Proposition 4 may be found in
([5], Proposition 2) with a long detailed inductive proof. For the sake of completeness we
present here only a sketch of its proof.

Proposition 4. Let U be a subset of an NV-tree T. If U does not contain an NV-tree then T\U
contains an NV-tree.

Proof. This proposition is obvious if T is a trivial NV-tree, so we suppose that T is a
non-trivial NV-tree.

By hypothesis on U there exists m′1 ∈ T(1) such that for each n1 > m′1 the set {v ∈
N<∞ : (n1, v) ∈ U} does not contain an NV-tree. We define Q1 := ∅ and Q′1 := {n1 ∈
T(1)\T : n1 > m1}.

Fix n1 ∈ Q′1 and then we have one of the following two possible cases:

• There exists p2 ∈ N such that (n1, p2) ∈ T. As

{v ∈ N<∞ : (n1, v) ∈ U} = {v : (n1, v) ∈ U}

does not contain an NV-tree, there exists m2(n1) ∈ N such that

Q2(n1) = {(n1, n2) ∈ T : n2 > m2(n1)} ⊂ T\U.

In this case we define Q′2(n1) = ∅.
• Or for each p2 ∈ N we have that (n1, p2) /∈ T. Then there exists m′2(n1) ∈ N such

that for each n2 > m′2(n1) the set {v ∈ ∪sNs : ((n1, n2), v) ∈ U} does not contain an
NV-tree. In this case we define

Q′2(n1) = {(n1, n2) ∈ T(2) : n2 > m′2(n1)}

and Q2(n1) = ∅.

We finish this second step of the inductive process defining

Q2 = ∪{Q2(n1) : n1 ∈ Q′1} and Q′2 = ∪{Q′2(n1) : n1 ∈ Q′1}.

The induction continues in an obvious way.
By construction Q = ∪{Qi : i ∈ N} ⊂ T\U. As T does not have strands we have that

the set Q is non-void. Moreover Q is increasing because t = (t1, t2, . . . , tp) ∈ Q if and only
if t(i) ∈ Q′(i) for 1 ≤ i < p and t ∈ Q(p). Hence Q is an NV-tree contained in T\U.
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Proposition 5 is a simplified version of Proposition 9 and 10 of [16].

Proposition 5. Let {B, P1, . . . , Pr} be a subset of an algebra A of subsets of Ω and {Mt : t ∈ T}
a family of absolutely convex subsets of ba(A), indexed by a NV-tree T such that for each t ∈ T
and for each finite subset Q of A

sup
µ∈Mt∩{e(A):A∈Q}◦

{|µ|(B)} = ∞. (6)

Then for each positive real number α and each finite subset {tj : 1 6 j 6 k} of T there exist k
pairwise disjoint sets Bj ∈ A that are subsets of B, k measures µj ∈ Mtj , 1 6 j 6 k, and a NV-tree
T∗ such that:

{tj : 1 6 j 6 k} ⊂ T∗ ⊂ T

and for each t ∈ T∗ and for each finite subset Q of A

sup
µ∈Mt∩{e(A):A∈Q}◦

{
|µ|(B\ ∪16j6k Bj)

}
= ∞,

∣∣µj(Bj)
∣∣ > α and Σ{

∣∣µj(Pi)
∣∣ : 1 6 i 6 r} 6 1, for j = 1, 2, . . . , k.

Proof. Let tj := (tj
1, tj

2, . . . , tj
pj), for 1 6 j 6 k. By Proposition 3 applied to

B, α, q = 2 + Σ16j6k pj and Mt1

there exist a partition {C1, C2, · · · , Cq} of B by elements of A and {λ1, λ2, · · · , λq} ⊂ Mt1

such that:
|λk(Ck)| > α and Σ16i6r|λk(Pi)| 6 1, for k = 1, 2, . . . , q. (7)

Let t be an element of T. Equality (6) enables us to fix one element

Cit ∈ {C1, C2, · · · , Cq}

such that for each finite subset Q of A

sup
µ∈Mt∩{e(A):A∈Q}◦

{
|µ|(Cit)

}
= ∞,

and then there exists a map ϕ : T → {1, 2, · · · , q} defined by ϕ(t) = it with the following
properties:

1. T = ∪{ϕ−1(i) : 1 6 i 6 q}. Hence there exists i0 ∈ {1, 2, . . . , q} and an NV-tree Ti0
contained in ϕ−1(i0). Then for each finite subset Q of A and each t ∈ Ti0

sup
µ∈Mt∩{e(A):A∈Q}◦

{
|µ|(Ci0

)
}
= ∞.

