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Abstract: First, we set up in an appropriate way the initial value problem for nonlinear delay
differential equations with a Riemann-Liouville (RL) fractional derivative. We define stability in
time and generalize Mittag-Leffler stability for RL fractional differential equations and we study
stability properties by an appropriate modification of the Razumikhin method. Two different types
of derivatives of Lyapunov functions are studied: the RL fractional derivative when the argument of
the Lyapunov function is any solution of the studied problem and a special type of Dini fractional
derivative among the studied problem.

Keywords: Riemann-Liouville fractional derivative; time-varying delay; stability; Lyapunov func-
tions; fractional derivatives of Lyapunov functions; Razumikhin method

1. Introduction

Various processes with anomalous dynamics in science and engineering can be for-
mulated mathematically using fractional differential operators ([1–3]). When the Riemann-
Liouville (RL) fractional derivative is applied in differential equations, the statement of
initial conditions is important. It is worth mentioning that the physical and geometric
interpretations of operations of fractional integration and differentiation were suggested by
Podlubny [4]. Fractional differential equations in terms of the RL derivative require initial
conditions expressed in terms of initial values of fractional derivatives of the unknown
function ([5,6]). In [7], it was shown that the initial conditions for fractional differential
equations with RL derivatives expressed in terms of fractional derivatives has physical
meaning. In fact, it was shown that for any physically realistic model, zero initial conditions
will be found for a continuous loading program or even in the case of a step discontinuity.
Nonzero conditions will only be found in the case of an impulse, and this type of process
can be found in physics, chemistry, engineering, biology and economics. In the case of
zero initial conditions, the RL, Grünwald-Letnikov (GL) and Caputo fractional derivatives
coincide ([4]). For this reason, some authors either study Caputo derivatives or use RL
derivatives but avoid the problem of initial values of fractional derivatives by treating only
the case of zero initial conditions. This leads to the consideration of mathematical correct
problems, but without taking the physical nature of the described process into account.
Sometimes, such as in the case of impulse response, nonzero initial conditions appear (see,
for example, [7]).

In connection with the main idea of stability properties, we will consider in this
paper nonzero initial conditions for RL fractional equations, and we will define in an
appropriate way stability properties that are slightly different than those for Caputo
fractional differential equations.

Mathematics 2021, 9, 435. https://doi.org/10.3390/math9040435 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4922-641X
https://doi.org/10.3390/math9040435
https://doi.org/10.3390/math9040435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040435
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/435?type=check_update&version=2


Mathematics 2021, 9, 435 2 of 16

Note that stability properties of delay differential equations can be considered by
an application of the Lyapunov-Krasovskii method by functionals or by the Razumikhin
method by Lyapunov functions. It is worth mentioning that both mentioned methods are
applied for stability study of Caputo fractional delay differential equations (see, for exam-
ple, [8–11]).

In the case of delay fractional differential equations with the RL fractional deriva-
tive, following the idea of initial conditions in ordinary delay differential equations and
the above-mentioned idea concerning the initial condition for RL fractional differential
equations without any delay, we will set up initial conditions in an appropriate way. Note
that any solution of the defined initial conditions with RL fractional derivatives is not
continuous at zero (the initial point), which is the same as in the case without any delay.
Delay RL fractional differential equations are set up and studied in [12], but the initial
condition does not correspond to the idea of the case of delay differential equations with
ordinary derivatives (the lower bound of the RL fractional derivative coincides with the
left end side of the initial interval).

Asymptotic stability for RL fractional differential equations with delays is studied
in [13–15], but only the autonomous case is considered. A Lyapunov functional and its
integer order derivative is applied. This functional is similar to the one used in the theory
of differential equations with ordinary derivative and delay. On one hand, the application
of ordinary derivative of the Lyapunov functional is not similar to the used fractional
derivatives in the equation; on the other hand, it leads to some restrictions on both the delay
and the right side parts of the equation ([16]). Additionally, in [15], the initial condition is
not adequately associated with the RL fractional derivative. RL fractional equations with
delays were studied recently in [17,18], but there are unclear parts in the statement of the
problem (the lower limit of the RL derivative is different than the initial time point) as well
as in the initial condition (the RL fractional integral has no meaning, compared with [5] at
the initial time). The Razumikhin method is applied to RL fractional differential equations
in [11], but the initial condition is not connected with the RL fractional derivative.

In this paper, the initial value problem for nonlinear delay differential equations with
the RL fractional derivative is studied. Based on the arguments in the books [5,6], we
set up initial conditions expressed in terms of initial values of fractional derivatives of
the unknown function. Any solution of the defined initial conditions with RL fractional
derivatives is not continuous at zero (the initial point). We require a new definition for
stability excluding a small interval around zero. We define stability in time and general-
ize Mittag-Leffler stability in time for RL fractional differential equations. The stability
properties of the zero solution are studied by Lyapunov functions. An appropriate modi-
fication of the Razumikhin method is suggested. Two types of derivatives of Lyapunov
functions are applied: the RL fractional derivative when the argument of the Lyapunov
function is a solution of the studied problem and the Dini fractional derivative among the
studied problem.

The main contribution in the paper could be summarized as follows:

- the initial conditions connected with the RL fractional derivative are set up in an
appropriate way;

- new types of stability connected with the type of initial conditions are defined;
- the RL fractional modification of the Razumikhin method is presented;
- new sufficient conditions for the defined stability are obtained;
- two types of fractional derivatives of the Lyapunov functions are used.

2. Preliminary Notes

In this paper, we will use the following definitions that are well known in the litera-
ture ([5,19]):
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- Riemann–Liouville fractional integral of order q > 0

0 Iq
t m(t) =

1
Γ(q)

t∫
0

m(s)
(t− s)1−q ds, t ≥ 0,

where Γ(.) is the gamma function.
Note that the notation 0D−α

t m(t) = 0 Iα
t m(t) is sometimes used.

