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Abstract: For a graph G, its k-rainbow independent domination number, written as 7, (G), is defined
as the cardinality of a minimum set consisting of k vertex-disjoint independent sets Vi, V>, ..., Vj
such that every vertex in Vy = V(G) \ (UX_, V;) has a neighbor in V; for all i € {1,2,...,k}. This
domination invariant was proposed by Kraner éumenjak, Rall and Tepeh (in Applied Mathematics
and Computation 333(15), 2018: 353-361), which aims to compute the independent domination
number of GOK, (the generalized prism) via studying the problem of integer labeling on G. They
proved a Nordhaus-Gaddum-type theorem: 5 < 7,12 (G) + Y1i2(G) < n + 3 for any n-order graph G
with n > 3, in which G denotes the complement of G. This work improves their result and shows

that if G % Cs, then 5 < 7112(G) + 11i2(G) < n+ 2.
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1. Introduction

Throughout the paper, only simple graphs are considered. We refer to [1] for undefined
notations. For a graph G, the edge set and vertex set of G are denoted by E(G) and V(G),
respectively. For any v1, v, € V(G), they are adjacent in G if v1 and v; are the endpoints of
an identical edge of G. A vertex w € V(G) is adjacent to a set W C V(G) in G if W contains
a vertex w' s.t. ww' € E(G). Ng(w) = {vjvw € E(G)} is called the open neighborhood of
w and Ng[w] = Ng(w) U {w} is the closed neighborhood of w. dg(w) = |Ng(w)| denotes
the degree of w in G and A(G) = max{dg(w)|w € V(G)}. A vertex that has degree ¢
and at least ¢ is called an /-vertex and ¢T-vertex, respectively. For any W C V(G), let
NG (W) = Upew No(w) \ W and Ng[W] = Ng(W) UW. We say that W dominates a set W’
if W' C Ng[W]. Moreover, we use the notation G — W to denote the subgraph of G by
deleting vertices in W and their incident edges in G, and G[W] = G — (V(G) \ W) the
subgraph of G induced by W. The f-order complete graph and the /-length cycle are
denoted by K, and Cy, respectively. As usual, for any two natural numbers p, g with p < g,
[p,q] represents {p,p+1,...,q}.

Given a graph G and a subset W C V(G), we call W a dominating set (abbreviated as
DS) of G if W dominates V(G). An independent set (abbreviated as IS) of a graph is a set of
vertices, no two of which are adjacent in the graph. If a DS W of G is an IS, then W is called
an independent dominating set (IDS for short) of G. The independent domination number of G,
denoted by i(G), is the cardinality of a minimum IDS of G. Domination and independent
domination in graphs have always attracted extensive attention [2,3] and many variants of
domination [4] have been introduced increasingly, for the applications in diverse fields,
such as electrical networks, computational biology, and land surveying. Recent studies
on these variations include (total) roman domination [5,6], strong roman domination [7],
semitotal domination [8,9], relating domination [10], just to name a few.

Let GUH be the Cartesian product of G and H. In order to reduce the problem of
determining i(GOK} ) into the problem of integer labeling on G, Kraner Sumenjak et al. [11]
proposed a new variation of domination, called k-rainbow independent dominating function
of a graph G (kRiDF for short), which is a function f from V(G) to [0, k], s.t., for each
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i € [1,k], V;is an IS and every vertex v with f(v) = 0 is adjacent to a vertex u with f(u) = i.
Alternatively, a kRiDF f of G may be viewed as an ordered partition (Vp, V3, ..., V) such
that for each i € [1,k], V;isanIS and Ng(x) N'V; # @ for every x € Vp, where V;, j € [0,k],
denotes the set of vertices assigned value j under f. The weight w(f) of a kRiDF f is defined
as the number of nonzero vertices, i.e., w(f) = |V(G)| — |Vo|. The k-rainbow independent
domination number of G, denoted by 7, (G), is the minimum weight of a kRiDF of G. From
the definition, we have 7,1 (G) = i(G). A 7, (G)-function represents a kRiDF of G which
has weight 7, (G).

Let G be a graph and H a subgraph of G. Suppose that g is a kRiDF of H. We say
that a kRiDF f of G is extended from g if f(v) = g(v) for every v € V(H). To prove
that a graph G has a kRiDF, we will first find a k’'RiDF g of a subgraph G’ of G, k' < k,
and then extend g to a kRiDF f of G. By using this approach, we describe the structure
characterization of graphs G with 7,i2(G) = |V(G)| — 1 (Section 2), and then obtain an
improved Nordhaus-Gaddum-type theorem with regard to 7> (Section 3).

2. Structure Characterization of Graphs G s.t., 1,12(G) = |V(G)| — 1

To get the improved Nordhaus-Gaddum-type theorem in terms of 7, we have
to characterize the graphs G s.t., 11i2(G) = |V(G)| — 1. For this, we need the following
special graphs.

A star S, n > 1, is a complete bipartite graph G[X, Y] with | X|=1 and |Y| = n, where
the vertex in X is called the center of S, and the vertices in Y are leaves of S,. Let S;/ be the
graph obtained from S, by adding a single edge connecting an arbitrary pair of leaves of
Sn [11]. A double star [12] is defined as the union of two vertex-disjoint stars with an edge
connecting their centers. Specifically, for two integers n, m such that n > m > 0 the double
star, denoted by S(n,m), is the graph with vertex set {ug, u1,...,uu,vo,v1,...,0m} and
edge set {ugvo, uou;, vov;|i € [1,n],j € [1,m]}, where ugvy is called the bridge of S(n,m)
and the subgraphs induced by {u;]i € [0,n]} and {v;|j € [0,m]} are called the n-star at ug
and m-star at vy, respectively. Observe that S(n,m) is defined on the premise of n > m.
For mathematical convenience, we denote a double star S(n,m) as a vertex-sequence
VmUp—1 -« - VoUQUT - . . Up.

