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1. Introduction

In 2000, Qi provided an open problem following [1], “Qi type integral inequality” for
short in this paper.

Theorem 1 (Open problem). Under what conditions does the following inequality hold,

./fqr’(t)dt > (/jq(t)dt)p_l,

forp>1.

Yu and Qi [2] deduced the following theorem via Jensen’s inequality.

Theorem 2. If g € C([a, B]), ff q(t)dt > (B — )P~ for given p > 1, then

/j g? (t)dt > (/:q(t)dt)pfl. 1)

The open problem has attracted the interest of many authors [3-7]. The analytic
method and employing the Jensen’s inequality are two powerful methods for the study
of Qi type integral inequality. Meanwhile, studies in the past two decades have provided
some promotions of the inequality.

Pogany [3] posed the following inequality

B B p2
/ gPi(t)dt > (/ q(t)dt) , p2 > 0,p1 > max{py, 1}, ()
14 o
and gave a sulfficient condition for (2) by using the Holder inequality.
In [4], the authors proved the following results which strengthen the Qi type integral

inequality.

Theorem 3. If q : [, B] — R is non-negative and increasing, q' (t) > (p — 2)(t — a)? =3 for all

p > 3, then
[Pewar([Cawa)” = 01w [ g
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Theorem 4. If g : [, B] — R is non-negative and increasing, q'(t) > p((t —«)/ (B —a))P~"

for given p > 1, then

[farar- ot ([fawa) = i [ gar ©

_ a)p—l

Since the theory of time scales was established by Hilger [8] in 1988, it has been used
widely by many branches of sciences such as finance, statistics, physics. Moreover, many
researches about the theory which unifies and gives a generalization of the discrete theory
and the continuous theory have been published, such as [9-18].

As a generalization of the differential in calculus, A(delta) and V(nabla) dynamic
derivatives play a foundational role in the time scales. Recently, researchers also have
provided ¢, as a weighting between A and V dynamic derivatives. It was defined as a
linear combination of A and V dynamic derivatives. Readers can consult [19] to find out
more basic rules of ¢, dynamic derivatives.

Some works in recent years established the Qi type integral inequality on time scales
[5,20].

Theorem 5 (Qi type A-integral inequality). ([20]) If p > 3 and ¢ is a monotonic non-negative
function defined on [w, B]T which satisfies

9P 2(s)¢" (s) = o (s)(p — 2)(07(s) — &) PP 2 (02(s)),

foralls € [, B]1. Then
/j(pr’(s)As > (/j ¢(s)As)’H.

Theorem 6 (Qi type V-integral inequality). ([20]) If p > 3 and ¢ is a monotonic non-negative
function defined on [w, B]T which satisfies

¢V(s) > (p—2)(s —a)P 3,

foralls € [, B]1. Then

/j(l,r’(s)Vs > (/f(l)(S)VS)pil.

Theorem 7. ([5]) If p > 3, ¢ : &, B]r — [0, +00) is A-differential and increasing function

satisfies
PP2(s)9%(s) = (p = 2)(9(02(5)))" 2 (0% (s) — )P 0 (s).
Then

[P oras—([Moa) " 2 2@ (o)~ (- 10 2@) [ o5)as

Theorem 8. ([5]) If p > 3, ¢ : [a, Bl — [0,+00) is V-differential and increasing function
satisfies

(9060())" 6% () = (p 2097 2(s) (s — )2,
Then
/j PP (s)Vs — (/ffp(s)vs)p_l > ¢PH(w) /f4)(s)As.

However, generalizing the Qi type integral inequality to the diamond-alpha integral
had been a largely under explored domain which none of works has been devoted to it.

The first aim of this paper is to determine a sufficient condition for inequality (5) via
analytic method in Theorem 9.
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Then we will consider the inequalities (2) and (3) generalized to diamond-alpha
integral cases, that is, we will determine the sufficient conditions for inequalities (7) and (8)
in Theorems 10 and 11.

Meanwhile we also consider a sufficient condition for the reverse of inequality (7) in
Theorem 12.

Last but not least, we will give concise solutions of the open Problem 1 generalized
on time scales via Jensen’s inequalities. Meantime, we will consider the cases including n
variables, more precisely, special cases « =0, 1, %, % will be considered.

In the following part of this paper, some important and fundamental properties of
time scales will be given in the Section 2. In Section 3 we will deduce Theorems 9-12 via
analysis method. A concise method will be used to prove the Qi type high dimensional
integral inequalities on time scales in Section 4.

2. Preliminaries

We introduce some definitions and algorithms of time scales in this section. Time
scales is an arbitrary nonempty closed subset of the real number and we regard [«, B as
[a, B] N T. In what follows, we always suppose &, § € T. We refer the readers to [9] for
more details.

Definition 1. For any s € T, the forward jump operator o : T — T is defined by
o(s) =inf{t € T:t > s},
and the backward jump operator p : T — T is defined by
p(s) =sup{t € T:t <s}.
As a complement, set
inf@ =supT, sup@ = inf T.
It is obvious that o(s) > s > p(s).
Definition 2. The graininess function p : T — [0,00) is defined by
u(s) =o(s) —s.
Accordingly, v : T — [0, 00) is defined by
v(s) =s—p(s).
Definition 3. Ty, T* is defined as follows:
I, — {T\ [inf T, (inf T)), ifinfT > —oo,

T, ifinf T = —o0.

T\ (o(supT),supT), ifsupT < oo,
Ty =
T, ifsup T = oo.

Property 1. If g : T — R is a continuous function.
1. If o(s) > s, then g is A-differentiable at s € T* and
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2.If p(s) < s, then g is V-differentiable at s € Ty and

3.If p(s) = s = o(s), then

Property 2. Suppose q1, g are differentiable at s € ’]I",E. Then the following holds:

1. The sum g1 +4; is differentiable at s and
(1 +92)%(s) = 42(s) + 2 (5).

(01 +42)7 (s) = a7 (5) + 5 (5)-
2. For « € R. ag is differentiable at s and

(2q)(s) = ag®(s).

