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Abstract: For a graph G, its k-rainbow independent domination number, written as γrik(G), is defined
as the cardinality of a minimum set consisting of k vertex-disjoint independent sets V1, V2, . . . , Vk

such that every vertex in V0 = V(G) \ (∪k
i=1Vi) has a neighbor in Vi for all i ∈ {1, 2, . . . , k}. This

domination invariant was proposed by Kraner Šumenjak, Rall and Tepeh (in Applied Mathematics
and Computation 333(15), 2018: 353–361), which aims to compute the independent domination
number of G�Kk (the generalized prism) via studying the problem of integer labeling on G. They
proved a Nordhaus–Gaddum-type theorem: 5 ≤ γri2(G) + γri2(G) ≤ n + 3 for any n-order graph G
with n ≥ 3, in which G denotes the complement of G. This work improves their result and shows
that if G 6∼= C5, then 5 ≤ γri2(G) + γri2(G) ≤ n + 2.

Keywords: k-rainbow independent domination; Nordhaus–Gaddum; bounds

1. Introduction

Throughout the paper, only simple graphs are considered. We refer to [1] for undefined
notations. For a graph G, the edge set and vertex set of G are denoted by E(G) and V(G),
respectively. For any v1, v2 ∈ V(G), they are adjacent in G if v1 and v2 are the endpoints of
an identical edge of G. A vertex w ∈ V(G) is adjacent to a set W ⊆ V(G) in G if W contains
a vertex w′ s.t. ww′ ∈ E(G). NG(w) = {v|vw ∈ E(G)} is called the open neighborhood of
w and NG[w] = NG(w) ∪ {w} is the closed neighborhood of w. dG(w) = |NG(w)| denotes
the degree of w in G and ∆(G) = max{dG(w)|w ∈ V(G)}. A vertex that has degree `
and at least ` is called an `-vertex and `+-vertex, respectively. For any W ⊆ V(G), let
NG(W) =

⋃
w∈W NG(w) \W and NG[W] = NG(W) ∪W. We say that W dominates a set W ′

if W ′ ⊆ NG[W]. Moreover, we use the notation G −W to denote the subgraph of G by
deleting vertices in W and their incident edges in G, and G[W] = G − (V(G) \W) the
subgraph of G induced by W. The `-order complete graph and the `-length cycle are
denoted by K` and C`, respectively. As usual, for any two natural numbers p, q with p < q,
[p, q] represents {p, p + 1, . . . , q}.

Given a graph G and a subset W ⊆ V(G), we call W a dominating set (abbreviated as
DS) of G if W dominates V(G). An independent set (abbreviated as IS) of a graph is a set of
vertices, no two of which are adjacent in the graph. If a DS W of G is an IS, then W is called
an independent dominating set (IDS for short) of G. The independent domination number of G,
denoted by i(G), is the cardinality of a minimum IDS of G. Domination and independent
domination in graphs have always attracted extensive attention [2,3] and many variants of
domination [4] have been introduced increasingly, for the applications in diverse fields,
such as electrical networks, computational biology, and land surveying. Recent studies
on these variations include (total) roman domination [5,6], strong roman domination [7],
semitotal domination [8,9], relating domination [10], just to name a few.

Let G�H be the Cartesian product of G and H. In order to reduce the problem of
determining i(G�Kk) into the problem of integer labeling on G, Kraner Šumenjak et al. [11]
proposed a new variation of domination, called k-rainbow independent dominating function
of a graph G (kRiDF for short), which is a function f from V(G) to [0, k], s.t., for each
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i ∈ [1, k], Vi is an IS and every vertex v with f (v) = 0 is adjacent to a vertex u with f (u) = i.
Alternatively, a kRiDF f of G may be viewed as an ordered partition (V0, V1, . . . , Vk) such
that for each i ∈ [1, k], Vi is an IS and NG(x) ∩Vi 6= ∅ for every x ∈ V0, where Vj, j ∈ [0, k],
denotes the set of vertices assigned value j under f . The weight w( f ) of a kRiDF f is defined
as the number of nonzero vertices, i.e., w( f ) = |V(G)| − |V0|. The k-rainbow independent
domination number of G, denoted by γrik(G), is the minimum weight of a kRiDF of G. From
the definition, we have γri1(G) = i(G). A γrik(G)-function represents a kRiDF of G which
has weight γrik(G).