- Riemann–Liouville fractional derivative of order q ∈ (0, 1)

RL
0 Dq

t m(t) =
1

Γ(1− q)
d
dt

t∫
t0

(t− s)−qm(s)ds, t ≥ 0

- Grünwald–Letnikov fractional derivative of order q ∈ (0, 1)

GL
0 Dq

t m(t) = lim
h→0+

1
hq

[t]
h

∑
j=0

(−1)j
qCj m(t− jh), t ≥ 0,

where

qCj =
q(q− 1)(q− 2) . . . (q− j− 1)

j!
=

Γ(q + 1)
j!Γ(q− j + 1)

. (1)

Remark 1. If m ∈ C([0, T],R), then (see, Theorem 2.25 [19]),

GL
0 Dq

t m(t) = RL
0 Dq

t m(t), t ∈ (0, T].

The fractional derivatives for scalar functions could be easily generalized to the vector
case, by taking fractional derivatives with the same fractional order for all components.

Define the class

C1−q([0, T],R) = {m : [0, T]→ R : t1−qm(t) ∈ C([0, T],R)}, with T ≤ ∞.

We will provide some well-known results from the literature (see, for example, [5,19]):

Proposition 1. For q ∈ (0, 1), β > 0:

RL
0 Dq

t tβ−1 =
Γ(β)

Γ(β− q)
tβ−q−1.

Proposition 2. For q ∈ (0, 1):

RL
0 D−q

t t−q = Γ(1− q),

RL
0 Dq

t 1 =
1

Γ(1− q)
t−q,

RL
0 Dq

t tq−1 = 0.

Proposition 3 (Property 4 [20]). If the inequalities RL
0 Dq

t x(t) ≥ RL
0 Dq

t y(t), t ∈ (0, b] and
RL
0 Dq−1

t x(t)|t=0 ≥ RL
0 Dq−1

t y(t)|t=0 hold, then x(t) ≥ y(t), t ∈ (0, b]

Remark 2. As it is mentioned in [20] (see Example 1 [20]), a function might not be differentiable
at one point in the classical sense, but it is RL differentiable. The positive RL fractional deriva-
tive RL

0 Dq
t m(t) > 0 of order q ∈ (0, 1) only means that the RL fractional integral RL

0 I1−q
t m(t)
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is monotonously increasing with respect to t and it does not imply that the function m(t) is
monotonously increasing.

So, we cannot regard RL and Caputo derivatives as the generalization of the ordinary derivative
in a rigorous mathematical way.

Proposition 4 (Lemma 2.3 [21]). Let m ∈ C1−q([0, T],R). Suppose that for any t1 ∈ (0, T], we
have m(t1) = 0 and m(t) < 0 for 0 ≤ t < t1. Then, it follows that RL

0 Dq
t m(t)|t=t1 ≥ 0.

Proposition 5. The initial value problem

RL
0 Dq

t x(t) = Ax(t) + h(t) for t > 0,
RL
0 I1−q

t x(t)|t=0 = x0,

has a unique solution

x(t) = x0tq−1Eq,q(Atq) +
∫ t

0
(t− s)q−1Eq,q(A(t− s)q)h(s)ds,

where Eq,q(z) = ∑∞
k=0

zk

Γ(q(k+1)) is the two-parameter Mittag-Leffler function.

Now, based on Proposition 5, we will illustrate the importance of the initial condition
when the RL fractional derivative is used in the equation. For simplicity, we will consider
the case of equations without any delays.

Remark 3. Consider the scalar linear RL fractional equation (q ∈ (0, 1))

RL
0 Dq

t x(t) = x(t) for t > 0,

It is well known that RL
0 Dq

t tq−1Eq,q(tq) = tq−1Eq,q(tq), i.e., the solution of the above RL fractional
differential equation, is x(t) = ctq−1Eq,q(tq) where c is a real constant.

Now, consider the initial condition x(0) = k where k is a real constant. However,
tq−1Eq,q(tq)|t=0+ = ∞ 6= k. This illustrates that the initial condition of the type x(0) = k
is not applicable for RL fractional equations (see, for example, [11]).

Now, consider the initial condition t1−qx(t)|t=0+ = k where k is a real constant. Then,
t1−qx(t)|t=0+ = t1−qctq−1Eq,q(tq)|t=0+ = cEq,q(0) = c

Γ(q) , i.e., the initial condition

t1−qx(t)|t=0+ = k has a meaning for the RL fractional derivative with k = c
Γ(q) .

The practical definition of the initial condition of fractional differential equations with
RL derivatives is based on the following result:

Lemma 1 ([2]). Let q ∈ (0, 1) and b > 0, m : [0, b]→ R be a Lebesgue measurable function.

(a) If there exists a.e. a limit limt→0+[t1−qm(t)] = c ∈ R, then there also exists a limit

0 I1−q
t m(t)|t=0 = 0Dq−1

t m(t)|t=0 := lim
t→0+

1
Γ(1− q)

t∫
0

m(s)
(t− s)q ds = cΓ(q).

(b) If there exists a.e. a limit limt→0+ 0 I1−q
t m(t) = c ∈ R, and if there exists the limit

limt→0+[t1−qm(t)], then
lim

t→0+
[t1−qm(t)] =

c
Γ(q)

.
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3. Statement of the Problem

Consider the following nonlinear Riemann–Liouville fractional delay differential
equation (RLFrDDE) of fractional order q ∈ (0, 1):

RL
0 Dq

t x(t) = f (t, xt) for t > 0, (2)

with initial conditions

x(t) = φ(t), for t ∈ [−τ, 0],

lim
t→0+

[t1−qx(t)] =
φ(0)
Γ(q)

,
(3)

where x ∈ Rn, xt(Θ) = x(t + Θ), Θ ∈ [−τ, 0], φ : [−τ, 0]→ R and f : R+ ×Rn → Rn.

Remark 4. According to Lemma 1, the second equation in the initial conditions (3) could be
replaced by the equality 0 I1−q

t x(t)|t=0 = φ(0).