(aq)¥ (s) = aq" (s).

Definition 4. Let Q,q: T — R. If
Q%(s) =4(s),
holds for any s € T*. Then Q is called a delta antiderivative of q. Moreover

If for any s € Ty satisfies
QY(s) = q(s).

Then Q is called a nabla antiderivative of q. Moreover
S
[ a)ve =) - Q).

Property 3. If g1, g2 : T — Rare integrable on [, B]. Then
1. The sum g1+¢; is integrable on (&, ) and

/f(‘h +q2)(s)As = /f q1(s)As + /j g2 (s)As.

/aﬁ(‘h +q2)(s)Vs = /qu(s)Vs+/jq2(s)vs'

2. For any const k, kq is integrable on («, ) and
p p
/ kq(s)As = k/ q(s)As.
o o

/f kq(s)Vs = k/fq(s)Vs.

Property 4. If q1,492,9 : T — R are integrable on a1, B1], then

B1 B1 B1
[ @t ens= [T as)eas+ [ aals)ous,
« &1 a1

1
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and

p p
/ 1kq(s)<>l,¢s:k/ 1q(s) O S.
o o]

1

Next are two particularly useful formulas.

Property 5. Let s € TF.
1. If g € Cyy, then

o(s
[ awae= psiaco),

where g € C,; mean g is continuous at right-dense points, and its left-sided limits exist at
left-dense points.
2.If g € Cyy, then

[ as) s = v(s)q(s),
p(s)

where g € Cj; mean f is continuous at left-dense points, and its right-sided limits exist at
right-dense points.

Corollary 2.47 in [9] shows that there exists the relationship between monotonicity
and the A-differential or the V-differential as follows.

Property 6. If g € C([a, B)) are delta derivative at (w, B), then q is increasing (decreasing) if and
only if ¢*(s) > 0(< 0) forall s € [w, B).

Property 7. If g € C([, B)) are nabla derivative at («, B), then q is increasing (decreasing) if and
only if gV (s) > 0(< 0) forall s € (, B.

The following two propositions can be found in [19].

Property 8. If g : T — Riis continuous at t, t € [w, B]t,, then

([ athar)” = gtets))

Property 9. If g : T — Ris continuous at t, t € [w, B, then

([ atove)” = qot).

Finally, we list some useful properties which can be found in [9].

Definition 5. If g is A-integrable on

R = [aq, 1] X [ag, B2] X - -+ X [an, Bul,

then set
151 ,Bn
/Rq(vl,vz,...,vn)Alvl...Anvn:/ / q(v1,02,...,00) 01071 ... Ay,
oq Ay

Property 10. If g1, g2 are bounded A-integral over

R =[a1,B1) X [ag, B2) X -+ X [an, Pn)
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and k1,ky € R, then

/R(klfh +k2q2) (01,02, ..., 0n) D01 D202 . .. Ayy

= Ik /R g1(v1,02, ..., 00)A1010207 . .. AyOy +k2/Rq2(vl,vz,...,Un)Allezvz...Anvn.
Property 11. If g1 and g, are bounded functions that are A-integral over R with
g1(v1,v2,...,00) < q2(v1,02,...,0n), Y(v1,v2,...,04) €R,

then

/qu(vl,vz, e Un) A 01800 - Aoy < /qu(vl,vz, e Un)AU1800; . Ay
Remark 1. In particular, if g1(v1,vy,...,0,) = 0, then

/R g2(v1,02, ..., 00) D01 005 . .. Ay, > 0.

3. Qi Type Diamond-Alpha Integral Integral and Its Generalized Form

In this section, analysis method will be used to deduce sufficient conditions for Qi
type diamond-alpha integral inequalities and its generalized forms.
We need the following lemmas which give an estimation to the differential of the
power of f.
Lemma 1. ([20]). Suppose g : [«, BT — [0, 00) is a increasing function, and if p > 1, then
pe" (D" (1) < (87 (1) < pg?(e(1)g" (1),
where o is forward jump operate.
Lemma 2. ([20]). Suppose g : (&, BT — [0, 00) is a increasing function, and if p > 1, then
pe” M p(1)g¥ (1) < (87 (1)Y < pg" 1 (H)g™ (1),
where p is backward jump operate.
Following we consider G(h) as the difference between the left hand and their right
hand side, and take its nabla differential. According to the Proposition 7, we can complete

the proof with analysis.

Theorem 9. If ¢ is a non-negative and continuous function defined on B, y|r, satisfies

P22 ()T (1) = (p—2)(t = BP9 (1) (aplp() + (1 —a)gp(1)), &)

forall t € [B,y], where p is backward jump operator. Then for all s € [B, '7}11"; and p > 3, the
following inequality holds,

./[j(pi’(s)o,xsz (./;4)@)%5);1—1. (5)

Proof. Set the difference

G(h) = /ﬁh(pP(s) On S — <//5h ¢(s) on s)pil,
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and let

g(h) = /;¢<s> oxs.

It follows from Proposition 8 and Lemma 2 that

cvm = (uf st - [[¢Eve) " - @ )T
> ag(p() + (1= )p? () = (p—1)g"2()g" ()
= ap?(p(h) + (1= a)p? () — (p = 1)g" (1) (a(p(h)) + (1 = a)p(h) )
= ap(p(n)(¢" " (p() = (p = 1)g" ()
+ (1=a)g() (¢ () — (p—1)g"2()).

Since a,1 — &, ¢(h) are non-negative, and ¢P~1(h) > ¢~ 1(p(h)), it is sufficient to
prove that P~ (p(h)) — (p — 1)g7~2(h) > 0 (define gP (o (k) — (p — 1)gP () as Gy (h)).

By Lemmas 1 and 2 again, we can get
Y = (¢ 1em) ~ (p - g 2() "
> (p= 1" (02" () = (p— 1) (p = 2)8">()g" ()
= (p= D" (2 ()" (1) = (p = 1) (p = 2)8" () (g (p(h)) + (1 = ) p(h) ).