Let G be a graph and H a subgraph of G. Suppose that g is a kRiDF of H. We say
that a kRiDF f of G is extended from g if f (v) = g(v) for every v ∈ V(H). To prove
that a graph G has a kRiDF, we will first find a k′RiDF g of a subgraph G′ of G, k′ ≤ k,
and then extend g to a kRiDF f of G. By using this approach, we describe the structure
characterization of graphs G with γri2(G) = |V(G)| − 1 (Section 2), and then obtain an
improved Nordhaus–Gaddum-type theorem with regard to γri2 (Section 3).

2. Structure Characterization of Graphs G s.t., γri2(G) = |V(G)| − 1

To get the improved Nordhaus–Gaddum-type theorem in terms of γri2, we have
to characterize the graphs G s.t., γri2(G) = |V(G)| − 1. For this, we need the following
special graphs.

A star Sn, n ≥ 1, is a complete bipartite graph G[X, Y] with |X|=1 and |Y| = n, where
the vertex in X is called the center of Sn and the vertices in Y are leaves of Sn. Let S+

n be the
graph obtained from Sn by adding a single edge connecting an arbitrary pair of leaves of
Sn [11]. A double star [12] is defined as the union of two vertex-disjoint stars with an edge
connecting their centers. Specifically, for two integers n, m such that n ≥ m ≥ 0 the double
star, denoted by S(n, m), is the graph with vertex set {u0, u1, . . . , un, v0, v1, . . . , vm} and
edge set {u0v0, u0ui, v0vj|i ∈ [1, n], j ∈ [1, m]}, where u0v0 is called the bridge of S(n, m)
and the subgraphs induced by {ui|i ∈ [0, n]} and {vj|j ∈ [0, m]} are called the n-star at u0
and m-star at v0, respectively. Observe that S(n, m) is defined on the premise of n ≥ m.
For mathematical convenience, we denote a double star S(n, m) as a vertex-sequence
vmvm−1 . . . v0u0u1 . . . un.

We start with a known result, which characterizes graphs G with γri2(G) = n. For a
fixed graph G, its complement is written as G.

Lemma 1 ([11]). Let G be a graph of order n. Then, γri2(G) = n iff G only contains components
isomorphic to K1 or K2. And, if γri2(G) = n, then γri2(G) = 2.

The following conclusion is simple but will be used throughout this paper.

Lemma 2. Let H be a subgraph of a fixed graph G and g = (V0, V1, . . . , Vk) be a γrik(H)-function.
Then g can be extended to a kRiDF of G with weight at most |V(G)| − |V0|.

Proof. Let V(G) \ V(H) = {x1, . . . , x`}. We will deal with these vertices in the order of
x1, . . . , x` by the following rule: for each xi, i ∈ [1, `], let j ∈ [1, k] be the smallest one
such that xi is not adjacent to Vj in G. If such j does not exist, we update V0 by V0 ∪ {xi};
otherwise we update Vj by Vj ∪{xi}. After the last one, i.e., x` is handled, we obtain a kRiDF
of G. Obviously, the weight of the resulting kRiDF of G is not more than |V(G)| − |V0|.

The following theorem clarifies the structure of connected graphs G with γri2(G) =
|V(G)| − 1.

Theorem 1. Let G be a connected graph with order n ≥ 3. Then, γri2(G) = n − 1 iff G is
isomorphic to one among Sn−1, S+

n−1, S(n− 3, 1) (n ≥ 4) and C5.