We denote the solution of the initial value problem (IVP) for RLFrDDE (2) and (3) by
x(t) = x(t; φ) for t ≥ −τ. In this paper, we will assume that the function f is such that for
any continuous initial function φ the IVP for RLFrDDE (2) and (3) has a solution. Note that
some existence and uniqueness results to RL fractional differential equations with delay
were obtained in [22].

For any φ ∈ C([−τ, 0],Rn
), we denote ||φ||0 = maxt∈[−τ,0] ||φ(t)|| where ||.|| is a

norm in Rn.
We will introduce the following conditions

Hypothesis 1 (H1). The function f ∈ C[R+ ×Rn,Rn
] is such that for any initial function

φ ∈ C([−τ, 0],Rn
)), the corresponding IVP for RLFrDDE (2) and (3) has a solution x(t; φ) ∈

C1−q([0, ∞),Rn
);

Hypothesis 2 (H2). f (t, 0) = 0 for all t ∈ R+.

Remark 5. If φ(t) ≡ 0 and condition (H2) is satisfied, then, because of the equality RL
0 Dq

t 0 = 0,
the IVP for RLFrDDE (2) and (3) has the zero solution.

We will give the basic definitions for stability:

Definition 1. The zero solution of RLFrDDE (2) and (3) (with the zero initial function) is said
to be

- stable in time if for any number ε > 0 there exist numbers δ > 0 and Tε > 0 depending on ε
such that for any initial functions φ ∈ C0 : ||φ||0 < δ, the corresponding solution x(t; φ) of
IVP (2) and (3) satisfies ||x(t; φ)|| < ε for t ≥ Tε;

- asymptotically stable if it is stable in time and additionally x(t; φ)→ 0 as t→ +∞;
- generalized Mittag-Leffler stable in time if there exist positive numbers λ, b and γ ∈ (0, 1)

and a locally Lipschitz function h ∈ C([0, ∞), [0, ∞)) : h(0) = 0 such that for any ε > 0,
there exists Tε > 0 the solution of IVP (2) and (3) satisfies

||x(t; φ)|| ≤ ε{h(||φ||0)t−γEq,1−γ(−λtq)}b, t ≥ Tε.

As an example to discuss stability in time, we consider a scalar RL fractional equation
without any delay, whose exact solution is known.

Example 1. According to Proposition 5, the scalar initial value problem

RL
0 Dq

t x(t) = −ax(t) for t > 0, RL
0 I1−q

t x(t)|t=0 = x0
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has a unique solution
x(t) = x0tq−1Eq,q(−atq).

Therefore, the zero solution is generalized Mittag-Leffler stable with γ = 1− q, m(u) = u
and λ = a.

The zero solution is stable in time because for any ε > 0 there exist δ, Tε > 0 such that
δ

T1−q
ε

Eq,q(−aTq
ε ) = ε. At the same time, the zero solution is not stable (in the regular sense) because

limt→0 tq−1Eq,q(−atq) = ∞ and |tq−1Eq,q(−atq)| < ε cannot be satisfied for values of t close
to 0.

For example, if a = 1, q = 0.5, ε = 0.1, δ = 0.2 > ε then Tε ≈ 0.257459, if a = 1, q =
0.5, ε = 0.1, δ = 0.01 < ε then Tε ≈ 0.00265746.

Throughout the paper, we shall use the class

K = {w ∈ C(R+,R+) : w(s) is strictly increasing and w(0) = 0}

and

B̄(ρ) = {x ∈ Rn : ||x|| ≤ ρ}.

4. Stability of Nonlinear RL Fractional Differential Equations
4.1. Lyapunov Functions and Their Derivatives

One approach to study stability properties of nonlinear RL fractional differential equa-
tions is based on the application of Lyapunov functions and an appropriate modification of
the Razumikhin method. The first step is to define a Lyapunov function. The second step
is to define its derivative among the studied equation.

We will use the following class of functions called Lyapunov functions:

Definition 2 ([8]). Let J = [−τ, T), T ≤ ∞, be a given interval, and ∆ ⊂ Rn, 0 ∈ ∆ be a given
set. We will say that the function V(t, x) : J × ∆→ R+ belongs to the class Λ(J, ∆) if V(t, x) is
continuous on J/{0} × ∆, and it is locally Lipschitzian with respect to its second argument.

In our study, we will use the Razumikhin condition for the Lyapunov function V ∈
Λ(J, ∆) and any ψ ∈ C([−τ, 0],Rn

):

V(t + Θ, ψ(Θ)) ≤ V(t, ψ(0)), Θ ∈ [−τ, 0].

We will give a brief overview of the derivatives of Lyapunov functions among solu-
tions of fractional differential equations in the literature. There are three main types of
derivatives of Lyapunov functions from the class Λ(J, ∆) used in the literature to study
stability properties of solutions of fractional differential Equation (2):

- RL fractional derivative—Let x(t) : [0, T) → ∆ be a solution of the IVP for the RL-
FrDDE (2) and (3). Then, we consider

RL
0 DqV(t, x(t)) =

1
Γ(1− q)

d
dt

t∫
0

(t− s)−qV(s, x(s))ds, t ∈ [0, T). (4)

- Dini fractional derivative—Let φ : [−τ, 0]→ ∆. Then, consider (see [8])

D+
(2)V(t, φ(0), φ)

= lim sup
h→0

1
hq

[
V(t, φ(0))−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, φ(0)− hq f (t, φ0))

]
,

(5)

where qCr is defined by (1) and φ0(Θ) = φ(Θ), Θ ∈ [−τ, 0].
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The Dini fractional derivative is applicable for continuous Lyapunov functions.

We will provide an example concerning some Lyapunov functions and their Dini
fractional derivatives. To simplify the calculations and to emphasize on the derivative, we
will consider the scalar case, i.e., n = 1.

