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Abstract: In this paper, we present some new refinements of Hermite-Hadamard inequalities for
continuous convex functions by using (p, g)-calculus. Moreover, we study some new (p, q)-Hermite-
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others given in previous research.
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1. Introduction

Mathematical inequalities play important roles in the study of mathematics as well
as in other areas of mathematics because of their wide applications in mathematics and
physics; see [1-3] for more details. One of the most significant functions used to study
many interesting inequalities is convex functions, which are defined as follows:

Let I C R be a non-empty interval. The function f : I — R called as convex, if

flta+ (1 =1)b) <tf(a)+ (1-1£)f(b)

holds for every a,b € I and t € [0,1].

In recent years, many researchers have been fascinated in the study of convex functions
and, particularly, one of the well-known inequality for convex functions known as the
Hermite-Hadamard inequality, which is defined as follows:

Inequality (1) was introduced by C. Hermite [4] and investigated by J. Hadamard [5]
in 1893. So far, the Hermite-Hadamard inequality and a variety of refinements of Hermite—
Hadamard inequalities have been extensively studied by many researchers; see [6-18] and
the references therein for more details.

The study of calculus with no limits is called quantum calculus (in short, g-calculus).
The main objective of studying g-calculus is to obtain the g-analoques of mathematical
objects that can be recaptured by taking q tending toward 1. In the past few years, the
topic of g-calculus has become an interesting topic for many researchers, and new results
of g-calculus can be found in [19-41], and the references cited therein.
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The generalization of g-calculus is post quantum calculus or, sometimes, is called
(p,q)-calculus. (p,q)-calculus is known as two-parameter quantum calculus, for which
applications plays significant roles in mathematics and physics such as combinatorics,
fractals, special functions, number theory, dynamical systems, and mechanics, among
others. In (p, g)-calculus, we obtain the g-calculus formula for the case p = 1 and obtain
the original of mathematical formula when g tends towards 1.

Recently, Tung and Gov [42-44] studied the concept of (p, g)-calculus over the intervals
[a,b] and gave some new definitions of (p, q)-derivatives and (p, q)-integrals. Moreover,
they also derived some of its properties and many integral inequalities as in (1), which
is called (p, q)-Hermite—~Hadamard inequality, and some new results on (p, q)-calculus of
several important integral inequalities. Next, Mehmet Kunt et al. [45] proved the left side
of the (p, 9)-Hermite-Hadamard inequality through (p, q)-differentiable convex and quasi-
convex functions, and then, they had some new (p, 7)-Hermite-Hadamard inequalities.

In 2019, Prabseang et al. [46] established some new (p, q)-calculus of Hermite-Hadamard
inequalities for the double integral and refinements of the Hermite-Hadamard inequality
for (p, q)-differentiable convex functions. In the last few years, the topic of (p, q)-calculus
has been investigated extensively by many researchers, and a variety of new results can be
found in the literature (see [47-64] and the references cited therein).

In 2020, Prabseang et al. [65] established some new refinement of quantum Hermite—
Hadamard inequalities, which have been expanded to integration on a finite interval of
an n-dimensional. Some new refinements of (p, 9)-Hermite-Hadamard inequalities for
convex functions are given.

In this paper, we aim to propose some new refinements of Hermite-Hadamard inequal-
ities via (p, g)-calculus that have been expanded to integration on a finite interval of an
n-dimensional. We obtain some new refinements of (p, g)-Hermite-Hadamard inequalities
for convex functions and the results in special cases for p = 1and g — 1.

Before presenting our main results in Section 3, we introduce the definitions and results
from (p, g)-calculus in Section 2. Finally, Section 4 concludes the paper by summarizing
the results.

2. Preliminaries

In this section, the basic definitions used in our study are discussed. Throughout
this paper, let [2,b] C R be an interval and 0 < g < p < 1 be constants. The following
definitions for the (p, g)-derivative and (p, q)-integral were given in [42,43].

Definition 1. If f : [a,b] — R is a continuous function, then the (p, q)-derivative of function f
at x is defined by

iDyaf(e) = TP 0D S (L 0)e)

aDp,qf(’l) = }1613}1 aDp,qf(x)-

, X Fa @

If 4Dy f (x) exists for all x € [a, b], then the function f is called (p, q)-differentiable on [a, b].
In Definition 1, if a = 0, then oDy, 4 f = Dy 4f, which is defined by

f(px) — f(qx)

(p—q)x ' *#0. ©)

Dmf(x) =

In addition, if p = 1in (3), then it reduces to D, f, which is the g-derivative of the
function f; see [32].
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Example 1. Define function f : [a,b] — R by f(x) = x> + x + C, where C € R. Then, for
X # a, we have

[(px+ (1—p)a)* + (px+ (1 — p)a) + C]

aDpq(x* +x4C) = =a)(x—a)
_ [gx+ (1 —g)a)* + (9x + (1 = g)a) + C]
(p—q)(x—a)
_ (p+e@ 421 - (p+9l+@(p+q) =20+ (x-a)
—a) 4)
_X(P+Q)(x—a)—a(P+(q)(x—>a)+2a(x—a)+(x—a>

=(p+q)(x—a)+2a+1.