Proof. Let f = (V0, V1, V2) be an arbitrary γri2(G)-function. Observe that V0 does not
contain any 1-vertex; one can readily derive that γri2(G) = n− 1 when G is isomorphic
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to one of Sn−1, S+
n−1, S(n− 3, 1) and C5. Conversely, suppose that γri2(G) = n− 1, that

is, |V0| = 1. By Lemma 2, G contains no subgraph H that has a 2RiDF of weight at most
|V(H)| − 2. Since γri2(C4) = 2 = |V(C4)| − 2 and each Ck for k ≥ 6 contains a subgraph
isomorphic to a 6-order path P6 with γri2(P6) = 4 = |V(P6)| − 2, G does not contain any
subgraph isomorphic to C4 or Ck for k ≥ 6. This also shows that every two vertices of G
share at most one neighbor in G.

Observation 1. If G contains a 3+-vertex x, then every 2+-vertex of G belongs to NG(x).
Suppose to the contrary that G contains a 2+-vertex y such that y /∈ NG(x). Let {x1, x2, x3} ⊆
NG(x) and {y1, y2} ⊆ NG(y). Observe that |{x1, x2, x3} ∩ {y1, y2}| ≤ 1 and |NG(yi) ∩
{x1, x2, x3}| ≤ 1 for i ∈ [1, 2]; we WLOG assume that y2 /∈ {x1, x2, x3}, y2x2 /∈ E(G)
and y2x3 /∈ E(G). Let f be: f (x) = f (y) = 0, f (x2) = 1, f (x3) = 2. Notice that either
y1 = xj or y1xj /∈ E(G) for some j ∈ [2, 3]; we further let f (y1) = f (xj) and f (y2) = [1, 2] \
{ f (y1)}. Clearly, f is a 2RiDF of G[{x, x2, x3, y, y1, y2}] of weight |{x, x2, x3, y, y1, y2}| − 2,
a contradiction.

Observation 2. G contains at most one 3+-vertex. Suppose that G has two distinct 3+-
vertices, say x and y. By Observation 1, xy ∈ E(G). Let {y, x1, x2} ⊆ NG(x) and {x, y1, y2} ⊆
NG(y). Since G contains no subgraph isomorphic to C4, |{x1, x2} ∩ {y1, y2}| ≤ 1 and there
are no edges between {x1, x2} and {y1, y2}. Assume that x2 /∈ {y1, y2} and y2 /∈ {x1, x2}.
Then, the function f : {x, x1, x2, y, y1, y2} → {0, 1, 2} such that f (x) = f (y) = 0, f (x2) =
f (y2) = 2 and f (x1) = f (y1) = 1, is a 2RiDF of G[{x, y, x1, x2, y1, y2}] of weight |{x, y, x1,
x2, y1, y2}| − 2, a contradiction.

Observation 3. If G contains a 3+-vertex x, NG(x) has not more than two 2-vertices;
in particular, when NG(x) contains two 2-vertices, in G these two 2-vertices are adjacent. If
not, suppose that NG(x) contains three 2-vertices, say x1, x2, x3. We WLOG assume that
x3 /∈ NG({x1, x2}) and let NG(x3) = {x, y3}. Let NG(x1) = {x, y1} (possibly y1 = x2, but
y1 6= y3). By Observation 1, dG(y3) = 1, i.e., y1y3 /∈ E(G). Let f be: f (x) = 1, f (x1) =
f (x3) = 0, f (y1) = f (y3) = 2. Obviously, f is a 2RiDF of G[{x, x1, y1, x3, y3}] of weight
|{x, x1, y1, x3, y3}| − 2, a contradiction. Now, suppose that NG(x) contains two 2-vertices,
say x1, x2. If x1x2 /∈ E(G), let NG(xi) = {x, yi}, i ∈ [1, 2]. Clearly, y1 6= y2 and y1y2 /∈ E(G).
Let f be: f (x) = 1, f (x1) = f (x2) = 0, f (y1) = f (y2) = 2. Then, f is a 2RiDF of
G[{x, x1, y1, x2, y2}] of weight |{x, x1, x2, y1, y2}| − 2, a contradiction.

By the above three observations and the assumption that G is connected, we see that
if G contains a 3+-vertex x, then V(G) \ {x} contains either only 1-vertices (G ∼= Sn−1), or
one 2-vertex and n− 2 1-vertices (G ∼= S(n− 3, 1)), or two adjacent 2-vertices and n− 3
1-vertices (G ∼= S+

n−1); if ∆(G) = 2, then G is isomorphic to one of S+
2 , S2, S(1, 1) and C5.