2. Let S := {j : 1 6 j 6 k, tj = (tj
1, tj

2, . . . , tj
pj) /∈ Ti0}. For each j ∈ S, the element

ϕ(tj) = ij ∈ {1, 2, . . . , q}. Hence for each finite subset Q of A we have

sup
µ∈M

tj∩{e(A):A∈Q}◦

{
|µ|(Cij)

}
= ∞.

3. For each j ∈ S and for each m, 2 6 m 6 pj, 1 6 j 6 k, the set W j
m := {w ∈ N<∞ :

tj(m− 1)× w ∈ T} is an NV-tree. The map ϕjm : W j
m → {1, 2, · · · , q} defined by

ϕjm(w) = ϕ(tj(m− 1)× w)
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verifies that W j
m = ∪{ϕ−1

jm (i) : 1 6 i 6 q}; hence, there exists ij
m ∈ {1, 2, . . . , q} and

an NV-tree V j
m contained in ϕ−1

jm (ij
m) such that for each finite subset Q of A and each

v ∈ V j
m we have

sup
µ∈M

tj(m−1)×v
∩{e(A):A∈Q}◦

{
|µ|(C

ij
m
)
}
= ∞.

The number of sets defining

D := Ci0 ∪ (∪{Cij ∪ C
ij
m

: j ∈ S, 2 6 m 6 pj})

is less or equal than 2 + Σ16j6k pj = q− 1, hence there exists Ch ∈ {C1, C2, · · · , Cq} such
that D ⊂ B\Ch. By construction

T1 := Ti0 ∪ {t
j : j ∈ S} ∪ {tj(m− 1)×V j

m : j ∈ S, 2 6 m 6 pj}

is an increasing subset of the NV-tree T, therefore T1 is also an NV-tree in T. By preceding
points 1, 2 and 3 for each t ∈ T1 and for each finite subset Q of A

sup
µ∈Mt∩{e(A):A∈Q}◦

{|µ|(D)} = ∞,

hence
sup

µ∈Mt∩{e(A):A∈Q}◦
{|µ|(B\Ch)} = ∞.

Inequalities (7) enable us to define B1 := C1
h and µ1 := λh. With a repetition, changing

B by B\B1, we get B2, µ2 and T2. After k repetitions we get the proof with T∗ := Tk.

Lemma 1. Let {Bn1n2···nm : ni ∈ N, 1 ≤ i ≤ m, m ∈ N} be an increasing web of the algebra A
such that for each sequence (pm)∞

m=1 there exists r ∈ N such that Bp1 p2···pr does not have property
(N). IfA has property (N) then there exists an NV-tree T such that for each t = (t1, t2, · · · , tp) ∈
T there exists a τs(A)-closed absolutely convex subset Mt of ba(A) which is Bt-pointwise bounded
and for each finite subset Q of A

sup
µ∈Mt∩{e(A):A∈Q}◦

{|µ|(Ω)} = ∞.

Proof. The increasing sequence {Bn1 : n1 ∈ N} verifies one of the following two properties:

• Each Bn1 , n1 ∈ N, does not have property (N). Then by Proposition 2 there exists a
natural number p such that for each n1 ∈ N with p < n1 there exists a τs(A)-closed
absolutely convex subset Mn1 of ba(A) which is Bn1-pointwise bounded and such
that for each finite subset Q of A we have

sup
µ∈Mn1∩{e(A):A∈Q}◦

{|µ|(Ω)} = ∞.