Example 2. Let V(t, x) = m(t) x2 where m ∈ C(R+,R+) and φ ∈ C([−τ, 0],R). Apply (5)
and obtain

D+
(2)V(t, φ(0), φ)

= lim sup
h→0

1
hq

[
m(t) (φ(0))2 −

[ t
h ]

∑
r=1

(−1)r+1
qCrm(t− rh)(φ(0)− hq f (t, φ0))

2
]

= lim sup
h→0

1
hq

[
[m(t) (φ(0))2 −m(t) (φ(0))2 − hq f (t, φ0))

2

− (φ(0))2 − hq f (t, φ0))
2(−1)0+1

qC0m(t− 0h)

− (φ(0)− hq f (t, φ))2
[ t

h ]

∑
r=1

(−1)r+1
qCrm(t− rh)

]
= lim sup

h→0

1
hq

[
m(t)hq f (t, φ0)(2φ(0)− hq f (t, φ0))

+ (φ(0))2 − hq f (t, φ0))
2
[ t

h ]

∑
r=0

(−1)r
qCrm(t− rh)

]
= 2φ(0) m(t) f (t, φ) + (φ(0))2 RL

0 Dq
(

m(t)
)

.

(6)

Special case 1. Let V(t, x) = t1−q x2 for t > 0, x ∈ R. According to Proposition 1 with
β = 2− q, we get RL

0 Dq
t t1−q = Γ(2−q)

Γ(2−2q) t1−2q and from (6), we get

D+
(2)V(t, φ(0), φ) = t1−q

(
2φ(0) f (t, φ) + (φ(0))2 Γ(2− q)

Γ(2− 2q)
t−q
)

. (7)

Special case 2. Let V(t, x) = x2 for x ∈ R. From Proposition 2, with m(t) ≡ 1, we obtain

D+
(2)V(t, φ(0), φ) = 2φ(0) f (t, φ) +

(φ(0))2

tqΓ(1− q)
.

Special case 3. Let V(t, x) = tq−1 x2 for t > 0, x ∈ R. According to Proposition 2, we get
from (6)

D+
(2)V(t, φ(0), φ) = 2 tq−1φ(0) f (t, φ). (8)

Special case 4. Let V(t, x) = t1−qm(t)x2 where A ≤ t1−qm(t) ≤ B for all t ≥ 0. For ex-

ample, if m(t) = 1
t1−q + 1

1+t1−q , then t1−qm(t) = 1 + t1−q

1+t1−q ∈ (1, 2), RL
0 Dq

t

(
1 + t1−q

1+t1−q

)
exists and

D+
(2)V(t, φ(0), φ) = 2φ(0)

(
1 +

t1−q

1 + t1−q

)
f (t, φ) + (φ(0))2

( 2
tqΓ(1− q)

− RL
0 Dq

t
1

1 + t1−q

)
.

Remark 6. Note that V(t, x(t)) = t1−qm(t)∑n
i−1 x2

i (t) ∈ C1−q([0, ∞),R+), m ∈ C([0, ∞),R+)
for any solution x(t) = (x1(t), x2(t), . . . , xn(t)) of (2) and (3) because

t1−qV(t, x(t))|t=0 = m(t)
n

∑
i=1

(t1−q xi(t))2|t=0 = m(0)
∑n

i=1 φ2
i (0)

Γ2(q)
=

m(0)
Γ2(q)

||φ||20.
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If m(t) ≡ 1, then the function V(t, x(t)) = t1−q ∑n
i−1 x2

i (t) ∈ C1−q([0, ∞),R+) for any
solution x(t) of (2) and (3).

The quadratic Lyapunov function V(t, x(t)) = ∑n
i=1 xi(t)2 is not from the set

C1−q([0, ∞),R+) for any solution x(t) of (2) and (3), because

t1−qV(t, x(t))|t=0 = t1−q
n

∑
i=1

xi(t)2|t=0 = tq−1
n

∑
i=1

(t1−qxi(t))2|t=0 = ∞.

The functions V(t, x(t)) = tq−1 ∑n
i=1 x2

i (t) is not from the set C1−q([0, ∞),R+) for any
solution x(t) of (2) and (3).

We will study stability properties of the zero solution of RLFrDDE (2) by an application
of both defined types of fractional derivatives of Lyapunov functions.

4.2. Stability by the RL Fractional Derivative of Lyapunov Functions

We will obtain some sufficient conditions for stability with applications of the RL
fractional derivative of Lyapunov functions.

Theorem 1. Let conditions (H1) and (H2) be satisfied, and there exists a function V ∈ Λ(R+,Rn
)

such that

(i) for any ε > 0 there exists Tε > 0 such that

εa(||x||) ≤ V(t, x) for t > Tε, x ∈ Rn, (9)

where a ∈ K;
(ii) there exists an increasing function g ∈ C(R+,R+) such that for any function

y ∈ C1−q([0, ∞),Rn
) : t1−qy(t)|t=0+ = y0 the inequality

t1−qV(t, y(t))|t=0+ = lim
t→0+

t1−qV(t, y(t)) ≤ g(||y0||)

holds;
(iii) for any point t > 0 such that (t + Θ)1−qV(t + Θ, x(t + Θ)) < t1−qV(t, x(t)) for Θ ∈

(−min{t, τ}, 0), the RL fractional derivative RL
0 Dq

t V(t, x(t)) exists and the inequality

RL
0 Dq

t V(t, x(t)) =
1

Γ(1− q)
d
dt

t∫
0

(t− s)−qV(s, x(s))ds < 0, (10)

holds where x(t) is a solution of the IVP for RLFrDDE (2) and (3).

Then, the zero solution of (2) and (3) with the zero initial function is stable in time.

Proof. Let ε > 0 be an arbitrary number. According to condition (i), there exists T̃ε > 0
such that inequality (9) holds for t > T̃ε, x ∈ Rn.