The theorem below follows from Theorem 1, Lemma 1, and γri2(G) = ∑k
i=1 γri2(Gi),

where G1, . . . , Gk are the components of G.

Theorem 2. Given a graph G with order n ≥ 3, γri2(G) = n− 1 iff G has one component G1
isomorphic to one among Sn1−1 (n1 ≥ 3), S+

n1−1 (n1 ≥ 3), S(n1 − 3, 1) (n1 ≥ 4) and C5, and
other components are isomorphic to K1 or K2, where n1 = |V(G1)|.

3. An Improved Nordhaus–Gaddum Type Theorem for γri2(G)

This section is devoted to achieve an improved Nordhaus–Gaddum type theorem
by showing that γri2(G) + γri2(G) ≤ n + 2 for every graph G 6∼= C5 of order n ≥ 2, which
improves a result obtained by Kraner Šumenjak et al., et al [11]. We first present some
fundamental lemmas.

Lemma 3. For an n-order graph G with n ≥ 3, if G is Sn−1, S+
n−1 or S(n− 3, 1), then γri2(G) ≤ 3.

Proof. If G ∼= Sn−1 or G ∼= S+
n−1, let V(G) = {v0, v1, . . . , vn−1} where v0 is the center and

v1v2 ∈ E(G) when G ∼= S+
n−1. Define a function f such that f (v1) = 1, f (v0) = f (v2) = 2
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and f (v) = 0 for every v ∈ V(G) \ {v0, v1, v2}. Since every vertex in V(G) \ {v0, v1, v2} is
a neighbor of v1 and also v2 in G, it follows that f is a 2RiDF of G of weight 3.

If G ∼= S(n− 3, 1), then n ≥ 4. Let V(G) = {v1, v0, u0, u1, . . . , un−3}, where v0u0 is
the bridge of G and E(G) = {v0v1, v0u0, u0ui|i ∈ [1, n− 3]}. If n = 4, then both G and G
are isomorphic to P4, the path of length 3, and the conclusion holds. If n ≥ 5, then the
function f from V(G) to [0, 2] such that f (u2) = 2, f (u1) = f (u0) = 1, and f (v) = 0 for
every v ∈ V(G) \ {u0, u1, u2} is a 2RiDF of G with weight 3.

Lemma 4. For a graph n-order G, if G 6∼= C5 and γri2(G) = 4, then γri2(G) ≤ n− 2.

Proof. Clearly, n ≥ 4. When n = 4, γri2(G) = 4 implies that γri2(G) = 2 = n − 2 by
Lemma 1. Therefore, we assume that n ≥ 5. Suppose that γri2(G) ≥ n− 1. If γri2(G) = n,
by Lemma 1 we have γri2(G) = 2, a contradiction. Therefore, γri2(G) = n − 1. By
Theorem 2 G has one component isomorphic to Sn1 , S+

n1
, S(n2, 1) or C5 where n1 ≥ 2, n2 ≥ 1,

and all of the other components of G are isomorphic to K1 or K2.
If G contains two vertices u and v s.t. NG({u, v}) = ∅, then in G both u and v

are adjacent to every vertex in V(G) \ {u, v}. We can obtain a 2RiDF of G by assigning
1 to u, 2 to v, and 0 to the remained vertices of G. This indicates that γri2(G) ≤ 2 and
a contradiction. Therefore, G contains no K2 components and contains at most one K1
component, implying that G contains at most two components. If G contains only one
component, it follows that G is Sn−1, S+

n−1 or S(n − 3, 1) (since G 6∼= C5). By Lemma 3
γri2(G) ≤ 3 and a contradiction. Therefore, G has two components, denoted by G1 and
G2, where G1