Then let T1 := {n1 ∈ N : n1 > p} and T′1 := ∅.
• Or there exists m1 ∈ N such that Bn1 has property (N) for each n1 > m1.

In this case we write T1 := ∅ and T′1 := {n1 ∈ N : n1 > m1} and we finish the first
step of the proof.

If T′1 := ∅ then the trivial NV-tree T = T1 verifies this lemma.
If T′1 6= ∅ and n1 ∈ T′1 then the increasing sequence {Bn1n2 : n2 ∈ N} may have one of

the two following two properties:

• Each Bn1n2 , n2 ∈ N, does not have property (N). Again Proposition 2 implies that
there exists p(n1) ∈ N such that for each n2 ∈ N with p(n1) < n2 there exists a τs(A)-
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closed absolutely convex subset Mn1n2 of ba(A) which is Bn1n2-pointwise bounded
and such that for each finite subset Q of A we have

sup
µ∈M(n1,n2)

∩{e(A):A∈Q}◦
{|µ|(Ω)} = ∞.

Then we define Tn1 := {(n1, n2) : n2 > p(n1)} and T′n1
:= ∅.

• Or there exists m2(n1) ∈ N such that for each natural number n2 > m2(n1) the set
Bn1n2 has property (N).
In this case let Tn1 := ∅ and T′n1

:= {(n1, n2) : n2 > m2(n1)}.
We finish this second step writing

T2 = ∪{Tn1 : n1 > m1} and T′2 = ∪{T′n1
: n1 > m1}.

Notice that if (n1, n2) ∈ T2 we have determined a τs(A)-closed absolutely convex
subset Mn1n2 of ba(A) which is Bn1n2-pointwise bounded and such that for each finite
subset Q of A we have that

sup
µ∈M(n1,n2)

∩{e(A):A∈Q}◦
{|µ|(Ω)} = ∞.

If T′2 6= ∅ we continue the induction in a natural way because if (n1, n2) ∈ T′2
considering as before the two cases in the increasing covering {Bn1n2n3 : n3 ∈ N} of
Bn1n2 we get Tn1,n2 := {(n1, n2, n3) : n3 > p(n1, n2)} and T′n1,n2

:= ∅ in one case and
Tn1,n2 := ∅ and T′n1,n2

:= {(n1, n2, n3) : n3 > m3(n1, n2)} in the other case. For each
(n1, n2, n3) ∈ T3 := ∪{Tn1,n2 : (n1, n2) ∈ T′2} we have determined a τs(A)-closed abso-
lutely convex subset Mn1n2n3 of ba(A) which is Bn1n2n3-pointwise bounded and such that
for each finite subset Q of A we have

sup
µ∈M(n1,n2)

∩{e(A):A∈Q}◦
{|µ|(Ω)} = ∞.

This third step finish writing T′3 := ∪{Tn1,n2 : (n1, n2) ∈ T′2}. For brevity, we omit the
clear and easy formalism of the induction.

Let T := ∪{Tj : j ∈ N}. If T = T1 then T is a trivial NV-tree that verifies this lemma.
If T 6= T1, i.e., T1 = ∅, then according to the hypothesis of the increasing web

{Bn1n2···nm : ni ∈ N, 1 ≤ i ≤ m, m ∈ N}

for each sequence (pm)∞
m=1 there exists r ∈ N such that Bp1 p2···pr does not have property

(N), hence T := ∪{Tj : j ∈ N} is a non-void subset of N<∞ without strands. Moreover, by
construction T is increasing, because if t = (t1, t2, · · · , th) ∈ T then t(i) ∈ T′i , for 1 ≤ i < h,
and t ∈ Th. Therefore T is an NV-tree that verifies the lemma, since, by construction,
for each t ∈ T there exists a τs(A)-closed absolutely convex subset Mt of ba(A) which is
Bt-pointwise bounded and such that for each finite subset Q of A we have obtained that

sup
µ∈Mt∩{e(A):A∈Q}◦

{|µ|(Ω)} = ∞.

Theorem 1. A σ-algebra S of subsets of a set Ω has property wN.