We start with a known result, which characterizes graphs G with i (G) = n. For a
fixed graph G, its complement is written as G.

Lemma 1 ([11]). Let G be a graph of order n. Then,

2( n iff G only contains components
isomorphic to Ky or Kp. And, if y1ip(G) = n, then vip(G

G) =
)=2.

The following conclusion is simple but will be used throughout this paper.

Lemma 2. Let H be a subgraph of a fixed graph G and g = (V, V4, ..., Vi) be a 7y (H )-function.
Then g can be extended to a kRiDF of G with weight at most |V (G)| — |Vp|.

Proof. Let V(G) \ V(H) = {x1,...,x;}. We will deal with these vertices in the order of
X1,...,%; by the following rule: for each x;, i € [1,¢], let j € [1,k| be the smallest one
such that x; is not adjacent to V; in G. If such j does not exist, we update Vo by Vo U {x;};
otherwise we update Vj by ViU {x;}. After the last one, i.e., x; is handled, we obtain a kRiDF
of G. Obviously, the weight of the resulting kRiDF of G is not more than |V (G)| — |Vp|. O

The following theorem clarifies the structure of connected graphs G with 7,i2(G) =
IV(G)| —1.

Theorem 1. Let G be a connected graph with order n > 3. Then, vi2(G) = n —1iff G is
isomorphic to one among S, _1, S S(n—3,1) (n > 4) and Cs.

+
n—1/

Proof. Let f = (Vp, V4, V») be an arbitrary ,i>(G)-function. Observe that Vj does not
contain any 1-vertex; one can readily derive that v,jp(G) = n — 1 when G is isomorphic
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toone of S,,_1, S;ﬁl, S(n —3,1) and Cs. Conversely, suppose that 9,(G) = n — 1, that
is, |Vp| = 1. By Lemma 2, G contains no subgraph H that has a 2RiDF of weight at most
|V(H)| — 2. Since v1i2(Csq) =2 = |V(Cyq)| — 2 and each Cj for k > 6 contains a subgraph
isomorphic to a 6-order path Py with 7,i2(Ps) = 4 = |V(DPs)| — 2, G does not contain any
subgraph isomorphic to C4 or Cy for k > 6. This also shows that every two vertices of G
share at most one neighbor in G.

Observation 1. If G contains a 31 -vertex x, then every 2" -vertex of G belongs to Ng(x).
Suppose to the contrary that G contains a 2" -vertex y such that y € Ng(x). Let {x1,x2, x3} C
Ng(x) and {y1,¥2} C Ng(y). Observe that [{x1,x2,x3} N {y1,y2}| < 1 and |Ng(y;) N
{X],Xz, X3}| < 1fori e [1,2],‘ we WLOG assume that Y2 ¢ {xl, X, X3}, YaXxo ¢ E(G)
and ypx3 ¢ E(G). Let fbe: f(x) = f(y) = 0,f(x2) = 1, f(x3) = 2. Notice that either
y1 = xjory1x; ¢ E(G) for some j € [2,3]; we further let f(y1) = f(x;) and f(y2) = [1,2] \
{f(y1)}. Clearly, f is a 2RiDF of G[{x, x2, x3,, 1, Y2 }] of weight [{x, x2,x3,y,y1,y2}| — 2,
a contradiction.

Observation 2. G contains at most one 3*-vertex. Suppose that G has two distinct 37 -
vertices, say x and y. By Observation 1, xy € E(G).Let{y, x1,x2} € Ng(x)and {x,y1,y2} C
Ng(y). Since G contains no subgraph isomorphic to Cy, |{x1, 22} N {y1,y2}| < 1 and there
are no edges between {x1,x,} and {y1,y2}. Assume that x, ¢ {y1,y2} and yo & {x1,x2}.
Then, the function f: {x,x1,x2,¥,y1,¥2} — {0,1,2} such that f(x) = f(y) =0, f(x2) =
f(y2) =2 and f(x1) = f(y1) = 1, is a 2RiDF of G[{x,y, x1,x2,y1,y2}] of weight [{x,y, x1,
X2,Y1,Y2}| — 2, a contradiction.

Observation 3. If G contains a 3*-vertex x, Ng(x) has not more than two 2-vertices;
in particular, when Ng(x) contains two 2-vertices, in G these two 2-vertices are adjacent. If
not, suppose that Ng(x) contains three 2-vertices, say x1, X2, x3. We WLOG assume that
x3 ¢ Ng({x1,x2}) and let N (x3) = {x,y3}. Let Ng(x1) = {x,y1} (possibly y; = x5, but
Y1 # y3). By Observation 1, dg(y3) = 1, i.e, y1y3 € E(G). Let f be: f(x) = 1,f(x) =
f(x3) =0, f(y1) = f(y3) = 2. Obviously, f is a 2RiDF of G[{x, x1,y1, x3,y3}] of weight
I{x,x1,y1,x3,y3}| — 2, a contradiction. Now, suppose that N (x) contains two 2-vertices,
say x1,xp. If x1xp ¢ E(G),let Ng(x;) = {x,y;},i € [1,2]. Clearly, y; # y2 and y1y2 ¢ E(G).
Let f be: f(x) = 1,f(x1) = f(x2) = 0,f(y1) = f(y2) = 2. Then, f is a 2RiDF of
G[{x,x1,y1, x2,y2}] of weight |{x, x1, X2, 1,2 }| — 2, a contradiction.