Due to ¢ is increasing,

s = [ o)ors
h h
= oc/ $(s)As+ (1 —a) p ¢(s)Vs
< a(h—=p)p(h) + (1 —a)(h— B)¢p(h)
= (h=p)p(h).
We immediately get

GY () = (p—1)g"2(p*(h

> (p—1)¢" 2 (o*(h
—(p=1)(p=2)(h = )P 9" () (ap(p(h)) + (1 = a)p(h) )
0.

Clearly, Gi(B) = ¢" ' (p(B)) — (p = 1)g" *(B) = ¢ (p(B)) = ¢""'(B) > 0, s0
G1(h) > 0. Because G(B) = 0, we deduce G(h) > 0, thereby completes the proof. [

v

Theorem 10. If ¢ is a non-negative and continuous function defined on B, |, satisfies

(P1=1)9" 22 ()97 (1) = pa(p2—1)(t = B2 2p7272(1) (ag(p(1)) + (1= )9(1) ), (6)

forall t € [B, 7], where p is backward jump operator. Then for all s € [, fy]T;}: and pq, p2 > 2, the
following inequality holds,

/;qbpl(s)oas> (.474)(5)0“5)102. (7)
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Proof. Set the difference

) :/ﬁhqﬂ’l(s)oas— (/ﬁhgb(s)o,xs)pz,

o(h) = /ﬁh4><s> oxs.

It follows from Proposition 8 and Lemma 2 that

and let

\Y%

6¥ = (x [ ot -w) [ 75) - (672007

> ag? (p(h)) + (1= )P () — pag~ ()g" (h)
= g (p(h)) + (1= a)p (h) — pag?>~ () (ag(p(h)) + (1 = )9 () )

= ap(o(n)(¢" " (p(h) — pag ' (1))
+ (L= a)g() (@771 (h) — pagh> (1) ).

) (
) (

Since «,1 — &, ¢(h) are non-negative, and ¢pP1~1(h) > ¢P1~1(p(h)), it is suffices to
prove that "1~ (p(h)) — pg”>~1(h) > 0 (define pP1~1(p(h)) — pag?2~ (k) as G1(h)). By

Lemmas 1 and 2 again, we can get
Y = (9" (e() ~ pagm 1))

(p1 = )" =2(p* ()" () -
(1 = )97 2(0%(h))9" ()
—pa(p2 = 1" 2(h) (ag(p(h)) + (1 = )g(h) ).

p2(p2 — 1) 2(h)g" (h)

v

Due to ¢ is increasing,

h
s = [[o()ous
h h
- zx/ $(s)8s+ (1= ) [ 9(5)Vs
< ath=B)p(h) + (1 —a)(h—p)p(h)
= (h=PB)p(h).
We immediately get

GY(h) = (p1—1)gN 2(p2())p" (h)

—pa(p2 = 12" 2(h) (ag(p(h) + (1 = )9 () )

(p1 = )" 2(p2(1))9" ()

—pa(p2 = 1) (= B)P 29772 () (wp(p(h)) + (1 — a)p(h) )
0.

Clearly, G () = ¢" ' (p(B)) — p28"~(B) = ¢" ' (p(B)) = ¢""'(B) = 0, s0
Gi1(h) > 0. According to that G(B) = 0, we deduce G(h) > 0, thereby completes the
proof. O

v

v

If take pp = p; — 1 in Theorem 10, we can deduce Theorem 9 immediately.
By virtue Theorem 10, we obtain the following corollaries by setting « = 0 and 1.
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Corollary 1. If ¢ is a non-negative and continuous function defined on [B, |, satisfies

(p1 = 1) " 2(0* (1)) (1) = pa(p2 = 1)(t = B)P272¢P271(1),

forall t € [B,y], where p is the backward jump operator. Then for all s € [, 'Y]T’,g and p1,p2 > 2,
the following inequality holds,

Y v p2
¢P1(s)As > / ¢(s)As) .
J (Jy #2)
Corollary 2. If ¢ is a non-negative and continuous function defined on [B, y|t, satisfies

(p1 = 1) 2 (p* (1) (1) = pa(p2 — 1)(t — B)1> 29127 2(1)g (1)),

forall t € [B, 7], where p is backward jump operator. Then for all s € [, 7]11",; and pq, p2 > 2, the
following inequality holds,

Y Y p2
pP1(s)Vs > / ¢(s)Vs) .
J (J; #6)ve)
Theorem 11. Suppose ¢ is a non-negative and continuous function defined on [B, |, satisfies

(1= D" (0% (D)9 (1) = pa(p2 = 1)(t = B 297272() (app(1)) + (1 = @) (1)),

forall t € [B, 7], where p is backward jump operator. Then for all s € [, 'Y]T’,; and pq, p2 > 2, the
following inequality holds,

/}:4’”1(5)0“5 - (/;gb(s) ou s)pz > ¢P11(B) /}:qb(s)o,x 5. (8)

Proof. Set the difference
G(h) = /hqﬂ’l(:;)oas— (/h4>(s) <>,,(s)p2 —C/hgb(s)o,x s,
B p p
where C = ¢P171(B), and let

g(h) = /;4><s> oxs.

It follows from Proposition 8 and Lemma 2 that

6¥m =[x o @ast1-w) [ on75) "~ (g7200)7 - gV
> ag (p(h) + (1= @) () — pagh~ ()3 () — Cg¥ (h)
= g (p(h) + (L= a)p" (h) — (pag?~" () + C) (ag(p(h)) + (1 = 2)p(h))
= ap(p(h)) (9"~ (p(h)) — pag* () ~C)
+ (1= a)g() (¢ (h) = pag~ (W) = C).

Since «,1 — &, ¢(h) are non-negative, and ¢pP1~1(h) > ¢P1=1(p(h)), it is suffices to

prove that
Ga(h) ="~ (p(h)) — pag™ ' (h) = C = 0.