Definition 2. Let f : [a,b] — R be a continuous function. Then, the (p,q)-integral on [a, b] is
defined by

[0t = -0 & T (e (1- 55 )0),

for x € [a,b]. Ifa = 0and p = 1 in (5), then we have the classical q-integral; see [32].

Example 2. Define function f : [a,b] — R by f(x) = Ax + B, where A, B € R. Then, we have
b b
/ f(x) adpgx = / (Ax + B) odp4x
a a
_ 00 qi’l 7’! qn
_’A(p q 2: n+1< n+1 +_<1__pn+1>a)

A ©
+B(p—q)(b—a) EOPZH
_Ab—ag)b—al-p-q) g,

p+q

In addition, the following definition for the (p,q)-integral of the function of two
variables can be defined; we referred to [47].

Definition 3. Let f : [a,b] x [c,d] C R? — R be a continuous function, then the definite
(p,q)-integral on [a, b] X [c,d] is defined by

t s
| [ £y atygr adpqy =(p ) = a)(t =)
00 o0 m+n n n m m (7)
q q q q
X Z Z m+n+2f<pn+1s+ <1 o pn+1> / pm+lt+ (1 o pm+1>a)’

m= On:0

for (s, t) € [a,b] x [c,d].
The proofs of the following theorems were given in [42,43].

Theorem 1. Let f : [a,b] — R be a continuous function. Then, we have the following:
X

() aqu/ f(t) adpgt = f(x);
(ii) /Capqu() dyat = f(x) — f(c) for c € (a,x).
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Theorem 2. Let f,g : [a,b] — R be continuous functions and « € R. Then, we have the
following:

O[O+ g0 adpgt = [ O adpgt+ [ 9(0) gt
i [ C(f) (), dpgt = / " ()t

(i) [ Fpt+ (1= p)a)aDyg(t) adyt = G~ [ glat+ (1= )a)Dyaf (1) adpgt for
c € (ax).

3. Main Results

In this section, we present refinements of Hermite-Hadamard inequalities for continu-
ous convex functions via (p, g)-calculus on the interval | := [a, pb + (1 — p)a].

Theorem 3. Let f : | — R be a continuous convex function. Then, we have

qa + pb 1 po+(l=pla rpbt(1=pla /x4y
f( p+q ) = p2(b —a)? /g /a f 2 alpgXadpqy
1 pb+(1=p)a rpb+(1=pla 1[ /ax + By Bx + ay
Sm/u /a Z[f( a+pB )+f( a+p ﬂadp,qxudp,q}/ ®)

1 pb+(1-p)a
Si-ah S

foralla, > 0witha+ p > 0.

Proof. Since f is convex on J, forall x,y € J and a, 8 > 0 with w + > 0, we have

(3) =2l () () 0
£ +£)

2

IN

Taking double (p, g)-integration on both sides of (9) on J?, we obtain the second part
of (8).
On the other hand, by using Jensen’s inequality, we have

1 pb+(1—p)a ppb+(1—p)a x+y
C=d / (552 sty

1 pb+(1—pla rpb+(1—p)a x+y
S W/ﬂ ~/£Z f<2> adp,qxadp,qy.

Since

1 pot(i=pla rpbt(l=pla /x4y ga+ pb
—_— —= | .d d = ,
Pz(b—a)z/a / ( 2 )“ Y

this yields the first part of (8). This completes the proof. [J
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Remark 1. If p = 1, then (8) reduces to

J80) < o [ ()
< W/ /b;[f<“zigy> +f<ﬁ;‘igy)] oo Xod,y
< biﬂ/uhf(x) oo,

see also [65]. Additionally, if g — 1 in (10), then (10) reduces to
f«:b)g el [ o
b1 ax + By Bx + ay
>// [(M)”(M )]s

which readily appeared in [66].

Theorem 4. Let f : | — R be a continuous convex function. Then, we have

ga + pb 1 pb+(1-p)a po+(1=pla /x4 +x
) swmmar T (T st sty

1 pb+(1—p)a pb+(1—p)a X4+ X,
< ;Ziizgffajﬁiiué "'Jé jr(n) R

n—1
1 po+(1=p)a
Sia S

foralln € Nwithn > 3.