By the above three observations and the assumption that G is connected, we see that
if G contains a 3" -vertex x, then V(G) \ {x} contains either only 1-vertices (G = S,,_1), or
one 2-vertex and n — 2 1-vertices (G = S(n — 3, 1)), or two adjacent 2-vertices and n — 3
1-vertices (G = S ,);if A(G) = 2, then G is isomorphic to one of S, 55,5(1,1) and C5. [

The theorem below follows from Theorem 1, Lemma 1, and 7,i(G) = Zi'(:l Yri2(Gi),
where Gy, ..., Gy are the components of G.

Theorem 2. Given a graph G with order n > 3, 1,i2(G) = n — 1 iff G has one component Gy
isomorphic to one among S, _1 (nq > 3), Srfl—l (n1 > 3), S(n; —3,1) (ny > 4) and Cs, and
other components are isomorphic to Ky or Ky, where ny = |V(Gy)|.

3. An Improved Nordhaus-Gaddum Type Theorem for i (G)

This section is devoted to achieve an improved Nordhaus-Gaddum type theorem
by showing that ¥,i2(G) + 71i2(G) < n + 2 for every graph G 2 Cs of order n > 2, which
improves a result obtained by Kraner Sumenjak et al., et al [11]. We first present some

fundamental lemmas.
Lemma 3. For an n-order graph G withn > 3,ifGis S, _1, S}‘Ll or S(n—3,1), then 1,:p(G) < 3.

Proof. IfG=S,,_jorG = S:Ll, let V(G) = {vg, v1,...,v,_1} where vy is the center and

v1v; € E(G) when G = S .. Define a function f such that f(v1) = 1, f(vg) = f(v2) =2
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and f(v) = 0 forevery v € V(G) \ {vo,v1,v2}. Since every vertex in V(G) \ {vg, v1,v2} is
a neighbor of v; and also v, in G, it follows that f is a 2RiDF of G of weight 3.

If G = S(n—3,1), thenn > 4. Let V(G) = {vy1, v, g, 1, ..., Uy—3}, where vyug is
the bridge of G and E(G) = {vgvy, vouo, uou;|i € [1,n —3]}. If n = 4, then both G and G
are isomorphic to Py, the path of length 3, and the conclusion holds. If n > 5, then the

function f from V(G) to [0,2] such that f(uz) = 2, f(u1) = f(ug) = 1, and f(v) = 0 for

every v € V(G) \ {up, u1, up} is a 2RiDF of G with weight 3. O

Lemma 4. For a graph n-order G, if G 2 Cs and v,i2(G) = 4, then 11i2(G) < n —2.

Proof. Clearly, n > 4. Whenn = 4, 7,i2(G) = 4 implies that 1,2(G) = 2 = n — 2 by

Lemma 1. Therefore, we assume that n > 5. Suppose that 7,2 (G) > n — 1. If 1,12(G) = n,
by Lemma 1 we have 7,i(G) = 2, a contradiction. Therefore, 7»(G) = n — 1. By
Theorem 2 G has one component isomorphic to Sy, , S,Jfl, S(ny,1) or Cs whereny > 2,np > 1,
and all of the other components of G are isomorphic to Kj or Kp.

If G contains two vertices u and v s.t. Nz({u,v}) = @, then in G both u and v
are adjacent to every vertex in V(G) \ {u#,v}. We can obtain a 2RiDF of G by assigning
1 to u, 2 to v, and 0 to the remained vertices of G. This indicates that 7.;»(G) < 2 and
a contradiction. Therefore, G contains no K, components and contains at most one K;
component, implying that G contains at most two components. If G contains only one
component, it follows that G is S,,_1, S} | or S(n —3,1) (since G ¥ Cs). By Lemma 3
7i2(G) < 3 and a contradiction. Therefore, G has two components, denoted by G; and
Gy, where G; = Kj and G, is isomorphic to S,_», S;izr S(n—4,1) or Cs. Let V(Gy) = {u}
and define a function f as follows: let f(u) = 1; f(vg) = f(v') = 2 when Gy = S,
or G, & S:_z (where vy is the center of G, and ¢’ is a 1-vertex of G, by the assumption
of n > 5), f(vg) = f(up) = 2 when G, = S(n —4,1) (where vguy is the bridge of Gy),
or f(u1) = f(up) = 2 when G, = Cs (Where C5 = ujupuzugusi); and all of the other
remained vertices are assigned value 0. Clearly, all vertices with value 0 are adjacent to u
and a vertex with value 2. Hence, f is a 2RiDF of G, which has weight 3, a contradiction. [

Lemma 5. Suppose that G is an n-order graph satisfying that vyi2(G) > 4 and 712 (G)+7:i2(G)
=n+3. Let f = (Vo, V1, Va) be an arbitrary i (G)-function. We have

(1) If |Vo| > 2, then for any u,v € V, there does not exist uy, up, vy, vy such that {uq,u} €
Nz(u), {v1,v2} € Ng(v) and uv; ¢ E(G) fori € [1,2], where uy # up,v1 # vy but
possibly u; = vj;

(2)  Ifu,v are two arbitrary different vertices of Vy, then |[Ng({u,v})| > 3;

(3) |Vi| >2forie]0,2]

Proof. For (1), if the conclusion is false, then let gbe: ¢(u) = g(v) = 0and g(u;) = g(v;) =i,
i € [1,2]. Then, g is a 2RiDF of G[{u, v, uq,v1, us, v }| with weight |{u, v, u1, vy, us, v }| — 2.
Since V; and V, are cliques in G, V; contains at most two vertices not assigned 0 under
every 2RiDF of G for i € [1,2]. Hence, we can extend g to a 2RiDF of G with weight at
most |Vo| — 2+ 4 = |Vy| + 2, according to Lemma 2. This shows that 7,i(G) < [Vp| + 2
and Y1i2(G)+711i2(G) < |[Vi| + |Va| + |Vo| +2 = n + 2, a contradiction.