Note that G, (h) + C equal to Gy (h), thus

Gy (h) = GY (h) > 0.
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In this sense,

Gi(B) = ¢" () — pag" 1 (B) —C
" (p(B) ~ C
P (B)—C =0,

so G1(h) > 0. Since G(B) = 0, we deduce G(h) > 0, thereby completes the proof. []

Some special cases, if take « = 0 and 1, we obtain the following corollaries.
Corollary 3. If ¢ is a non-negative and continuous function defined on [B, |, satisfies

(1= 1)¢" " 2(0* (1) (1) = pa(p2 = 1)(t = B)P272¢P271(1),

forall t € [B,7y]. Then forall s € [B, '7]1% and py, p2 > 2, the following inequality holds,

[ o sas—( [ o)as)" = 97y [Toto)as

Corollary 4. If ¢ is a non-negative and continuous function defined on [B, |, satisfies
(pr = 1)¢" (02 (D)9 (1) = pa(p2 = 1) (h = PP 2P () (o (1)),

forallt € [B,7y]. Then forall s € [, V]Tﬁ and p1, p2 > 2, the following inequality holds,

[ o es—( [ ovs)" = 9n7p) [ 9ts)9s

Theorem 12. Suppose ¢ is a non-negative and continuous function defined on [B, |, satisfies
pap2 = 1)(t = B)P 29772 (B) (ag(p(1) + (1 = a)g(1) ) > (pr = 1) 2 (p(1))97 (1) (9)

forall t € [B, 7], where p is backward jump operator. Then for all s € [B, ’Y]T’,i and py, p2 > 3, the
following inequality holds,

/; PP1(s) o5 < (//: $(s) on s)pz. (10)

Proof. Set the difference

and
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It follows from Proposition 8 and Lemma 2 that

RV(h) = (P2(n))Y — vc/hgbpl (s)As + (1 —a) /hqﬂ’l(s)Vs)v
(o(h))r <>—o«ppl<p< >>—< — )¢" (h)
= par" (o) (aplp(h) + (1 = w)p(h) )
—accpm(p(h)) (1—a>¢f’1<>
= h))(pzrpz 1 4;]171 )
+(1—0‘)¢()(P2rp2 1(()) 9= <>)

Z pzrpzfl

Since a,1 — &, ¢(h) are non-negative, and ¢p"1~1(h) > ¢P1~1(p(h)), it is suffices to
prove that porP2=1(h) — ¢pP1=1(p(h)) > 0 (define pprP2~1(h) — ¢P1~1(p(h)) as Ry(h)). By
RY () = (par='(h) — 9"~ (p()
(

Lemmas 1 and 2 again, we can yield
>V
> Pz(Pz—l)r”z 2(p(h))rY (n) — (Pl—l)fP”1 2(p(1))¢Y (k)
(29 (o) + (1 = w)p(h))
~(p1 = D9" 2(p(n)9Y (h).

According with monotony of ¢,

r(h) = (h = B)p(B)-

)
= pzpzflrpzz h)
)

We immediately get

RY()) = pa(p2 = 1) (= p)P 297 2(B) (ap(p(h)) + (1 = a)p(h))
~(p1 = D" 2(p() (1)

> 0.
Taking t = B in (9) we get
0 = pap2—1)(B— B2 29"2(B) (a(p(B)) + (1 - 2)(B))
< (P = D" 2(0(8)9" (B),

hence we obtain

Clearly,
Ri(B) = par>” 1(/3) - 1( (B))
= () 2
so Gi(h) > 0. According to that G(B) = 0, we deduce G(h) > 0, thereby completes the
proof. O

If we choose @ = 0 or 1, we obtain the following results.

Corollary 5. If ¢ is a non-negative and continuous function defined on [B, |, satisfies

pa(p2 = 1)(t = B)P2 297 2(B)(t) = (p1 — )" 2 (p(1)9" (1)
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forallt € [B,7]. Then forall s € [, ﬂTli and py, p2 > 2, the following inequality holds,

Y v p2
Pi(s)As < / (s)As) .
Jy ¢ me= (J 0cm)
Corollary 6. If ¢ is a non-negative and continuous function defined on [B, |, satisfies

p2(p2 = 1)(t = PP 297 72(B) = (p1 = 1) > (p(1))9" (1)
forall t € [B,7y]. Then forall s € [B, 'y]T;; and py, py > 2, the following inequality holds,

/; PP1(s)Vs < (./;gb(s)Vs) pz.

Under the basic assumptions that p1, p» > 3, ¢ is a non-negative and continuous
function defined on [B, ¥, based on Theorems 10 and 12, we obtain the following results
forallt € [B,7].

Remark 2.
(1= 19" 22097 (1) = pa(p2 — 1) (h = B 297 72(8) (a(p(1)) + (1 — ) (1) ),
pa(p2 = 1) (= B)2729722(B) (ag(p(1)) + (1= w)p(8)) = (p1 — )" ~2(p(£))p (¢).
If condition (11) holds, then (7) established; if condition (11) holds, then the reverse of (7) established.

If ¢ is decreasing, we can obtain the similar results using the same method. However,
if ¢ satisfying neither (11) nor (11), whether inequality (7) or the reverse of inequality (7)
holds needs further research.

4. Qi Type Integral Inequalities of N Variables

In Section 3, we use differential to observe the monotonicity of G. It is surely a useful
method that can be used in Qi type integral of n variables. However, it will produce
complex conditions. In fact, once we take the differential of one variable among # variables,
in order to ensure it is greater than or equal to 0, we need a condition. Regardless of the
initial conditions, it also need n conditions.

In this section, we use Jensen’s inequalities on time scales to deduce concise condition
for Qi type inequality. It's worth to point out that Jensen’s inequalities and other related
topics are still a research hot spot recent years [21-33].

4.1. Qi Type Integral Inequalities of One Variable on Time Scales

Firstly, we list three Jensen’s inequalities of one variable on time scales, all of them
have been given in [34-36].