∼= K1 and G2 is isomorphic to Sn−2, S+
n−2, S(n− 4, 1) or C5. Let V(G1) = {u}

and define a function f as follows: let f (u) = 1; f (v0) = f (v′) = 2 when G2 ∼= Sn−2
or G2 ∼= S+

n−2 (where v0 is the center of G2 and v′ is a 1-vertex of G2 by the assumption
of n ≥ 5), f (v0) = f (u0) = 2 when G2 ∼= S(n − 4, 1) (where v0u0 is the bridge of G2),
or f (u1) = f (u2) = 2 when G2 ∼= C5 (where C5 = u1u2u3u4u5u1); and all of the other
remained vertices are assigned value 0. Clearly, all vertices with value 0 are adjacent to u
and a vertex with value 2. Hence, f is a 2RiDF of G, which has weight 3, a contradiction.

Lemma 5. Suppose that G is an n-order graph satisfying that γri2(G) ≥ 4 and γri2(G)+γri2(G)
= n + 3. Let f = (V0, V1, V2) be an arbitrary γri2(G)-function. We have

(1) If |V0| ≥ 2, then for any u, v ∈ V0, there does not exist u1, u2, v1, v2 such that {u1, u2} ∈
NG(u), {v1, v2} ∈ NG(v) and uivi /∈ E(G) for i ∈ [1, 2], where u1 6= u2, v1 6= v2 but
possibly ui = vi;

(2) If u, v are two arbitrary different vertices of V0, then |NG({u, v})| ≥ 3;
(3) |Vi| ≥ 2 for i ∈ [0, 2].

Proof. For (1), if the conclusion is false, then let g be: g(u) = g(v) = 0 and g(ui) = g(vi) = i,
i ∈ [1, 2]. Then, g is a 2RiDF of G[{u, v, u1, v1, u2, v2}] with weight |{u, v, u1, v1, u2, v2}| − 2.
Since V1 and V2 are cliques in G, Vi contains at most two vertices not assigned 0 under
every 2RiDF of G for i ∈ [1, 2]. Hence, we can extend g to a 2RiDF of G with weight at
most |V0| − 2 + 4 = |V0|+ 2, according to Lemma 2. This shows that γri2(G) ≤ |V0|+ 2
and γri2(G)+γri2(G) ≤ |V1|+ |V2|+ |V0|+ 2 = n + 2, a contradiction.

For (2), if |NG({u, v})| ≤ 2, let f be: f (v) = 2, f (u) = 1, and f (x) = 0 for x ∈
V(G) \ NG[{u, v}]. It is clear that f is a 2RiDF of G[V(G) \ NG({u, v})] with weight 2.
According to Lemma 2, we can extend f to a 2RiDF of G with weight at most 4 (since
|NG({u, v})| ≤ 2). Thus, γri2(G) = 4 and by Lemma 4 γri2(G) ≤ n− 2, a contradiction.

For (3), if |V0| = 1, then γri2(G) = n− 1. By an analogous argument as that in Lemma 4,
we can derive that γri2(G) + γri2(G) ≤ n + 2, a contradiction. In the following, we prove
that |V1| ≥ 2 (the proof of |V2| ≥ 2 is similar to that of |V2| ≥ 2). Suppose that |V1| = 1 and
let V1 = {u}. Then, every vertex of V0 is adjacent to u in G, i.e., u is not adjacent to V0 in G.
By Lemma 4 we assume that |V1|+ |V2| ≥ 5. If V0 contains a vertex v with two neighbors
v1, v2 in G, then u /∈ {v1, v2}. Let g be: g(v) = 0, g(v1) = 1, g(v2) = 2. Since V2 is a clique
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in G, we can extend g to a 2RiDF of G with weight at most |V0| − 1+ 3 = |V0|+ 2, according
to Lemma 2. This shows that γri2(G) ≤ |V0|+ 2 and hence γri2(G) + γri2(G) ≤ n + 2, a
contradiction. Therefore, every vertex in V0 has degree at most 1 in G, which implies
that |NG({x, y})| ≤ 2 for any two vertices x ∈ V0, y ∈ V0 (observe that |V0| ≥ 2). This
contradicts (2).