For (2), if [Ng({u,v})| < 2, let f be: f(v) = 2,f(u) = 1, and f(x) = 0 for x €
V(G) \ Ng[{u,v}]. Itis clear that f is a 2RiDF of G[V(G) \ Ng({u,v})] with weight 2.
According to Lemma 2, we can extend f to a 2RiDF of G with weight at most 4 (since
INz({u,v})| < 2). Thus, 71i2(G) = 4 and by Lemma 4 74i»(G) < n — 2, a contradiction.

For (3),if |Vp| = 1, then 742(G) = n — 1. By an analogous argument as that in Lemma 4,
we can derive that 7,2 (G) + 71:12(G) < 1 + 2, a contradiction. In the following, we prove
that | V7| > 2 (the proof of |V;| > 2 is similar to that of |V,| > 2). Suppose that |V;| = 1 and
let V; = {u}. Then, every vertex of Vj is adjacent to u in G, i.e., u is not adjacent to V; in G.
By Lemma 4 we assume that |V;| + |V,| > 5. If Vj contains a vertex v with two neighbors

v1,02in G, then u ¢ {v1,v2}. Let g be: g(v) = 0,g(v1) = 1,g(v2) = 2. Since V; is a clique
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in G, we can extend g to a 2RiDF of G with weight at most | V| — 1+ 3 = |Vy| + 2, according
to Lemma 2. This shows that 7, (G) < |Vy| + 2 and hence 712(G) + 712(G) < n+2,a
contradiction. Therefore, every vertex in V has degree at most 1 in G, which implies
that [Nz({x,y})| < 2 for any two vertices x € Vp,y € Vj (observe that |Vy| > 2). This
contradicts (2). O

Lemma 6. Let G be an n-order graph, n > 4. For any u € V(G), if H = G — u, the resulting
graph by deleting u and its incident edges from G, is connected and yyip(H) = |V (H)| — 1, then
G has a 2RiDF f satisfying f(u) = 1and f(v) = 0 for some v € V(H).

Proof. Clearly, |V(H)| > 3. If u has no neighbor in V(H), then let f be: f(v) = g(v)
for every v € V(H), and f(u) = 1, where g is a 72 (H)-function of H. Since 1,i2(H) =
|V(H)| — 1, there exists v € V(H) satisfying f(v) = g(v) = 0. If u has a neighbor
uy € V(H), there exists a up € V(H) s.t. ujup, € E(H) since H is connected. Let f be:
f(uy) =0, f(u) =1, f(up) = 2. Then, we can extend f to a desired 2RiDF of G according
toLemma 2. O

Now, we turn to the proof of the main result.

Theorem 3. Suppose that G is an n-order graph, n > 2. If G % Cs, then 71p(G) + 11i2(G) <
n+2.

Proof. We are sufficient to handle the situation n> 5 since cases of n < 4 are trivial. Let
fo = (Vo, V1, V) be a vi2 (G)-function such that G[Vj] contains the maximum number of

components isomorphic to K;. Suppose to the contrary that v,i2(G) + V1i2(G) > n+ 2.

Then, 11i2(G) + Y1i2(G) = n + 3 since 12 (G) + 11i2(G) < n+ 3 [11], that is,

Ti2(G) = [Vo| +3 1)

Formula (1) indicates that every 2RiDF of G has weight at least |Vp| + 3. We will
complete our proof by constructing a 2RiDF of G of weight at most |Vy| + 2 or a 2RiDF of
G of weight less than |V;| + | V|

If [V1 U V3| = 2, then 7,2(G) + Y1i2(G) < 2+ 1, a contradiction; if |V; U V3| = 3, then
1i2(G) = n and by Lemma 1 9, (G) = 2, also a contradiction. Therefore, by Lemma 4,

|Vi| + V2| > 5 ()

_ Then, by Lemma 5 (3) we have |V;| > 2fori € [0,2]. Inaddition, because, by definition,
G[Vi]is a clique, i € [1,2], it follows that for every 2RiDF gy = (Vj, V{, V;) of G,

[(ViuWvy) NV <2,i€1,2] 3)

Therefore, by Lemma 2 we can extend every 7,i2(G[Vp])-function to a 2RiDF of G with
weight at most 1,12 (G[Vy]) +4, i.e., 712 (G[Vo]) > |Vo| — 1 by Formula (1).

Claim 1. Denote by ¢ the number of vertices in Vi U Vy, which have degree |V| + |Vo| — 1
in GIVi U Vy|. Then, £ < 1 —{" where I = |Vg| — 11i2(G[Vo]) < 1. If not, either / is at
least 2 or both ¢ and ¢’ are equal to 1. Suppose that £ > 2 and take two vertices v1,0;
€ (V1 U V,) such that they are adjacent to all vertices of (V4 U V,) \ {u,v} in G. Let ¢’
be: ¢'(v1) = 1,¢'(v2) = 2,¢'(x) = 0forx € VUV, \ {vy,0,}. Clearly, ¢’ is a 2RiDF of
G[V; U V5] and by Lemma 2 we can extend ¢’ to a 2RiDF of G, which has weight at most
|Vo| + 2, a contradiction. Now, suppose that £ = ¢/ = 1. Then, 7,i2(G[Vo]) = |Vo| — 1,
which indicates that G[Vy] contains a component H’ s.t. 1,1 (H') = |V(H')| — 1. Since
¢ = 1, there is a vertex v, say v € V;, which is adjacent to every vertex of V; in G. By
Lemma 6 G[V(H’) U {v}] has a 2RiDF ¢’ s.t. ¢’(x) = 0 for some x € V(H') and ¢’(v) = 1.
Observe that in G v is adjacent to all vertices of (V; U V3) \ {v}; by the rule of Lemma 2 we
can extend ¢’ to a 2RiDF g of G under which there is at most one vertex in V; \ {v} (and V3)
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not assigned value 0. Thus, w(g) < [Vo| — 1+ 3 = |Vy| + 2, a contradiction. This completes
the proof of Claim 1.