Lemma 3. ([34]). If ¢ € C4([, B], (c,d)) and q is a continuous and convex function defined on

(c,d), then
<ff4><s>AS) _ JPalg(s))as
q B—a - p—a
Lemma 4. ([35]). If p € Ciy([, B], (¢, d)) and q is a continuous and convex function defined on
(c,d), then

JEp(s)Vsy _ [P q(g(s))Vs
i B—u )< B—a
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Lemma 5. ([36]). Let a1, 1 € Tandc,d € R. If ¢ € C([w1, B1]p, (c,d)) and q is a continuous
and convex function defined on (c,d), then

q(ffm(s)oas) S I8 a(@(s)) ons

pr—a p1—a
Using lemmas, we can get following three theorems.
Theorem 13 (Qi type A integral inequality). If ¢ € C,;([w, B]T) is a non-negative function,
and for given p > 1 satisfies
[ gt = (6 -y
Then,

/f PP (s)As > (/f ¢(S)As) p_l.

Proof. Consider the function q(x) = x? defined on [c,d]CR. If x > 0, we know that g is
convex. Since ¢ is non-negative,

B
f”‘;)fsim -

using Lemma 3 with q(x) = x?, we have

(ff <p(s)As>p < ff PP (s)As
p—u - B-a

According to the condition,
ﬁ 1
[ os)as= Byt
Jr
Thus,

B
(b (e

( ff cp(s)As) ¢

B -1 [Pp(s)A
= ([Powns) (fﬁ_q’)

(/j cp(s)As) pil.

/j ¢P(s)As

v

v

Thereby we complete the proof. [

In the same way, we can deduce other two inequalities.

Theorem 14 (Qi type V integral inequality). If ¢ € Cy;([, BlT) is a non-negative function,
and for given p > 1 satisfies

/ " () Vs = (- ayr

/jq{;P(S)Vs > (/fgb(s)Vs)p_l.

Then
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Proof. We know that q(x) = x” where p > 1 is convex on x > 0. It is obvious that

B
fa ﬁ(l)(_szxvs 2 0’

using Lemma 4 with q(x) = x?, we have

(ff <p(s)Vs>p _ [ )vs a

p—w T P

According to the condition,

p
[ #6)vs = (-, 12)
14
Combining the inequalities (11) and (12), we complete the proof. [J

Theorem 15 (Qi type diamond-« integral inequality). If ¢ € C([ay, B1]T) is a non-negative
function, and for given p > 1 satisfies

/fl ¢(s)oxs > (Br—aq)P L.

Then

/:1 PP () 0u s > (/flq)(s)o,x s)pfl.

1

Proof. Based on that P
1
fal 4)(5) O S 2 0,
B1— a1

and use Lemma 5 with g(x) = x”, we have

(fff A AL JE 97(5) s

p1—a pr—a 1%
According to the condition,
p1 .
| e6)ons = (B =) (14
a1

Combining the inequalities (13) and (14), we complete the proof. [

In particularly, if we let T = R in arbitrary one among the above three theorems, then
A =V = o, =d, it will deduce Theorem 2.

Comparing the proofs in Section 3 and this subsection, we find that Jensen’s in-
equalities not only can simplify the condition, but also it can simplify the proof. Most
importantly, it keeps the condition similar. This means that we can generalize it to the case
of n dimensions.

4.2. Qi Type Integral Inequalities of Several Variables on Time Scales

In the same way, we generalize Qi type integral inequalities to higher dimensions.
Firstly, we write down Jensen’s inequalities of # variables as lemmas, them can be found in
[37,38].
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Lemma 6. ([37]). If ¢: R — (mq, my) is a non-negative function where n have been given, n > 3,
and g € C((mq,my),R) is convex, then

<fR¢(vl,02,...,vn)Alvl...Anvn> - Jra(@(v1,02,...,00)) A01 ... Ay
im1 (Bi — &) - [T, (Bi — ;) ’

where R is [y, B1] X (&g, B2] X -+ X [an, Bu)-

Lemma 7. If ¢: R — (mq, myp) is a non-negative function where n have been given, n > 3, and
g € C((mq,my),R) is convex, then

(ngb(vl,vz,...,vn)Vlvl...ann> - Jra(@(v1,02,...,0,)) V101 ... Vo,
[T, (Bi — ;) - [T (Bi — ;) '

Lemma 8. ([38]). If ¢: R — (my, my) is a non-negative function where n have been given, n > 3,
and g € C((mq,my),R) is convex, then

<IR¢(ULU2/ . Uﬂ><>0401"'<>lxvn) < qu((P(Ul/UZ/'-wvn))Oavl"'Oavn

i1 (Bi — i) [T (Bi — )

Next, we deduce Qi type A-integral inequalities of two, three, n variables.

Theorem 16 (Qi type A-integral inequalities of two variables). If ¢ : [a1, B1]T, X [a2, B2]T, —
(my, my) is continuous with my > 0, and for given p > 1 satisfies

Br B2
/"‘1 ~/“2 ¢(51152)A181A252 > (,Bl _ ‘Xl)p_l(ﬁz . (X2)p_1.