Proof. If the σ-algebra S does not have property wN then there exists in S an increasing
web {Bm1m2 ...mp : p, m1, m2, · · · , mp ∈ N} such that for each sequence (mp : p ∈ N)
there exists q such that Bm1m2 ...mq does not have property (N). By Nikodým theorem
S has property (N), hence by Lemma 1 there exists an NV-tree T such that for each
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t = (m1, m2, · · · , mp) ∈ T there exists a τs(A)-closed absolutely convex subset Mt of ba(S)
which is Bt-pointwise bounded and such that for each finite subset Q of S

sup
µ∈Mt∩{e(A):A∈Q}◦

{|µ|(Ω)} = ∞.

By induction on j we will determine a strictly increasing sequence of natural numbers
(k j)j, with k1 = 1, and a countable NV-tree

T∗ = {t1, t2, · · · , tk2 , tk2+1, · · · , tk3 , · · · }

contained in T such that for each (i, j) ∈ N2 with i 6 k j there exists a set Bij ∈ S and
µij ∈ Mti that verify

Σs,v{
∣∣µij(Bsv)

∣∣ : s 6 kv, 1 6 v < j}) < 1, (8)∣∣µij(Bij)
∣∣ > j, (9)

and Bij ∩ Bi′ j′ = ∅ if (i, j) 6= (i′, j′).
In fact, select the number k1 = 1 and an element t1 ∈ T. Proposition 5 with B := Ω

and α = 1 provides B11 ∈ S , µ11 ∈ Mt1 and an NV-tree T1 such that |µ11(B11)| > 1,
t1 ∈ T1 ⊂ T and for each finite subset Q of A and each t ∈ T1

sup
µ∈Mt∩{e(A):A∈Q}◦

{|µ|(Ω)} = ∞.

The first induction step finishes writing k1 := 1, S1 := {t1} and B1 := B11.
Let us suppose that for j = 1, 2, · · · , n we have obtained the natural numbers k1 <

k2 < k3 < . . . < kn, the NV-trees T1 ⊃ T2 ⊃ T3 ⊃ . . . ⊃ Tn, the elements {t1, t2, . . . , tkn},
the measures µij ∈ Mti and the pairwise disjoint elements Bij ∈ S , i 6 k j and j 6 n,
such that

1. Sj := {ti : i 6 k j} ⊂ Tj and Sj := {tkj−1+1, . . . , tkj} has the increasing property respect
to Sj−1, for each 1 < j 6 n,

2.
∣∣µij(Bij)

∣∣ > j and Σs,v{
∣∣µij(Bsv)

∣∣ : s 6 kv, 1 6 v < j} < 1, if i 6 k j and j 6 n,
3. and the union Bj := ∪{Bsv : s 6 kv, 1 6 v 6 j} verifies that for each finite subset Q of

A and for each t belonging to the NV-tree Tj, for each j < n.

sup
µ∈Mt∩{e(A):A∈Q}◦

{
|µ|(Ω\Bj)

}
= ∞,

To finish the induction procedure select in Tn\{ti : i 6 kn} a subset
Sn+1 := {tkn+1, . . . , tkn+1} that has the increasing property respect to Sn. Then
Proposition 5 with

1. B = Ω\Bn,
2. {P1, · · · , Pr} = {Bsv : s 6 kv, 1 6 v 6 n},
3. the NV-tree Tn,
4. α = n + 1
5. and the finite subset Sn+1 := {ti : i 6 kn+1} of Tn,

provides kn+1 pairwise disjoint sets Bin+1 ∈ A that are subsets of Ω\Bn, kn+1 measures
µin+1 ∈ Mti , 1 ≤ i 6 kn+1, and an NV-tree Tn+1 such that

1. Sn+1 ⊂ Tn+1 ⊂ Tn and for each t ∈ Tn+1 and for each finite subset Q of A the set Mt
verifies that

sup
µ∈Mt∩{e(A):A∈Q}◦

{
|µ|(Ω\Bn+1)

}
= ∞, with Bn+1 = Bn ∪ {Bin+1 : i 6 kn+1},
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2. |µin+1(Bin+1)| > n + 1 and Σs,v{|µin+1(Bsv)| : s 6 kv, 1 6 v 6 n} < 1, for 1 ≤ i 6
kn+1.