Let δ > 0 be such that for ||φ||0 < δ, the inequality g( ||φ||0Γ(q) ) < ε holds.
Consider the solution x(t) = x(t; φ) of the IVP for RLFrDDE (2) and (3) with the initial

function φ : ||φ||0 < δ.
From condition 2(ii) with y(t) ≡ x(t) and y0 = φ(0)

Γ(q) , we get

t1−qV(t, x(t))|t=0+ = lim
t→0+

t1−qV(t, x(t)) ≤ g(
||φ(0)||

Γ(q)
) ≤ g(

||φ||0
Γ(q)

) < ε. (11)

Therefore, there exists δ1 = δ1(ε) > 0 such that V(t, x(t)) < εtq−1 for t < δ1.
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Consider the function H(t) = εtq−1 ∈ C1−q([0, ∞),R+) and limt→∞ H(t) = 0. There-
fore, there exists T̂ε > δ1 such that

H(t) < εa(ε) for t > T̂ε. (12)

Define the function m(t) = V(t, x(t)) for t ≥ 0. From (11), it follows that m ∈
C1−q([0, ∞),R+).

We will prove that
m(t) < H(t), t > 0. (13)

Note that the inequality (13) holds for t ∈ (0, δ1). Assume inequality (13) is not true
for all t > 0. Therefore, there exists a point ξ ≥ δ1 > 0 such that

m(ξ) = H(ξ), and m(t) < H(t), t ∈ (0, ξ). (14)

Therefore, m(t)− H(t) ∈ C1−q([0, ξ],R). According to Proposition 4 with t1 = ξ, the

inequality RL
0 Dq

t

(
m(t)− H(t)

)
|t=ξ ≥ 0 holds. From Proposition 2, we get RL

0 Dq
t tq−1 = 0

and therefore,
RL
0 Dq

t m(t)|t=ξ = RL
0 Dq

t

(
m(t)− H(t)

)
|t=ξ ≥ 0. (15)

Case 1. Let ξ > τ. Then, min{ξ, τ} = τ. From (14), it follows that ξq−1m(ξ) =
ε > tq−1m(t), t ∈ (0, ξ), or (ξ + Θ)q−1m(ξ + Θ) = (ξ + Θ)q−1V(ξ + Θ, x(ξ + Θ)) <
ξq−1m(ξ) = ξq−1V(ξ, x(ξ)) for Θ ∈ (−τ, 0). According to condition 2(iii)

RL
0 Dq

t V(t, x(t))|t=ξ < 0. (16)

The inequality (16) contradicts (15).
Case 2. Let ξ ≤ τ. Then, min{ξ, τ} = ξ. From (14), it follows that ξq−1m(ξ) = ε >

tq−1m(t), t ∈ (0, ξ), or (ξΘ)
q−1m(ξ + Θ) = (ξΘ)

q−1V(ξ + Θ, x(ξ + Θ)) < ξq−1m(ξ) =
ξq−1V(ξ, x(ξ)) for Θ ∈ (−ξ, 0) and the proof is similar to the one of Case 1.

From inequality (13) and condition (i), it follows that

εa(||x(t)||) ≤ V(t, x(t)) = m(t) < H(t) < εa(ε) for t > Tε, (17)

where Tε = max{T̂ε, T̃ε}.
This proves the stability in time of the zero solution.

Remark 7. The main condition in Theorem 1 is condition (iii), which is connected with any solution
of the IVP (2) and (3).

Remark 8. According to Remark 6, the Lyapunov function V(t, y) = t1−qm(t)∑n
i=1 y2

i with
m ∈ C(R+,R+) satisfies condition (ii) with g(s) = m(0)s2. Condition (i) is satisfied with
a(u) = u2 if m(t) ≥ C = const > 0 for t ≥ 0.

Remark 9. Condition (i) is different than the corresponding condition for Lyapunov functions
for differential equations with ordinary derivatives as well as with Caputo fractional differential
equations. This is because of the type of initial condition (see Remark 3).

Theorem 2. Let conditions (H1) and (H2) be satisfied and there exists a function
V ∈ Λ([−τ, ∞),Rn

) such that conditions (i) and (ii) of Theorem 1 hold with a(s) = ksp, k, p > 0,
locally Lipschitz function g ∈ C([0, ∞), [0, ∞)) : g(0) = 0 and

(iii∗) for any point t > 0 such that V(t+Θ, x(t+Θ)) < V(t, x(t)) for Θ ∈ (−min{t, τ}, 0),
the RL fractional derivative RL

0 Dq
t V(t, x(t)) exists and the inequality

RL
0 Dq

t V(t, x(t)) < −cV(t, x(t)), (18)
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holds where c > 0, x(t) is a solution of the IVP for RLFrDDE (2) and (3).
Then, the zero solution of (2) and (3) with the zero initial function is generalized Mittag-Leffler

stable.

Proof. Consider any solution x(t) = x(t; φ) of the IVP for RLFrDDE (2) and (3) with the
initial function φ ∈ C([−τ, 0],Rn

).
From condition (ii) of Theorem 1, similar to inequality (11), we get

t1−qV(t, x(t))|t=0+ ≤ g
( ||φ||0

Γ(q)

)
. (19)

Consider the function H(t) = Γ(q)g( ||φ||0Γ(q) )t
q−1Eq,q(−ctq) ∈ C1−q([0, ∞), (0, ∞)).

Define the function m(t) = V(t, x(t)) for t ≥ 0. From (19), it follows that m ∈
C1−q([0, ∞),R+).

Let ε > 0 be an arbitrary number. We will prove that

m(t) < H(t) + εtq−1, t > 0. (20)

We have t1−qV(t, x(t))|t=0+ ≤ g
(
||φ||0
Γ(q)

)
< g

(
||φ||0
Γ(q)

)
+ ε = t1−q H(t)|t=0+ + ε. There-

fore, there exists δ2 > 0 such that for t ∈ (0, δ2), the inequality V(t, x(t)) ≤ H(t) + εtq−1

holds.
Assume inequality (20) is not true for all t > 0. Therefore, there exists a point

ξ ≥ δ2 > 0 such that

m(ξ) = H(ξ) + εtq−1, and m(t) < H(t) + εtq−1, t ∈ (0, ξ). (21)

Therefore, m(t)− H(t)− εtq−1 ∈ C1−q([0, ξ],R). According to RL
0 Dq

t tq−1 = 0 and

Proposition 4 with t1 = ξ, the inequality RL
0 Dq

t

(
m(t) − H(t)

)
|t=ξ ≥ 0 holds. From

RL
0 Dq

t

(
tq−1Eq,q(−ctq)

)
= −ctq−1Eq,q(−ctq), we have,

RL
0 Dq

t m(t)|t=ξ + cm(ξ) = RL
0 Dq

t m(t)|t=ξ + cH(ξ)

= RL
0 Dq

t m(t)|t=ξ + cg(
||φ||0
Γ(q)

)ξq−1Eq,q(−cξq) = RL
0 Dq

t

(
m(t)− H(t)

)
|t=ξ ≥ 0.