Now, we WLOG assume |V;| > |V;|. Then, |V;| > 3 by Formula (2).

Claim 2. G[Vy] does not contain any isolated vertex v s.t. Ne(v) NV = @. Otherwise,
define f’ as: for x € V5 f’(x) = 2,and f'(v) = 1. By Claim 1, in G, V4 has not more than
one vertex adjacent to every vertex in V;; say v’ if such a vertex exists. We further let
f'(y) =0fory € ViU (Vy\{v}) (orfory € (Vi \ {¢'}) U (Vp\ {v}) if ¥’ exists). Since in
G every vertex in V; U V) (except for v’) is adjacent to v and also V5, f is a 2RiDF of G of
weight at most |V;| + 2, a contradiction. This completes the proof of Claim 2.

We proceed by distinguishing two cases: 7i2(G[Vy]) = |Vo| — 1 and 712 (G[Vo]) = Vol

Case 1. 712(G[Vo]) = |Vo| — 1. In this case, by Claim 1 each vertex of V; owns a
neighbor belonging to V; in G where {i, j}=[1,2]; by Theorem 2, G[V;] has one component
H isomorphic to one of Sy g1 (|V(H)| > 3), S‘J{/(H)‘—l (IV(H)| = 3), S(|V(H)| —3,1)

(JV(H)| > 4) and Cs, and other components of G[V;] are isomorphic to K; or K;. Let
up € V(H) be a vertex with dyy(ug) = A(H). Clearly, dy(up) > 2. Let u; € Ny (up) and
uy € Ny(up) be two vertices such that every vertex in V(H) \ {ug, 11, up} has degree in
H not exceeding min{dy(u1),dy(u2)}. By the structure of H, for i € [1,2], we have that
dp(u;) < 2 and if u; has a neighbor u}(¢ {ug, u1,u2}) in H, then ugu; ¢ E(H). Moreover,
by Lemma 5 (1), (Ng(u1) N Ng(u2)) \ {uo} = @, which implies that each vertex of V; U V2
is adjacent to u; or up in G.

Claim 3. |V \ V(H)| < 1. Otherwise, let {v1,v2} C (Vo \ V(H)). Then, dé[vo](vl) <1
and dgy, (v2) < 1. Suppose that Ag v, (v1) =1 (the case of gy, (v2) = 1 can be similarly
discussed). Let v10] € E(G[Vy]) and clearly dé[vg}(vll) = 1. By Lemma 5 (2), a vertex

vg € (V4 U V3) is adjacent to {vq, 0]} in G. We WLOG assume that v109 € E(G). According
to Lemma 6, G[V(H) U {vg}] admits a 2RiDF ¢’ satisfying ¢'(vo) = 1 and g’(x) = 0 for
some x € V(H). Further, let ¢’(v1) = 0 and ¢'(v]) = 2. So ¢’ is a 2RiDF of G[V(H) U
{v9,v1,v}}], and by Lemma 2 and Formula (3) we can extend g’ to a 2RiDF of G with weight
atmost |Vy| —2+4 = |V| + 2 (since ¢'(v1) = ¢'(x) = 0), a contradiction. We therefore
assume that dgy, (v1) = gy, (v2) = 0. By Lemma 5 (2) we have [Ng({v1,v2}) N (V4 U
V2)| > 3. WLOG, suppose that in G, v; has two neighbors belonging to V; U V,, say vy
and v12. By Lemma 5 (1), ; is not adjacent to both v1; and vy, and vy is not adjacent to
both u1 and uy in G, where i € [1,2] and j € [1,2]. Thus, it follows that u;v11 ¢ E(G) and
upv1p & E(G), or uyv1n ¢ E(G) and upvy; ¢ E(G), which contradicts to Lemma 5 (1) again.
This completes the proof of Claim 3.

By Claim 3, we see that G[V}] contains no component isomorphic to K, and contains
at most one K; component.

Claim 4. G[Vy] contains a Ky component. If not, we have G[Vy] = H.

Claim 4.1. (Né(ul) U NE(LQ)) N (Vl @] Vz) # Q.

Otherwise, for i € [1,2], u; is adjacent to every vertex of V3 U V, in G, and by Lemma 5
(2) dy(u;) = 2 and uquy ¢ E(G). Set {u}} = Ny(u;) \ {uo}, i € [1,2]; then, uu! ¢
E(G). Let f be: f(uy) = f(u}) = 1, f(up) = f(uhp) = 2 and f(x) = 0 for any x in
V(G) \ {u1,u}, up, ub}. So, we get a 2RiDF f of G, which has weight 4, a contradiction. So,
Claim 4.1 holds.

Claim 4.2. |Vj| = 3.

Observe that |V4| > 3; it is enough by showing that G admits a 2RiDF f s.t. w(f) <
|V2| + 3. When ujuy € E(G), let f be: f(u;) = 1for i € [0,2], f(x) = 0 for x €
(Vi U Vo) \ {uo,u1,uz}, and f(y) = 2 for y € V5. By Lemma 5 (1), in G, V; U V; contains
no vertex adjacent to 11 and also uy. Therefore, f is a 2RiDF of G of weight |V, | + 3. Now,
suppose that uju, ¢ E(G). By Lemma 5 (1), V; contains at most one vertex adjacent
to both ug and u; in G; say u if such a vertex exists. Let f be: f(ug) = f(u1) = 1
(or f(u) = f(up) = f(u) = 11if u exists), f(x) = 0for x € (V3 U (VW \ {uo,u1})) (or
x € (ViUW)\ {uo, u1,u}) and f(y) = 2 for y € V. Notice that by Claim 1 every vertex
of Vp U V; is adjacent to V; in G, and by the structure of H and the selection of u; and
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uy, every vertex of (Vo U V) \ {u, up, u1 } is adjacent to {1, u1 } in G; f is a 2RiDF of G of
weight at most |V;| + 3. This completes the proof of Claim 4.2.