Then

14

B1 B2 B1 B2 p—1
/ PP (s1,52)N151008p > (/ / ¢(51/52)A1S1A252> .
a Jap 1 Ja2

Proof. Since g(x) = x” is convex and

f f $(51,52)A1510252
(/31 —a1)(B2 — a2) =0

using Lemma 6 with g(x) = x” and n = 2, we have

(f f P(s1,52 A151A252) - f f PP (s1,52) A151A252

15
(51 —a1)(B2 — a2) (ﬁ1 —a1)(B2 — x2) (15)
According to the condition,
B1 B2 B1 B2 p—1
/ / PP (s1,52)A151 0282 > ( / 4’(51152)A151A252> . (16)
o 1%} 5] a2

Combining the inequalities (15) and (16), we complete the proof. [

Theorem 17 (Qi type A-integral inequalities of three variables). If¢: [xy, B1]T, X [a2, B2]T, X
[a3, B3], — (m1,my) is continuous with my > 0, and for given p > 1 satisfies

B1 B2 (B3
/,,( /a /a ¢(51,52,53)A151805208355 > (B1 — a1)P " (Ba — a2)P (B3 — ag)P .
1 2 3
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Then
B1 B2 B3 B1 B2 B3 p—1
/ / / ¢P (51,52,53) M15102520383 > (/ / / ¢>(S1,Sz,53)A151A252A353> .
a Jap Jag ap Jay Jag

Proof. Since q(x) = x” is convex and

B1 B2 B3
/ / / $(51,52,53)A151A282A3 > 0,
o %) o3

using Lemma 6 with q(x) = x” and n = 3, we have

<f f f ¢(51,52,53 A1S1A252A3> f f f PP (s1,52,53) A1518252A3
(51 —“1)([32—“2)([53—“3) (!31 —“1)(52 —a2) (B3 —as)

According to the condition,

(17)

B1 B2 B
/a /X z/lx 3 ¢(51152,53)A131A252A3s3 > ([31 —ocl)pfl(‘[ﬂz _“Z)pfl(ﬁs . “3);,,1. (18)

Combining the inequalities (17) and (18), we complete the proof. [

In the same way, we can generalize it to # dimensions.

Theorem 18 (Qi type A-integral inequalities of n variables). If ¢ : (a1, B1]T, X [a2, B2]T, ¥
X (&, BnlT, — (M1, my) is continuous with my > 0, and for given p > 1 satisfies

/134’(51,52, v, 8n)As1Asy .. Asy > ,li(ﬁi — )P L,
Then
/R(Pp(sl,sz,...,Sn)AslASZ...ASn > (/Rq)(sl,sz,...,sn)AslAsz...Asn)pil_
Proof. According to Remark 1,
/R (51,82, ,5n) D181 ... Apsy >0,

using Lemma 4 with q(x) = x?, we have

(chp(sl,sz,...,sn)Alsl...Ansn) Jr(P(s1,52,...,50))P NSy ... Apsy
ITio,(Bi — ;) i= 1(ﬁ ) '

Together with the condition

n
/Rgb(sl,sz, e, Sn) A S10080 .. Aysy > H(ﬁl — ;)P L,
i=1

we can complete the proof. O

Next three inequalities is about Qi type V-integral inequalities of two, three, and n
variables.
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Theorem 19 (Qi type V-integral inequalities of two variables). If¢: [x1, B1]T, X [a2, B2]T, —
(mq,my) is continuous with my > 0, and for given p > 1 satisfies

B1 B2
/’X /a ¢(51,52) V151 Vasa > (B1 — a1)P1(Ba — ap)P L.

Then
B1 B2 B1 B2 p—1
/ / PP (s1,52)V151Vasy > (/ / ¢(51,52)V151V252) :
Jag Jap ap Jap

Proof. Since ¢ is non-negative, then

f f P(s1,52) V151 Vasz
Bra) () 2

using Lemma 7 with q(x) = x¥ and n = 2, we have

(f f ¢ (51,52 V151V252) - f f PP (s1,52)V151V2asy

(B~ (B2 ) (B~ ) (B2~ w2) )
According to the condition,
B B2
/DC /a P(s1,52)V151Vasy > (B1 — a1)P 1 (Bo —ap)P L. (20)

Combining the inequalities (19) and (20), we complete the proof. [

Theorem 20 (Qi type V-integral inequalities of three variables). If ¢ : (w1, B1]T, X [a2, 2T, ¥
[as, B3], — (my1,my) is continuous with my > 0, and for given p > 1 satisfies

Br B2 B3 4 4 .
/ / / $(51,52,53) V151 V252 V3s3 > (B1 — aq)P (B2 — ap)P (B3 —a3)P .
o1 1%} a3

Then
B1 B2 B3 B1 B2 B3 p—1
/ / ¢P (s1,52,53) V151 V25, Vs3> (/ / / ¢(51,52,53)V151V252V3S3) ~
wp Jap Jag .51 2 Jag

Proof. Since ¢ is non-negative,

B1 B2 B3
/ / / $(51,52,53)V151V252V3s3 > 0,
L5} 2 ag

using Lemma 7 where q(x) = x? and n = 3, for g(x) = x* is convex when x > 0, we have

(f f f Sl,Sz, S3 V151V252V3S3) ffll f f ¢P 51,52,53)V151V252v353
(/31 — 1) (B2 — az2) (B3 — a3) (/31 —a1)(B2 — a2) (B3 — a3)

According to the condition,

(21)

Br B2 B3
/a /{x /a ¢(s1,52,53) V151 V252 V3s3 > (B —ap)P 1By — ap)P 1Bz —a3)P L. (22)

Combining the inequalities (21) and (22), we complete the proof. [J

We can get Qi type V-integral inequalities of n variables in the same way.
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Theorem 21 (Qi type V-integral inequalities of n variables). If ¢ : [aq, B1]T, X [22, B2]T, X
- X &, BulT, — (M1, my) is continuous with my > 0, and for given p > 1 satisfies

n
/qu(sl,sz,...,sn)Vlslvzsz...Vnsn > H(/Bl
i=1
Then
p—1
/R(p’”(sl,sz,...,sn)Vlslvzsz...Vnsn > (/ch(sl,sz,...,sn)Vlslvzsz...Vnsn)
Proof. In the same way, we find

/R(p(sl,sz,...,sn)Vlslvzsz...Vnsn >0,

using Lemma 7 with q(x) = x?, we have

(fR¢(51,52,...,sn)Vlslvzsz. nsn) fR (s1,82,-+-,92))P V151 V282 ... Vyusy
—1(Bi— @;) im1 (Bi — ;) ’

Using now
n
/R(,b(sl,sz,. crSn)V151Vasy ... Vs, > H(,Bl —a;)P 71, (23)
=

the relation (23) is satisfied. [

Next three inequalities is about Qi type diamond-« integral inequalities of two, three,
and 7 variables.