Proof. Since

x1+~~~+xn:1 X1+ -+ X1 " Xop+ -+ Xp T Xp+ -+ Xp2
n n n—1 n—1

n—1

and by using Jensen’s inequality, we have

f(x1+n+xn> < ip(ﬁﬁn_ﬂ;xl) +f(x2+n_1+xn> ++f<xn++xn—2>]

n—1
Taking (p, q)-integration on both sides of the above inequality on |", we obtain

pb+(1—p)a pb+(1—p)a X1+ +x
/a /a f(nn> alpgx1 -+ aldpgXn
1 pb+(1*p)a pb+(I=p)a (x4 4 x,
<|:/ /a f(w>adp’qxludpqun+

pb+(1 pb+(1-p)a Xy A
+/ / f<”n_1”2>ﬂmmu.ﬂmw.

(10)

(11)

))
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On the other hand, we get

pb+(1=p)a po+(1=pla /xi 4 4 x,
I B / G e R
. _

pb+(1 pb+(1—p)a Xp+ -+ x
—/ / f<n_1"> adpqX1- -+ adpgXn

pb+(1—p)a pb+(1—p)a Xp 44+ Xx,_0
:/a /a f(”n_1"> alpgX1 -+ adpgXn

b+(1-p) b+(1-p)
:p(b—a)/up ’”.../u” ”f(’“”nl

Apax1- -+ adpaXy_1-
n_1 >u p.qr1 ap,gin—1

Thus,

1 pb+(1—p)a po+(l=pla x4+ x,
WA o A f<n> adp,qxl PN adp’qxn

1 pb+(1—p)a pb+(1—p)a X1+ X
< pnfl(b _ a)nfl /ﬂ /a f<n_1n> adp,qxl T adp,qxnfll

which shows the middle part of (11).
On the other hand, by Jensen’s inequality, we have

1 pb+(1—p)a pb+(1—p)a X1+
f(p”(b—a)”/a /a <n) adpgX1 - adp/qx")

1 pb+(1—p)a pb+(1—p)a X1+ +x
S m/l /u f<nn) zzdp,qxl"' udp,qxn'

Since

1 /ph+(1fp)am/ph+(lfp)ﬂ e B k. W VR qa+pb
p(b—a)" Ja a n AT g

this yields the first part of (11). This completes the proof. [

Remark 2. If p =1, then (11) reduces to

+b X1+ -
/ <q1a+q> / / < 1 )“dqxl ool
X1+ + x4
_a 11 l / / ( n_l n= ) adq.Xl o adqxn_]

(12)

b
bia/a f(x) adyx;

<
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see also [65]. In addition, if ¢ — 1 in (12), then (12) reduces to

() vt e
~— (b—a) / / (X1+n—+lxn 1>dx1~~~dxn_1

1 b 4
<
N /H f(x)dx,
which readily appeared in [66].

Corollary 1. Let f : | — R be a continuous convex function. Then, we have

qtl+pb 1 pb+(1—p)a  rpb+(1—p)a X1+ X7
d ( p+a ) : p2<b—a>2/a J I\ T ) et

(13)
1 pb+(1=p)a
S ml f(x) gdp,qx.

Remark 3. If p =1, then (13) reduces to

a+b X1+ x
f(q1+q> < _a / / ( ! 2) adqxl adqxz
(14)
< b—a/a f(x) adgx;
see also [65]. In addition, if ¢ — 1 in (14), then (14) reduces to
a+b 1 borb x4+ x
<
f< 2 ) = (b—a)z/a ./a f( 2 )dxlde
1 b g
<
<5 | fax

which readily appeared in [67].

Theorem 5. Let f : ] — R be a continuous convex function. Then, we have

qa + pb < 1 /Pb+(1—r))am/pb+(1—p)a FX]+ - 4 takn
f( P ) ACRO a / T, dpat e alpgtn

(15)
1 b+(1—p)a
e O

n
forallt; >0 (i=1,2,...,n) with }_t; =T, > 0and n € N.
i=1

Proof. By Jensen’s inequality, we have

f(tlxl : Tr; ann) = Tin[flf(xl) +oe b f ()]
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forall x; € Jand t; > 0, where i = 1,2,...,n. Taking (p, q)-integration on both sides of the
above inequality on ", we obtain

pb+(1=p)a po+r(l=pla  (tixg + - 4ty
[T (A

1 po+(1-p) pb+(1—p)a
S Ti / . / [tlf(xl) + cte + tnf(xn)] adp/q.Xl e gdp,qxn

pb+(1—p)a
=y -t F) adpg

which yields the second part of (17).
On the other hand, by Jensen’s inequality, we have