By Claim 4.2, we have 2 < |V;| < 3. Let Vj = {w, wy, w3} in the following.

Claim 4.3. In G, for {i,j} = [1,2] every vertex in V; has not more than one neighbor in V;.

If not, let v € V5 be adjacent to two vertices of V; in G, say wy, wp. By Lemma 5 (1)
u1 or uy is not adjacent to v in G, say u10 ¢ E(G). If upws ¢ E(G), define ¢’ as: ¢'(u;) =i
for every i € [0,2], ¢'(w1) = ¢'(wp) = 0,¢'(w3) = 2, ¢'(v) = 1. If upwz € E(G), then
uiws ¢ E(G) and let ¢’ be: ¢'(u1) = ¢'(w3) = 1,¢'(w1) = ¢'(wy) = 0,¢'(v) = 2; further,
let ¢'(up) = 0 when uv € E(G), or let ¢’(up) = 2 and ¢/(1p) = 0 when u0 ¢ E(G).
According to Lemma 2, in either case the g’ defined above can be extended to a 2RiDF g of
G under which g(w;) = g(w;) = 0and g(ug) = 0 or g(uy) = 0. Therefore, by Formula (3)
w(g) < |Vo| =1+ 3 = |Vy| + 2, a contradiction. With a similar discussion, there is also a
contradiction if we assume Vj contains a vertex that has two neighbors in V; in G. This
completes the proof of Claim 4.3.

Now, we consider |V,|. Suppose that |V,| = 3 and let V, = {wy, ws, we}. According

to Claim 4.1, we WLOG assume that uyw; € E(G). This indicates that u,w; ¢ E(G) by
Lemma 5 (1). If u, has a neighbor in V;, say uowy € E(G), then according to Lemma 5 (1),
uiwy ¢ E(G), wywy € E(G), and uq (resp. uy) is not adjacent to {w,, w3} (resp. {ws, we})
in G (otherwise w4 or w; has two neighbors in V; or V; in G, respectively. This contradicts
to Claim 4.3). Let f be: f(u1) = f(wy) = 1,f(up) = f(wy) = 2 and f(x) = 0 for
x € V(G) \ {uy,up, wy,wy}. Observe that wy (resp. wy) is not adjacent to {ws, we} (resp.
{ws,w3}) in G and by Lemma 5 (1) Vp \ {uo, u1, 42} contains no vertex adjacent to both u;
and w; for some i € [1,2]. Hence, f is a 2RiDF of G[V(G) \ {ug}] of weight 4 and we are
able to extend f to a 2RiDF of G with weight at most 5 < |Vi| + | V3| according to Lemma 2,
a contradiction. Therefore, we may assume that N=(uz) NV, = @. In this case, when
Ng(u2) NV = @, let f be: f(u2) =2, f(ug) = f(u1) = 1. By Lemma 5 (1) V; U V; has not
more than one vertex w’ adjacent to both 1 and u; in G and V; \ {ug} has not more than
one vertex u’ adjacent to u; in G; for x € V(G) \ {ug, u1, up, u’,w'} we further let f(x) = 0.
Then, f is a 2RiDF of G[V(G) \ {1/, w'}] of weight 3 and according to Lemma 2 we can
extend f to a 2RiDF of G of weight at most 5 < |V;| 4 | V2|, a contradiction. We therefore
suppose that u, has a neighbor in V; in G, say u,w, € E(G). With the same argument as
Ng(u2) NV, = @, we can show that Nz (u1) NV, = @ as well.

Then, if wsuy ¢ E(G) and wsuy ¢ E(G), the function f: f(u1) = f(wy) =1, f(up) =
f(ws) =2and f(x) =0forx € V(G) \ {u1, u, w1, ws, 9}, is a 2RiDF of G[V(G) \ {uo}]
with weight 4, and according to Lemma 2, we are able to extend f to a 2RiDF of G with
weight at most 5 < |V;| + | V2], a contradiction. Therefore, we suppose that wsu; €
E(G) by the symmetry. By Lemma 5 (1), it has that wsuy ¢ E(G), and uow; ¢ E(G) or
uows ¢ E(G), say upw; ¢ E(G) by the symmetry. Let f be: f(ug) = f(u1) = 1, f(u) =
f(wy) = 2and f(x) = 0 for x € V(G) \ {uy,uz, up, wy, ws}. Since in G every vertex in
V(G) \ {u1, up, up, wr, w3} has a neighbor in {ug, u; } and also {uy, w,}, f is a 2RiDF of
G[V(G) \ {w3}] of weight 4 and according to Lemma 2 we can extend f to a 2RiDF of G of
weight at most 5 < | V3| + | V|, and a contradiction.

A similar line of thought leads to a contradiction if we assume that |V;| = 2, and so
Claim 4 holds.