(22)

Case 1. Let ξ > τ. Then, min{ξ, τ} = τ. Therefore, m(ξ + Θ) = V(ξ + Θ, x(ξ + Θ)) <
m(ξ) = V(ξ, x(ξ)) for Θ ∈ (−τ, 0). Let ψ(Θ) = x(ξ −Θ) ∈ C([−τ, 0],Rn

), Θ ∈ [−τ, 0].
Then, V(ξ + Θ, ψ(Θ)) < V(ξ, ψ(0)) for Θ ∈ [−τ, 0) and, according to condition (iii∗),

RL
0 DqV(ξ, x(ξ)) < −cV(t, x(t)). (23)

The inequality (23) contradicts (22).
Case 2. Let ξ ≤ τ. Then, min{ξ, τ} = ξ and V(ξ + Θ, x(ξ + Θ)) < V(ξ, x(ξ)) for

Θ ∈ (−ξ, 0) and the proof is similar to the one of Case 1.
Since ε > 0 is an arbitrary number from inequality (20), it follows that

m(t) ≤ H(t), t > 0. (24)

Now, let ε > 0. According to condition (i), there exists Tε > 0 such that ( 1
ε )

pk||x(t)||p ≤
V(t, x(t)) for t ≥ Tε. Then, from inequality (24), it follows that

(
1
ε
)pk||x(t)||p ≤ V(t, x(t)) = m(t) < Γ(q)g(

||φ||0
Γ(q)

)tq−1Eq,q(−ctq) for t ≥ Tε. (25)
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This proves the generalized Mittag-Leffler stability in time of the zero solution with

b = 1
p , γ = 1− q, λ = c and h(s) =

g( s
Γ(q) )

k (see Definition 1).

Corollary 1. If all the conditions of Theorem 2 are satisfied, then the zero solution of (2) and (3) is
asymptotically stable.

4.3. Stability by the Dini Fractional Derivative of Lyapunov Functions

We will study stability by the application of the defined above Dini fractional deriva-
tive of Lyapunov functions among the studied delay fractional differential equations.

Initially, we will prove a comparison result for Lyapunov functions.

Lemma 2. Assume:

1. The function x(t) = x(t; φ) ∈ C1−q([0, T], ∆) is a solution of the IVP for RLFrDDE (2)
and (3) with φ ∈ C([−τ, 0], ∆) where 0 < T ≤ ∞.

2. The function V ∈ Λ([−τ, T], ∆), ∆ ⊂ Rn, is such that :

(i) There exists an increasing function g ∈ C(R+,R+) such that the inequality

t1−qV(t, x(t))|t=0+ = limt→0+ t1−qV(t, x(t)) ≤ g( ||φ(0)||Γ(q) ) ≤ g(||φ||0) holds;

(ii) for any point t > 0 such that V(t+Θ, x(t+Θ)) < V(t, x(t)) for Θ ∈ (−min{t, τ}, 0),
the inequality

D+
(2)V(t, ψ(0), ψ) < 0 (26)

holds where D+
(2)V(t, ψ(0), ψ) is the Dini fractional derivative defined by (5) and

ψ(Θ) = x(t + Θ), Θ ∈ [−τ, 0].

Then, V(t, x(t; φ)) ≤ tq−1g(||φ||0) for t ∈ [0, T].

Remark 10. Let us, for simplicity, again consider the RL fractional differential equation without
any delay RL

0 Dq
t x(t) = −x(t) for t > 0, RL

0 I1−q
t x(t)|t=0+ = c with a solution x(t) =

ctq−1Eq,q(−tq) (see Example 1). If we consider the quadratic Lyapunov function V(x) = x2, then
D+
(2)V(t, ψ(0), ψ) ≤ 0 and (ctq−1Eq,q(−tq))2 ≤ c2 is not satisfied. However, if V(x) = t1−qx2

then D+
(2)V(t, ψ(0), ψ) ≤ 0 and t1−q(ctq−1Eq,q(−tq))2 ≤ c2tq−1 is satisfied. This example again

illustrates the changes in the applied Lyapunov functions and their conditions in the application of
RL fractional derivatives comparatively with the application in Caputo fractional derivatives.

Remark 11. Let V(t, x) = t1−qm(t)∑n
i=1 x2

i , where m ∈ C([0, T]), T ≤ ∞, and x(t) be a
solution of (2) and (3). Then, the following

t1−qV(t, x(t))|t=0+ = lim
t→0+

m(t)t2−2q
n

∑
i=1

x2
i (t) = m(0)

n

∑
i=1

φi(0)2

Γ2(q)

holds, i.e., t1−qV(t, x(t))|t=0+ ≤ m(0)
Γ2(q) (||φ||0)

2 < ∞ and condition 2 (i) of Lemma 2 is satisfied

with g(s) = m(0)
Γ2(q) s2.

Proof. Define the function m(t) = V(t, x(t)) for t ∈ (0, T]. According to condition 2 (i),
m ∈ C1−q([0, T],R).