1 pb+(1—p)a pb+(1—p)a tHxy 4+ tax
f(pn(b — a)n A e ‘/H < Tn " i’l) adp,qxl tee adp,an)

1 pb+(1—p)a po+(l=pla [ pixg 4 -+ tx
e A i G PR

Since
1 /pb+(1p)u _ _'/pbﬂlp)a (tlxl +oe +tnxn> g qa + pb
b —a) J, a T, CPATL AT T g
this yields the first part of (15). This completes the proof. [
Remark 4. If p =1, then (15) reduces to
a+b F1X1 4 - tx
(350) = e [ A5
! (16)

< b—ﬂ/a f(x)udqx;
see also [65]. In addition, if ¢ — 1 in (16), then (16) reduces to

f<a—2kb) / / <t1x1+ +tnxn)dx1mdxn
gb_a/u f(x)dx

which readily appeared in [66].

Corollary 2. Let f : | — R be a continuous convex function. Then, we have

a+ pb 1 -pb+(1=p)a  rpb+(1—-p)a
f(qp +Z ) < p2(b—a)? /a /ﬂ f(t1x1 + tax2) adgXx1 adp,gx2

1 pb+(1-p)a 17)
< m/ﬂ f(x) adpgx.
Remark 5. If p =1, then (17) reduces to
qa+b
f 11q //ff1x1+f2x2) adgX1 allgX2
(18)

< bfa/a f(x) adgx
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see also [65]. In addition, if ¢ — 1 in (18), then (18) reduces to

H(E50) < g [ i

bia /abf(x)dx,

<

which readily appeared in [67].

Theorem 6. Let f : | — R be a continuous convex function. Then, the following inequalities

qatpby _ 1 /'Pb+(1p)ﬂ.“/r’b+(1p)a X1t At
f( p+q > T pr(b—a)t Ja Ja f n X1 adpgn

1 pbt+(1=p)a po+(1=pla  (fix) + -+ tpx

e Y R e e L
1 'pb+(1—p)a

S m ‘/a f(x)gdp,qx

n
are valid forall t; > 0 (i = 1,2,...,n) with Zti =T, >0andn € N.
i=1

Proof. Since

X1+ +xy 1| tixp 4+ g trxy + - +tpxy
Tn Ty

n n

we have

X1+ -+ Xy 1 frx + -ty thxy + - +tyxy
< =
L R e A

by using Jensen’s inequality. Taking the (p, q)-integration on both sides of the above
inequality on J”, we obtain

pb+(1—p)a pb+(1—p)a X1+ +x
/a /a f<n") alpgX1 -+ alpgXn

1[ pb+(1-pla po+(1=p)a  (tix) + -+ tkn
Sn|:/a /a f( Tn )adp,qxl...adp,qxn+...
pb+(1—-p)a pb+(1—p)a toxy + -+ - +tx
+/ / f< T, : n)“dmxl"' ﬂdrwxn]-
a a n
Since
pb+(1—p)a po+(1=p)a /tixq 4 - + taxp
/a .. /a f< T ) alp g1 adpqxn
pb+(1—p)a po+(l=pla [ tixg 4 -+ tx
:/ﬂ / f< N n n)adp,qxl'” adp,qxn

pb+(1—p)a po+(1=pa [ toxq + -+ -+ FXp
:/ / f - apaX1 - adpgXn.
a a n
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Thus,

1 pb+(1-p)a po+(1=pla /3 + -+ x,
s T A g g

1 pb+(1—p)a pb+(1—p)a fx] 4+ tpx
e AR At (CE== ) P

Using Theorems 4 and 5, we can obtain the desired result. [

Remark 6. If p =1, then (19) reduces to

a+b X144+ x
(30 i [ L)
/ / (t1x1+ +tnxn)adqx1"'adqxn 20)
n

< b—a/a f(x)adyx,

see also [65]. In addition, if ¢ — 1 in (20), then (20) reduces to

() < [ L (5 o
. / / <t1x1+ n+tnx")dx1---dxn
b_ﬂ/ﬂf(x)dx

which readily appeared in [68].

4. Conclusions

In the present paper, we used (p, q)-calculus to establish some new refinements of
(p, q)-Hermite-Hadamard inequalities, which have been expanded to integration on an
n-dimensional finite interval. Many existing results in the literature are deduced as special
cases of our results for p = 1 and g — 1. The results of this paper are new and significantly
contribute to the existing literature on the topic.
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