Theorem 22 (Qi type diamond-« integral inequalities of two variables). If ¢ : [a1, B1]T, X
(a2, BolT, — (my1,my) is continuous with my > 0, and for given p > 1 satisfies

B1 B2 4 .
/ / P(s1,52) Oa 510052 > (B1 —ar)P (B2 —az)P .
o 1%)
Then

B1 B2 B B2 p—1
/ / ¢ (s1,52) 0u 51 0 52 > ( / / $(s1,52) O 51 O 52) .
a1 %) Jay an

Proof. We can find that
f f P(51,52) Oa 51 0a 52

(/31 —a1)(B2 —a2) =0

In Lemma 8, take q(x) = x?, we have

(f f $(s1,52) <>1x51<>0¢52)r7 f f PP (51,52) ©a 5104 52 28)
(ﬁl —a1)(B2 — a2) (/31 —a1)(B2 — a2)
According to the condition,
B1 B2
/a /‘X ¢(s1,52) 0x 510052 > (B1 — a1)P 1By — ap)P L. (25)

Combining the inequalities (24) and (25), we complete the proof. [J

If set « equal to % or %, then we have following corollaries.
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Corollary 7. If ¢ : [ay, B1]T, X [a2, BolT, — (m1,my) is continuous with my > 0, and for given
p > 1 satisfies

B1 B2
/a / $(s1,52) 01510182 > (B1— )" (B2 — )Pt

1 a2

Then,

B1 B2 B P2 p—1
/ 1/ ¢F(51,52) 01510150 > (/ 1/ ¢(s1,52) ©1 5101 Sz) .
o1 9] 2 2 o1 %) 2 2

Corollary 8. Ifp : [a1, B1]T, X [x2, B2]T, — (m1,m2) is continuous with my > 0, and for given
p > 1 satisfies

B1 B2
/ / P(s1,52) 01510152 > (B1 —a1)P (B2 — )P L.
0 Jay 3 3
Then

B1 B2 1 P2 p—1
/ l/ ¢F(51,52) 01510150 > (/ 1/ ¢(s1,52) ©1 5101 52) .
aq .23 3 3 a1 1123 3 3

Theorem 23 (Qi type diamond-« integral inequalities of three variables). If ¢ : [a1, B1]T, X
[a2, B2lT, X &3, B3]Ty — (m1,my) is continuous with my > 0, and for given p > 1 satisfies

B1 B2 B3 -1 -1 -1
/ / / ¢(s1,52,53) Oa 51 0a 52 0a 53 = (B1 — 1)’ (B2 —a2)P ™ (B —a3)" .
o7 1%) o3

Then
B1 B2 B3 B1 B2 B3 p—1
/ / / @F (s1,52,83) O $1 04 52 Ou 53 > (/ / / $(51,52,53) Ou S1 0 52 O 53) )
ap Jag Jaz a1 Jap Jag

Proof. In the same way, the following inequality holds.

B B2 B3
/ / / 4)(51/52/53) On S1 Op 82 On 53 = 0,
@1 ap  Jag

using Lemma 8 with q(x) = x?, we have

fzxﬁll faﬁzz ftxis ([)(51,52,53) O 51 % 52 Cu 53\ p < ffll ffzz ffaa ¢P (51'52'53) O 51 O 52 Ou 83
( (B1—a1)(B2 — a2) (B3 — a3) ) - (B1 —a1)(B2 — a2)(B3 — a3)

According to the condition,

(26)

Br B2 B3
/a /a /,x ¢(51,52,53) a 51 0a 52 04 53 > (B1 — a1)P " H(B2 — a2)P L (Bs — a3)P~ L. (27)

Combining the inequalities (26) and (27), we complete the proof. [

In the same way, if set « equal to % or % in the theorem above, then following corollaries
hold.

Corollary 9. If ¢ : [a1, B1]T, X [a2, B2]T, X |3, B3]T, — (m1,m3) is continuous with my > 0,
and for given p > 1 satisfies

Bi B2 rP3 4 4 4
/ / / $(51,52,83) 015101500153 > (B1 —ag)P (B —a2)P " (B3 —a3)P .
a Jay Jag 2 2 2
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Then

B1 P2 B3 B1 B2 B3 p—1
/ / / 4’p(51,52,33)<>1 §1¢18201 83 > (/ / / ¢(51,52,S3)<>1 5101 52¢1 S3> .
a1 wy w3 2 2 2 L%t 2 a3 2 2 2

Corollary 10. If ¢ : [aq, B1]T, X [#2, B2]T, X [a3, B3], — (m1,m2) is continuous with my > 0,
and for given p > 1 satisfies

B B2 B3 -1 -1 -1
/ / / $(51,52,53) 015101500153 > (B1 —ar)P (B —a2)P (B3 —a3)P .
%t 23 a3 3 3 3

Then

B1 B2 B3 B B2 B3 p—-1
/ / / ¢P (51,52,83) ©1 51015201 83 > (/ / / $(51,52,53) 0151015201 S3> .
a7 wy w3 3 3 3 L%t 2 a3 3 3 3

Employing Lemma 8, we can deduce

Theorem 24 (Qi type diamond-« integral inequalities of n variables). If ¢ : [aq, B1]T, X
[a2, BolT, X -+ X [&n, BulT, — (m1,my) is a continuous function with my > 0, and for given
p > 1 satisfies

/ch(sl,sz,. e Sn) a1 a8 Oy Sy > ili(ﬁi — aci)”_l. (28)
Then
/R<p7’(sl,sz,...,sn)<>asl Op Sy Oy Sy > (/R(P<51/52/---/Sn)<>asl 00(82_“0“511);771'
Proof. We can find that
/R4>(s1,sz,...,sn)<>a §10xSp -0y Sy >0,

using Lemma 8 with q(x) = x?, we have

(thl?(Sl,Sz,u-,Sn)Oa 51082+ Oy sn)p < Jr(P(s1,52,-..,50))P O S1 0052+ Ou Sp

IT2 (Bi — &) im1 (Bi —a;)

Using now

n
/R(P(SLSZ/ ce rsn) OpS10x 82 Ox Sy = H(‘Bl - “i)p_1~
i=1

We can complete the proof. O

If we consider « = J, we obtain the following corollary.