Let H(t) = m(t)− tq−1(B + ε) where B = g(||φ||0) ≥ 0 and ε > 0 be an arbitrary
number. We will prove

H(t) < 0, t ∈ [0, T] (27)

For t = 0 from condition 2(i), we get t1−q H(t)|t=0 = t1−qV(t, x(t))|t=0 − (B + ε) ≤
g(||φ||0)− B− ε < 0, i.e., the inequality (27) is true.
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Assume (27) is not true. Therefore, there exist t∗ ∈ (0, T] such that

H(t) < 0, t ∈ [0, t∗), H(t∗) = 0. (28)

From Proposition 4, we have the inequality RL
0 Dq

t H(t)|t=t∗ ≥ 0. Then, applying
Proposition 2 and RL

0 Dq
t tq−1 = 0, we obtain

RL
0 Dq

t H(t)|t=t∗ =
GL
0 Dq

t m(t)|t=t∗ =
RL
0 Dq

t m(t)|t=t∗ ≥ 0. (29)

For any t ∈ (0, t∗] and h > 0, we let

S(x(t), h) =
[ t

h ]

∑
r=1

(−1)r+1
qCrx(t− rh).

From Remark 1 and Equation (2), it follows that the function x(t) satisfies for t ∈ [t0, t∗],

the equalities RL
0 Dq

t x(t) = GL
0 Dq

t x(t) = lim suph→0+
1
hq

[
x(t)− S(x(t), h)

]
= f (t, xt) and

lim sup
h→0+

1
hq

[
x(t)− S(x(t), h)

]
= f (t, xt).

Therefore,

S(x(t), h) = x(t)− hq f (t, xt)−Λ(hq)

or

x(t)− hq f (t, xt) = S(x(t), h) + Λ(hq) (30)

with ||Λ(hq)||
hq → 0 as h→ 0. Then, for any t ∈ [0, t∗] we obtain

m(t)−
[ t

h ]

∑
r=1

(−1)r+1
qCrm(t− rh)

=

{
V(t, x(t))−

[ t
h ]

∑
r=1

(−1)r+1
qCr

[
V(t− rh, x(t)− hq f (t, xt)

]}

+
[ t

h ]

∑
r=1

(−1)r+1
qCr

{[
V(t− rh, S(x(t), h) + Λ(hq))

]
−
[
V(t− rh, x(t− rh))

]}
.

(31)
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Since V is locally Lipschitzian in its second argument with a Lipschitz constant L > 0„
we obtain

[ t
h ]

∑
r=1

(−1)r+1
qCr

{
V(t− rh, S(x(t), h) + Λ(hq))−V(t− rh, x(t− rh))

}

≤ L
∣∣∣∣∣∣ [ t

h ]

∑
r=1

(−1)r+1
qCr

(
S(x(t), h) + Λ(hq)− (x(t− rh))

)∣∣∣∣∣∣
≤ L

∣∣∣∣∣∣ [ t−t0
h ]

∑
r=1

(−1)r+1
qCr

[ t
h ]

∑
j=1

(−1)j+1
qCjx(t− jh)

−
[ t

h ]

∑
r=1

(−1)r+1
qCrx(t− rh)

∣∣∣∣∣∣+ L||Λ(hq)||
∣∣∣ [ t−t0

h ]

∑
r=1

(−1)r+1
qCr

∣∣∣
= L

∣∣∣∣∣∣( [ t
h ]

∑
r=0

(−1)r+1
qCr

)( [ t
h ]

∑
j=1

(−1)j+1
qCjx(t− jh)

)∣∣∣∣∣∣
+ L||Λ(hq)||

∣∣∣ [ t
h ]

∑
r=1

(−1)r+1
qCr

∣∣∣.

(32)

Substitute (32) in (31), divide both sides by hq, take the limit as h→ 0+, use ∑∞
r=0 qCrzr =

(1 + z)q if |z| ≤ 1 and we obtain for any t ∈ (0, t∗] the inequality

GL
0 Dq

t m(t) ≤ lim
h→0+

1
hq

{
V(t, x(t))

−
[ t

h ]

∑
r=1

(−1)r+1
qCr

[
V(t− rh, x(t)− hq f (t, x∗(t))

]}

+ L lim
h→0+

||Λ(hq)||
hq lim

h→0+

∣∣∣ [ t
h ]

∑
r=1

(−1)r+1
qCr

∣∣∣
+ L lim

h→0+
sup

∣∣∣ [ t
h ]

∑
r=1

(−1)r+1
qCr

∣∣∣ ∣∣∣∣∣∣ 1
hq

[ t
h ]

∑
j=1

qCjx(t− jh)
∣∣∣∣∣∣

≤ lim
h→0+

1
hq

{
V(t, x(t))−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x(t)− hq f (t, x∗(t)))

}
.

(33)

Let t = t∗. Define the function ψ(Θ) = x(t∗ + Θ), Θ ∈ [−τ, 0]. From the choice
of the point t∗, it follows that V(t∗ + Θ, x(t∗ + Θ)) ≤ V(t∗, x(t∗)), Θ ∈ [−τ, 0] and from
inequalities (26) and (33) for t = t∗, we get

GL
0 Dq

t m(t)|t=t∗

≤ lim
h→0+

1
h

{
V(t∗, ψ(0))−

[ t∗
h ]

∑
r=1

(−1)r+1
qCrV(t∗ − rh, ψ(0)− hq f (t∗, ψ))

}
= D+

(2)V(t∗, ψ(0), ψ) < 0.

(34)

Now (34) contradicts (29). Therefore, inequality (27) holds for an arbitrary ε > 0. Thus,
the claim in our Lemma is true.

Theorem 3. Let conditions (H1) and (H2) be satisfied and there exists a function V ∈ Λ(R+,Rn
)

such that V(t, 0) = 0, t ≥ 0 and
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(i) for any ε > 0, there exists Tε > 0 such that

εa(||x||) ≤ V(t, x) for t > Tε, x ∈ Rn, (35)

where a ∈ K;
(ii) there exists an increasing function g ∈ C(R+,R+) such that for any function

y ∈ C1−q([0, ∞),Rn
) : t1−qy(t)|t=0+ = y0 the inequality

t1−qV(t, y(t))|t=0+ = lim
t→0+

t1−qV(t, y(t)) ≤ g(||y0||)

holds;
(iii) for any function ψ ∈ C([−τ, 0],Rn such that if for a point t we have V(t + Θ, ψ(Θ)) <

V(t, ψ(0)) for Θ ∈ [−τ, 0), then the inequality

D+
(2)V(t, ψ(0), ψ) < 0 (36)

holds.