From the increasing property of Sj+1 := {tkj+1, . . . , tkj+1} with respect to

Sj := {ti : i 6 k j},

for each j ∈ N, we get that T∗ := {ti : i ∈ N} is an increasing subset of the NV-tree T.
Therefore T∗ is an NV-tree.

We claim that there exists a sequence (in, jn)n∈N such that (in)n∈N is the sequence of
first components of the sequence obtained ordering the elements of N2 by the diagonal
order, i.e.,

(i1, i2, i3, i4, i5, i6, i7, · · · ) = (1, 1, 2, 1, 2, 3, 1, · · · ),

and (jn)n∈N is a strict increasing sequence such that for each n ∈ N∣∣µin ,jn
∣∣(∪{Bim ,jm : m > n}) ≤ 1.

As the sequence (kn : n ∈ N) is increasing then for each increasing sequence (jn :
n ∈ N) we have in ≤ jn ≤ k jn , n ∈ N. To get the increasing sequence (jn)n∈N we fix
(i1, j1) := (1, 1) and if

∣∣µi1,j1

∣∣ ≤ h1 ∈ N then we split the set {j ∈ N : j > 1} in h1 infinite
subsets N11, · · · , N1h1 . At least one of this subsets, named N1, verifies that∣∣µi1,j1

∣∣(∪{Bi,j : i ≤ k j, j ∈ N1}) ≤ 1,

because
h1 ≥

∣∣µi1,j1

∣∣ ≥ Σ1≤r≤h1

∣∣µi1,j1

∣∣(∪{Bi,j : i ≤ k j, j ∈ N1r}).

Then we define j2 := inf{n : n ∈ N1}.
Suppose that we have obtained the natural number jn and the infinite subset Nn of

the set {j ∈ N : j > jn} such that∣∣µin ,jn
∣∣(∪{Bi,j : i ≤ k j, j ∈ Nn}) ≤ 1.

Then we define jn+1 = inf{n : n ∈ Nn} and if
∣∣µin+1,jn+1

∣∣ ≤ hn+1 we split the set
{j ∈ Nn : j > jn+1} in hn+1 infinite subsets Nn+1,1, · · · , Nn+1,hn+1 . At least one of this
subsets, named Nn+1 verifies that∣∣µin+1,jn+1

∣∣(∪{Bi,j : i ≤ k j, j ∈ Nn+1}) ≤ 1

because

hn+1 ≥
∣∣µin+1,jn+1

∣∣ ≥ Σ1≤r≤hn+1

∣∣µin+1,jn+1

∣∣(∪{Bi,j : i ≤ k j, j ∈ Nn+1,r}).

The relation
B = ∪{Bim ,jm : m ∈ N} ∈ S (10)

and the property that T∗ := {ti : i ∈ N} is an NV-tree imply that there exists r ∈ N such
that B ∈ Br. By construction there exists an increasing sequence (ms : s ∈ N) such that
each ims = r, s ∈ N. Therefore the set of measures {µims ,jms

: s ∈ N} = {µr,jms
: s ∈ N} is a

subset of Mr, that it is pointwise bounded in Br. In particular

sup{
∣∣µims ,jms

(B)
∣∣ : s ∈ N} = sup{

∣∣µr,jms
(B)
∣∣ : s ∈ N} < ∞. (11)

But from ∣∣µims ,jms
(B)
∣∣ = ∣∣∣∣∣µims ,jms

(
⋃

m∈N
Bim ,jm)

∣∣∣∣∣ ≥
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≥
∣∣µims ,jms

(Bims ,jms
)
∣∣− ∑

1≤k≤m<jms

∣∣µims ,jms
(Bkm)

∣∣− ∣∣µims ,jms

∣∣ ⋃
m>jms

Bim ,jm

 > jms − 2

we get that lims→∞
∣∣µims ,jms

(B)
∣∣ = ∞, in contradiction with (11).