Corollary 11. If ¢ : [wy, B1]T, X [&2, B2]T, X - - X [an, Bu]T, — (M1, m2) is continuous with
my > 0, and for given p > 1 satisfies

/R(p(sl,sz,...,sn)o% 5101820

Nf—=

Then

p—1
/47’7(51/52,..-,571)01 §101852+-01 8y > (/45(51,52,-.-,5;1)01 510152"'01571) .
R 2 2 2 R 2 2 2
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If we consider « = %, we obtain the following corollary.

Corollary 12. If ¢ : [a1, 1], X [w2, B2]T, X - -+ X [&n, Bu]T, — (M1, m2) is continuous with
my > 0, and for given p > 1 satisfies

s > [J(Bi — )P (29)

/Rq)(sl,sz,...,sn)o% 510182--0 [l

1
3
Then
p—1
/¢p(51/52/-~-/5n)<>l §101852 015, > (/ $(51,52,--.,51) 015101 8-+ 01 Sn) .
R 3 3 3 R 3 3

5. Examples

In this section, we give some examples which applied the conclusions in Sections 3 and 4.

Example 1. Consider the inequality:

Zz3k+223k %(sz+22k) (30)
where N € N > 2.
Proof. Wetake T = N, ¢(t) =2/,p =3 and a = % in (4), then it transforms into
3

(2t72)p722t71 Z Ezt(pf:’))zt’

it is always true when t > 1. Based on Theorem 9, we have

N N
/ 23t<>1t2(/ 2o, 1?2, NeN>2
1 2 1 2

Noting that
t)or1t= < tAt—i-*/ HVt = - + = .
Jis@oyt=5 [ rwareg [T AOVE= 5 ¥ 50+ 5 3 50
Thereby we can arrive to inequality (30). O
Example 2. Consider the inequality:
N-1 N 2
a ) a4 (1—a) Ea”lk ( Za—i— (1—a) Zak), (31)
k=2 k=3

wherel > o > 0,a >2,p1 >2and N > 3.
Proof. We take T = N, ¢(t) = a’, p» = 2 in (6), then it transforms into

a(plfl)t72p1+4 > 2(“ + (1 — DC)[Z)
T (m-D(a-1)

noting that aPr=Di=2p1+4 > ;2 > fil > % for t > 2, so (32) holds for t > 2.

(32)

Based on Theorem 10, we have

N N
/ ul’ltoatz(/ atoyt)?, NeN>3
2 2
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Noting that

N N N N-1
fo fOot=a [Ffwar—a) [ FOVE=a ¥ £+ (10 ) 0
Thereby we can arrive at inequality (31). O

Example 3. Consider the inequality:

N—-1N-1 N-1 N-1N-1 N-1 3
Y dptkathte ) > ( Yy Yo 2(k1+k2+"'+kn)) )
k=lky=1  ky=1 ki=lky=1  ky=1
where N > 10.

Proof. Consider the condition (28) with R = N",a = 1,¢(t1,tp, - - - , t,) = 2(ltht+t)
p=4anda; =1, =N(i=1,2,---,n), then it change into

N-1N-1 N-1
Z 2(t1+t2+...+tn) Z (N* 1)37’1 (33)
ki=lky=1  ky=1
Noting that Zﬁ;ll Zi\;ll . Zlﬁ;ll 2(tithtttn) — (N _ 21 50 (33) is hold for N >
10. Based on Theorem 24, we get the desired inequality. [

Example 4. Consider the inequalities:

(i)
NoINZL O N=D oo s NoINZL NS e
Z...Ztltz...tnz(z Z"'Ztltz"'tn) ,
ki=lko=1  ky=1 ki=lko=1  kn=1
where N > 2.
(ii)

N /N N o 2 2
/ / / tftgtz 0181018201 8y
1 1 1 3 3 3

N rN N p—1
> (/ / / i’ftg“'t,zol510132"'018;1) ’ (34)
1 1 1 3 3 3

where N > 2 and T; = N.

Proof. Consider the condition (28) with R = N", ¢(t1,t,- -+ ,tn) = t’ft; co-th and a; =
1,Bi=N(i=1,2,---,n), then it change into

B1 B2 B
/1/ 2/ 3tft§~~~tﬁ<>,xt1<>at2~~<>“tn2(N—l)”(’"l). (35)
o Ky Jagz

1. If « = 1, then the left hand of (35) become

N_“\]Z_:l...l\]i:lkfkg...kﬁ = (M)””,
ki=lka=1  kn=1 2

(36)

thus (35) hold for N > 2. Based on Theorem 24, we have the first inequality.
2. Ifa = %, then the left hand of (35) is bigger than (36), thus (35) hold for N > 2.
Based on Theorem 24 or Corollary 12, we have the second inequality. [
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Remark 3. We take n = 2 in (34) for example, (34) will transforms into

ZZkPkP—i- ZZkPkP+ ZZk”kP+ Zk”k”
2k2

( 2 Z KK+ £ Z Z KK+ = Z Z KK+ 2 Z Z k’”k’”)
k=1k,=1 ky=1kp=2 =2ky=2

6. Conclusions

In this paper, we greatly promoted the research of Qi type inequality on time scales
theory. More completely, we generalize Qi type inequality and its two generalized forms
through the Diamond-Alpha integral. The sufficient condition for the reverse of Qi type
inequality is also considered. Then we generalize Qi type inequality to higher dimension
via Jessen’s inequality. In this method, concise conditions are deduced. Qi type high
dimension inequality has been studied in great detail and some special cases are given as
corollaries. Moreover, some examples are given to show our conclusions are useful in the
end.
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