Then, the zero solution of (2) with the zero initial function is stable.

Proof. Let ε > 0 be a positive number. According to condition (i), there exists T̃ε > 0 such
that inequality (9) holds for t > T̃ε, x ∈ Rn.

There exists a positive number δ = δ(ε) such that g(u) <
√

a(ε) for u ∈ R+ : u < δ.
Choose the function φ ∈ C([−τ, 0],Rn

) such that ||φ||0 < δ. Consider the solution x(t) =
x(t; φ) of the IVP for RLFrDDE (2) and (3) with initial function φ and define the function
m(t) = V(t, x(t)) for t ≥ 0. From condition 2(ii), it follows that m ∈ C1−q([0, ∞),R+).

Since limt→∞ tq−1 = 0, there exists T̂ε > 0 such that tq−1 < ε
√

a(ε) for t > T̂ε.
Therefore,

tq−1g(||φ||0) < εa(ε) for t > T̂ε. (37)

According to Lemma 2 with T = ∞, φ(0)
Γ(q) = y0, and ψ(Θ) ≡ x(t + Θ), Θ ∈ [−τ, 0],,

we obtain the following inequality

V(t, x(t)) ≤ tq−1g(||φ||0), t ≥ 0. (38)

From inequalities (37), (38) and condition (i), it follows that εa(||x(t)||) ≤ V(t, x(t)) ≤
tq−1g(||φ||0) < εa(ε) for t > Tε with Tε = max{T̂ε, T̃ε}.

This proves the stability in time of the zero solution.

Example 3. Consider the scalar RL fractional differential equation

RL
0 Dq

t x(t) = f (t, x(t), x(t− 1)) for t > 0, (39)

with initial conditions

x(t) = φ(t), for t ∈ [−1, 0],

lim
t→0+

[t1−qx(t)] =
φ(0)
Γ(q)

,
(40)

where x ∈ R, φ ∈ C([−1, 0],R) and f : R+ ×R×R→ R is defined by

f (t, x, y) =

−1.6x Γ(2−q)
Γ(2−2q) t1−2q if 0 < t ≤ 1, x, y ∈ R

−1.6x Γ(2−q)
Γ(2−2q) t1−2q + t−q(t− 1)1−qy Γ(2−q)

Γ(2−2q) if t > 1, x, y ∈ R.
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Consider the Lyapunov function V(t, y) = t1−qy2. According to Remarks 8, this function
satisfies condition (i) of Theorem 3 with a(u) = u2, u ∈ R+ and Tε = 1−q

√
ε. It also satisfies

condition (ii) with g(u) = u2, u ∈ R+.
Now, let the function ψ ∈ C([−1, 0],Rn

) and the point t > 0 be such that V(t+Θ, ψ(Θ)) <
V(t, ψ(0)) for Θ ∈ (−min{t, 1}, 0), i.e., (t− 1)1−qψ(−1)2 < t1−qψ(0)2.

For t > 1, apply 2φ(0)(t − 1)1−qφ(−1) ≤ (t − 1)1−qφ2(0) + (t − 1)1−qφ2(−1) <
2t1−qφ2(0) and Example 2 (Special case 1) and obtain

D+
(2)V(t, φ(0), φ) = t1−q

(
2φ(0) f (t, φ(0), φ(−1)) + (φ(0))2 Γ(2− q)

Γ(2− 2q)
t−q
)

= t1−q
(

2φ(0)(t− 1)1−qφ(−1)
Γ(2− q)t−q

t1−qΓ(2− 2q)
− 3.2φ2(0)

Γ(2− q)
Γ(2− 2q)

t−q + (φ(0))2 Γ(2− q)
Γ(2− 2q)

t−q
)

≤ t1−q
(

2t1−qφ2(0)
Γ(2− q)t−q

t1−qΓ(2− 2q)
− 3.2φ2(0)

Γ(2− q)
Γ(2− 2q)

t−q) + φ2(0)
Γ(2− q)

Γ(2− 2q)
t−q
)

= −0.2φ2(0)
Γ(2− q)
Γ(2− 2q)

t−q) < 0.

(41)

Let t ≤ 1. Then, we get

D+
(2)V(t, φ(0), φ) = t1−q

(
2φ(0) f (t, φ(0), φ(−1)) + (φ(0))2 Γ(2− q)

Γ(2− 2q)
t−q
)

= t1−q
(
− 3φ2(0)

Γ(2− q)
Γ(2− 2q)

t−q + (φ(0))2 Γ(2− q)
Γ(2− 2q)

t−q
)
< 0.

(42)

Therefore, all the conditions of Theorem 3 are satisfied, and thus the zero solution of (39)
and (40) is stable in time.

5. Conclusions

The nonlinear RL fractional differential equation is studied. The initial value problem
is a subject that remains quite up-to-date (see, for example, the books [5,6]). Note the
initial condition imposed to study fractional kinetic equations with RL fractional derivative.
This point is critical in many physical situations, especially in astrophysical problems and
the problem of anomalous subdiffusion ([23]). A good overview of the physical interpre-
tation of initial conditions for fractional differential equations with Riemann–Liouville
fractional derivatives was most clearly formulated by Diethelm [19] and it is detailed
discussed in [7], where it is shown that initial conditions for RL fractional differential
equations have physical meaning, and that the corresponding quantities can be obtained
from measurements.

In this paper, some new definition for stability excluding a small interval around zero
is defined and studied. These types of stability are called stability in time and generalize
Mittag-Leffler stability in time for RL fractional differential equations. The definitions are
deeply connected with the singularity at the initial time point. The stability properties
of the zero solution are studied by Lyapunov functions. Two types of derivatives of
Lyapunov functions: the RL fractional derivative when the argument of the Lyapunov
function is a solution of the studied problem and the Dini fractional derivative among the
studied problem.
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