Remark 2. In the preceding proof it has been used the fact that the B = ∪{Bim ,jm : m ∈ N} ∈ S
in (10) to get the final contradiction. In [20], Theorem 1, it is proved that the algebra J ([0, 1]p) of
Jordan measurable subsets of [0, 1]p has the property (wN) and the construction is made selecting a
sequence of sets (Bim ,jm : m ∈ N) of J ([0, 1]p) such that the

⋃
m∈N

Bim ,jm ∈ J ([0, 1]p.

Remark 3. In [8], Theorem 3.3, it is given a class of ring of subsets that have the property (N) if
they have the property (wN), i.e., for this class of rings the Valdivia problem in [15] ((N)⇒ (sN)?)
has a positive answer.

Recall that a familyR of subsets of a set Ω is a ring if ∅ ∈ R and for every (A, B) ∈ R2

we have that A\B ∈ R and A ∪ B ∈ R. Hence a ring A of subsets of a set Ω is an algebra
if and only if Ω ∈ A.

The fact that the known algebras with property (sN) have the property (wN) suggests
the following problem as a natural complement to before mentioned Valdivia problem [15].

Problem 1. Is it true that in an algebra A property (sN) implies property (wN)?

4. Sets with (wG) and (wVHS) Properties

Let F be a subset of a Banach space E and let (µn)∞
n=1 be a bounded sequence in its

dual E∗. Then the F-pointwise convergence of the sequence to µ implies the F-pointwise
convergence of the sequence to µ. In fact, fix ε > 0 and v ∈ F, then by hypothesis there
exists f ∈ F such that ‖v− f ‖ < ε(2(1 + |µ|+ supn|µn|)−1, and, again by hypothesis, for
this f there exists nε such that |(µn − µ)( f )| < 2−1ε, for every n > nε. Hence for n > nε

we have that

|(µn − µ)(v− f )|+ |(µn − µ)( f )| <
ε(|µ|+ supn|µn|)

2(1 + |µ|+ supn|µn|
+

ε

2
≤ ε,

hence
|(µn − µ)(v)| ≤ |(µn − µ)(v− f )|+ |(µn − µ)( f )| ≤ ε,

so (µn)∞
n=1 converges pointwise to µ in F.

In particular, if an algebraA contains a subset B with property (N) then each sequence
(µn)∞

n=1 of ba(A) that converges B-pointwise to µ is bounded and for each f ∈ L∞(A) we
have that

lim
n→∞

µn( f ) = µ( f ) (12)

In fact, as B has property (N) and the sequence (µn)∞
n=1 is B-pointwise bounded,

the sequence (µn)∞
n=1 is bounded in ba(A). The norm boundedness of the sequence

(µn)∞
n=1, the equality span{e(A) : A ∈ B}L∞(A)

= L∞(A) deduced from Proposition 1
and the hypothesis that limn→∞ µn(C) = µ(C), for each C ∈ B, that it is equivalent to
limn→∞ µn( f ) = µ( f ), for each f ∈ span{e(A) : A ∈ B}, imply (12) for each f ∈ L∞(A).

This result implies easily the following Proposition 6.

Proposition 6. A subset B of an algebra A has property (VHS) if and only if B has property (N)
and A has property (G).

Proof. We have seen that if B has property (N) and (µn)∞
n=1 is a sequence of ba(A) that

converges B-pointwise to µ then the sequence (µn)∞
n=1 is bounded and (µn(B))∞

n=1 con-
verges to µ(B) for each B ∈ A. If additionally A has property (G) then (µn)∞

n=1 converges
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weakly to µ, i.e., (ψ(µn))∞
n=1 converges weakly to ψ(µ), for each ψ ∈ ba(A)∗. Therefore B

has property (VHS).
To prove the converse, let’s suppose that a subset B of an algebra A has property

(VHS). It is obvious that B has property (G) and then A has property (G). Moreover, if
(µn)∞

n=1 is a sequence of ba(A) that is B-pointwise bounded then for every scalar sequence
(εn)∞

n=1 that converges to 0 we have that

lim
n→∞

εnµn(B) = 0,

for each B ∈ B, hence as B has property (VHS) we have that the sequence (εnµn)∞
n=1

converges weakly to the null measure, implying that {µn : n ∈ N} is a bounded subset of
ba(A). Therefore B has the property (N).