By Claim 4, we see that G[V{] contains one component isomorphic to K;. Let s be
the vertex of the K; component. We first show that [Nz(s) N (V; U V3)| < 1. If not, in G
we assume that s has two neighbors in V; U V,, say s1,s. By Lemma 5 (1) for i,j € [1,2],
si (resp. u;) can not be adjacent to u; and u; (resp. s1 and s3) simultaneously in G. This
implies that either s;u; ¢ E(G),i € [1,2], or syus ¢ E(G) and spuy ¢ E(G), which violates
Lemma 5 (1) as well. Thus, by Claim 2 |[N(s) N (V3 U V2)| = 1 and the vertex s’ adjacent to
sin G belongs to V;. Let f be: f(x) =1forx € Vq, f(s) =2, f(y) =0fory € Vo UV (H)).
Observe that by Claim 1 all vertices in V; are adjacent to V; in G. Hence, every vertex
in V, U V(H) is adjacent to s and also V; in G. Therefore, f is a 2RiDF of G with weight
V1| +1 < |V3| + | V2| (since | V2| > 2), a contradiction.
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The foregoing discussion shows that there exists a contradiction if we assume that
Y1i2(G[Vo]) = [Vo| — 1. In what remains, we handle the case when > (G[Vo]) = | Vol
Case 2. 71;i2(G[Vo]) = |Vo|- Then by Lemma 1 every component of G[Vp] is isomorphic
to Ky or Kp. Recall that |V;| > 2 for i € [0,2]. Take two vertices u,v in Vj s.t. uv € E(G)
if G[Vp] contains a K, component and u, v are isolated vertices in G[V;] otherwise. By
Lemma 5 (1), we have
(NG (1) N NG(0)) 1 (V3 U V) < 1 @

We deal with two subcases in terms of the adjacency property of u and v.

Case 2.1. uv € E(G). Thenin G, Vp \ {1, v} contains no vertex adjacent to {u, v}.
Claim 5. In G[V; U V»], Vi U V; contains only vertices with degree at most |V | + |Va| —
Suppose that V; contains a vertex w such that ww’ € E(G ) forevery w' € V,. lf uw € E(G)
(or vw € E(G)), define a 2RiDF ¢’ of G[{u,v,w}] as: g'(u) = 0 (or ¢'(v) = 0),¢'(w) =1
and ¢'(v) = 2 (¢'(u) = 2). According to Lemma 2 we can extend g’ to a 2RiDF of
G, under which (V; U V,) \ {w} contains at most two vertices not assigned 0. Thus,
w(g) < [Vo| — 143 = |Vy| + 2, a contradiction. We therefore assume that uw ¢ E(G) and
vw ¢ E(G). By Lemma 5 (2), there are at least three vertices in (V; U V) that are adjacent
to u or v. We WLOG assume that V; U V5 contains a vertex u’ s.t. u'u € E(G). Construct a
2RiDF ¢’ of G[{u, v, u’,w}] as follows: ¢'(u) = 0,¢'(1') = 2,and ¢'(v) = ¢'(w) = 1. Then,
by Lemma 2 ¢’ can be extended to a 2RiDF g of G, under which (V4 U V;) \ {w, 4’} contains
at most one vertex not assigned value 0. Therefore, w(g) < [Vp| —1+3 = |[Vp|+2, a
contradiction. Similarly, we can also obtain a contradiction if we assume that V, contains a

vertex adjacent to every vertex of V. So, Claim 5 holds.

By Claim 5, for {i, j}=[1,2], each vertex of V; is adjacent to a vertex of V; in G. If V1 N
(Ng(u) N Ng(v)) = @, thenin G all vertices of V; are adjacent to {u,v}. Let f be: f(x) =2
forx € V,, f(y) = 0fory € VU (Vo \ {u,v}), and f(u) = f(v) = 1. Obviously, f is a
2RiDF of G s.t. w(f) = [Va| +2 < |V1| + V2|, a contradlctlon We therefore assume that
V] contains a vertex s s.t. su € E(G) and sv € E(G). Then, in G, by Lemma 5 (1) no
vertex in Vo U (V4 \ {s}) is adjacent to u and v simultaneously. Analogously, the function f:
f(v)=f(u)=1,f(x) =2forx € Vj,and f(y) =0fory € V, U (Vp \ {u,v}) (and f(s) =
f(v)=f(u)=1,f(x) =2forx € Vp,and f(y) =0fory € (V1 \ {s})U (Vo \ {u,v}))isa
2RiDF of G with weight |V;| + 2 (and |V,| + 3). This implies that |V;| = 3 and |V,| = 2.
Let V; = {s,s1,52} and V5 = {s3,54}. Then, in G, neither u nor v is a neighbor of s; and s,
simultaneously; otherwise, we, by the symmetry, suppose that us; € E(G) and us; € E(G).
Let ¢’ be: ¢'(v) = ¢'(s1) = ¢'(s2) = 0,¢'(u) =1, and ¢'(s) = 2. Obviously, ¢’ is a 2RiDF
of G[{u,v,s,s1,s2}] with weight 2. According to Lemma 2, we can extend ¢’ to a 2RiDF of
G with weight at most |Vy| — 1+ |Va| + 1 = | V| + 2, a contradiction. In addition, in G, s;,
i € [1,2], is not adjacent to u and v simultaneously according to Lemma 5 (1). Therefore,
we may assume, by the symmetry, that s10 ¢ E(G) and s,u ¢ E(G).

If no edge between {u,v} and V; in G exists, then by Lemmas 5 (2), us; € E(G) and
vsy € E(G). Then, the function ¢’ such that ¢'(s) = ¢'(s1) = ¢'(v) = 0,¢'(s2) = 2, and
¢'(u) = 11is a 2RiDF of G[{u,v,s,s1,5,}] with weight 2. According to Lemma 2, we can
extend g’ to a 2RiDF of G with weight at most |V3| + 1+ |Vy| — 1 = |Vy| + 2, a contradiction.
We therefore assume that G contains an edge connecting {u, v} and V5, say vs3 € E(G) by
the symmetry.

If s45 € E(G), define ¢’ as: ¢/(s3) = 2,¢'(s4) = 0,¢'(s) = 1,¢'(v) = 0. Then, ¢’ isa
2RiDF of G|{s, v, 53,54 }] with weight 2. By Lemma 2 and Formula 3, we are able to extend g’
to a 2RiDF of G of weight at most |Vy| — 1+ 3 = |Vy| + 2, a contradiction. Consequently, we
have s4s ¢ E(G). Then, the function g’ such that ¢/(s3) = 0,¢'(s4) = ¢'(s) = 2,¢'(v) =1,
¢'(u) = 0is a 2RiDF of G[{s, u, v, s3, 54 }] with weight 3, and by Lemma 2 and Formula 3 we
can extend g’ to a 2RiDF of G with weight at most |Vy| — 1+ 3 = |Vp| + 2. This contradicts
the assumption.

Case 2.2. uv ¢ E(G). Then, by the selection of u, v and fy, G[V;] contains only isolated
vertices and G does not admit a 7,i» (G)-function for which the induced subgraph of G by
vertices with value 0 contains K, components.
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For every x € Vp, let U¥ = Ng(x) NV, for i € [1,2]. Let f" be: f'(x) = 0for x €
(uwm)\(uuyuuyuug))u (Vo \{u,v}), f'(v) =2,and f'(u) = 1. Apparently,
f'is a 2RiDF of G — (U} U U} U U7 U U3)) with weight 2. According to Lemma 2, we
can extend f’ to a 2RiDF of G with weight at most | (U} U UY U U} U UJ))| + 2. To ensure
(Uyuuyuuyuus))|+2 > |Vi| + |V2|, we have

(MUWV)\ (U Ul VU UL;)| <2 ®)

Claim 6. |[(V; U VL) \ (U UUy UUYUUY)| = 2 and the two vertices in (Vi U Vp) \
(Uj uuy uuy uUuy) are adjacent in G. Define a 2RiDF g’ of G[Vy] as: g'(u) = ¢'(v) = 1.
Suppose that |(V; U V) \ (U¥ U UY UU? UUY)| < 1. Since V; and V; are cliques in G
and every vertex in U} U U} U UY U UJ is adjacent to u or v in G, by Lemma 2 we are
able to extend g’ to a 2RiDF g of G under which at most one vertex in V;, i € [1,2}, is
not assigned value 0 (here if (V3 U V;) \ (Uj UUY U U7 U UJ) contains a vertex, say w,
then let g¢(w) = 2). Clearly, w(g) = w(g') +2 < |Vo| + 2, a contradiction. Moreover, if
(ViU V) \ (U UlUY UUY UUY) contains two nonadjacent vertices in G, say wy, wy, then w;
and w;, are not in the same set V; for some i € [1,2]. Therefore, we can extend g’ to a 2RiDF
¢ of G via letting ¢'(x) = 0 when x is in (V1 U V5) \ {wy, wy} and ¢'(wq) = ¢'(wy) = 2.
However, w(g) = w(g') +2 < |V| + 2, a contradiction. This completes the proof of
Claim 6.

By Claim 6, (V4 U V2) \ (UY U UY U UY U UY) contains two adjacent vertices in G, say
wy, wy. If there exists az € (Vo \ {u,0}) s.t. zwy € E(G) (or zw, € E(G)), then set ¢’ as:
§'(z) =g'(u) =g'(v) =1,8 (w1) = 0 (or g'(wz) = 0), g'(w2) = 2 (or g'(w;) = 2). Since in
G every vertex in (V4 U V,) \ {w>} has a neighbor in {z, u,v} and every vertex in V' \ {w,}
is a neighbor of w,, where w, € V' for some V' € {Vy, V,}, we can extend ¢’ to a 2RiDF
g of G according to Lemma 2. Under g, every vertex in V' \ {w,} is assigned value 0 and
at most one vertex in {Vy, V,} \ V' is not assigned value 0. Therefore, w(g) < |Vo| +2,
a contradiction. This demonstrates that in G no vertex in Vj is adjacent to {w,w,}.
Furthermore, if thereis a z € Vp \ {u, v}, then by Claim 6 we have (V; UV,) \ (U} U Uy U
Uf U Ué) = {wl, ZUQ} and (Vl U Vz) \ (Uf U LI;’ U Uf U U;) = {wl, ZUQ}, which implies that
Ng(z) = U Uy Ul UU3. Set g’ as: g'(z) = 1,8'(u) = ¢'(v) = 2and §'(x) = 0 for
x € Uy uuy uUyUUj. Then, g’ is a 2RiDF of G — ({wy, wp } U (Vo \ {1, v,2z})) with weight
3, and we can extend ¢’ to a 2RiDF of G with weight at most (|Vy| +2 —3) +3 = |Vp| +2
according to Lemma 2, a contradiction. So far, we have shown that Vy = {u, v}, that s,
'YriZ(G) =n-—2.

Now, we define a 2RiDF f’ of G[{u, v, wy,w,}] as follows: f'(wy) = f'(wp) = 0,
f'(u) =1and f'(v) = 2. According to Lemma 2, we can extend f’ to a 2RiDF f of G with
weight at most n — 2. To ensure w(f) > V1i2(G) = n — 2, f must be a 7;i2(G)-function
(since w(f) = n —2). However, G[{wjw,}] is isomorphic to K,. This contradicts the
selection of fy. Eventually, the proof of Theorem 3 is finished. O

Based on the foregoing analysis, we observed that the upper bound 7 + 2 can be
attained by graphs S,(r > 2), S;" (r > 2), and S(r,1) (r > 1), while we did not find other
graphs that possess this property. So, we propose a problem as follows.

Question 1. Is it enough to determine graphs G with 7,i2(G) + Yri2(G) = |[V(G)| + 2
by Sy(r > 2), S} (r > 2),and S(r,1)(r > 1)?
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