Proposition 6 for B = A says that an algebra A has property (VHS) if and only if
A has the properties (N) and (G). In [14] (page 6, lines 23 and 24) it says that Diestel,
Faires and Huff obtained this equivalence in his 1976 preprint paper Convergence and
boundedness of measures on non-sigma complete algebras. It seems that this preprint has
never been published, but it is cited in many other papers, for instance in [28] (reference 9
in page 113).

Corollary 1. A subset B of an algebra A has property (sVHS) if and only if B has property (sN)
and A has property (G).

Proof. Let (Bn : n ∈ N) be an increasing covering of B.
If B has property (sVHS) there exists p ∈ N such that Bp has property (VHS). By

Proposition 6 Bp has property (N) and A has property (G). Hence B has property (sN).
The converse follows from the observation that if (Bn : n ∈ N) contains a set Bq with

property (N) and A has property (G), then, by Proposition 6, Bq has property (VHS), so
B has property (sVHS).

Corollary 2. A subset B of an algebra A has property (wVHS) if and only if B has property
(wN) and A has property (G).

Proof. Let {Bn1n2···nm : ni ∈ N, 1 ≤ i ≤ m, m ∈ N} be an increasing web of B.
If B has property (wVHS) then there exists a sequence (pi : i ∈ N) such that Bp1 p2···pm

has property (VHS) for every m ∈ N. By Proposition 6 each Bp1 p2···pm , m ∈ N, has
properties (N) and (G). Hence B has property (wN) and A has property (G).

The converse follows from the observation that if A has property (G) and for the
increasing web {Bn1n2···nm : ni ∈ N, 1 ≤ i ≤ m, m ∈ N} there exists a sequence (qi : i ∈ N)
such that each Bq1q2···qm , m ∈ N, has property (N), then Proposition 6 implies that each
Bq1q2···qm , m ∈ N has property (VHS) property, hence B has property (wVHS).

5. Conclusions

Let A be an algebra and let M be a subset of ba(A). By the Banach–Steinhaus theorem
the inequalities

sup{µ( f ) : µ ∈ M} < ∞, for each f ∈ L∞(A),

imply that M is a bounded subset of ba(A). According to the Nikodým–Grothendieck the-
orem each σ-algebra S has property (N), i.e., if a subset M of ba(S) verifies the inequalities

sup{µ(C) : µ ∈ M} < ∞, for each C ∈ S ,

then M is a bounded subset of ba(S). This theorem is considered in ([29], Page 309) as
a “striking improvement of the Banach–Steinhaus theorem of uniform boundedness”. In
the frame of locally convex barrelled spaces Nikodým-Grothendieck theorem has been
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improved in [3,17], obtaining that every σ-algebra S has properties (sN) and (wN), respec-
tively, and both properties enable us to get new results in Functional Analysis and Measure
theory.

There exists algebras with property (N) and algebras without property (N). It is
unknown if property (N) in an algebra implies property (sN) ([15], Problem 1) and it is
also unknown if property (sN) in an algebra implies property (wN) (see Problem 1).

As a step to solve these two open problems we have provide in Section 3 a proof of
the web Nikodým property of σ-algebras which only depends on elementary basic results
of Measure theory and Banach space theory. Positive solutions of this two open questions
would provide new progress in Functional Analysis and Measure theory and will allow to
extend results for σ-algebra S to results for algebras.

Moreover the results in Section 4 imply that if A is an algebra with property (VHS)
then A has property (sVHS) [(wVHS)] if and only if A has property (sN) [(wN)]. There-
fore the two above-mentioned open problems have an equivalent formulation for algebras
with property (VHS).
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