Lemma 6. Let G be an n-order graph, n ≥ 4. For any u ∈ V(G), if H = G− u, the resulting
graph by deleting u and its incident edges from G, is connected and γri2(H) = |V(H)| − 1, then
G has a 2RiDF f satisfying f (u) = 1 and f (v) = 0 for some v ∈ V(H).

Proof. Clearly, |V(H)| ≥ 3. If u has no neighbor in V(H), then let f be: f (v) = g(v)
for every v ∈ V(H), and f (u) = 1, where g is a γri2(H)-function of H. Since γri2(H) =
|V(H)| − 1, there exists v ∈ V(H) satisfying f (v) = g(v) = 0. If u has a neighbor
u1 ∈ V(H), there exists a u2 ∈ V(H) s.t. u1u2 ∈ E(H) since H is connected. Let f be:
f (u1) = 0, f (u) = 1, f (u2) = 2. Then, we can extend f to a desired 2RiDF of G according
to Lemma 2.

Now, we turn to the proof of the main result.

Theorem 3. Suppose that G is an n-order graph, n ≥ 2. If G 6∼= C5, then γri2(G) + γri2(G) ≤
n + 2.

Proof. We are sufficient to handle the situation n ≥ 5 since cases of n ≤ 4 are trivial. Let
f0 = (V0, V1, V2) be a γri2(G)-function such that G[V0] contains the maximum number of
components isomorphic to K2. Suppose to the contrary that γri2(G) + γri2(G) > n + 2.
Then, γri2(G) + γri2(G) = n + 3 since γri2(G) + γri2(G) ≤ n + 3 [11], that is,

γri2(G) = |V0|+ 3 (1)

Formula (1) indicates that every 2RiDF of G has weight at least |V0| + 3. We will
complete our proof by constructing a 2RiDF of G of weight at most |V0|+ 2 or a 2RiDF of
G of weight less than |V1|+ |V2|.

If |V1 ∪V2| = 2, then γri2(G) + γri2(G) ≤ 2 + n, a contradiction; if |V1 ∪V2| = 3, then
γri2(G) = n and by Lemma 1 γri2(G) = 2, also a contradiction. Therefore, by Lemma 4,

|V1|+ |V2| ≥ 5 (2)

Then, by Lemma 5 (3) we have |Vi| ≥ 2 for i ∈ [0, 2]. In addition, because, by definition,
G[Vi] is a clique, i ∈ [1, 2], it follows that for every 2RiDF g0 = (V′0, V′1, V′2) of G,

|(V′1 ∪V′2) ∩Vi| ≤ 2, i ∈ [1, 2] (3)

Therefore, by Lemma 2 we can extend every γri2(G[V0])-function to a 2RiDF of G with
weight at most γri2(G[V0]) + 4, i.e., γri2(G[V0]) ≥ |V0| − 1 by Formula (1).

Claim 1. Denote by ` the number of vertices in V1 ∪V2, which have degree |V1|+ |V2| − 1
in G[V1 ∪ V2]. Then, ` ≤ 1− `′ where `′ = |V0| − γri2(G[V0]) ≤ 1. If not, either ` is at
least 2 or both ` and `′ are equal to 1. Suppose that ` ≥ 2 and take two vertices v1,v2
∈ (V1 ∪ V2) such that they are adjacent to all vertices of (V1 ∪ V2) \ {u, v} in G. Let g′

be: g′(v1) = 1, g′(v2) = 2, g′(x) = 0 for x ∈ V1 ∪ V2 \ {v1, v2}. Clearly, g′ is a 2RiDF of
G[V1 ∪V2] and by Lemma 2 we can extend g′ to a 2RiDF of G, which has weight at most
|V0| + 2, a contradiction. Now, suppose that ` = `′ = 1. Then, γri2(G[V0]) = |V0| − 1,
which indicates that G[V0] contains a component H′ s.t. γri2(H′) = |V(H′)| − 1. Since
` = 1, there is a vertex v, say v ∈ V1, which is adjacent to every vertex of V2 in G. By
Lemma 6 G[V(H′) ∪ {v}] has a 2RiDF g′ s.t. g′(x) = 0 for some x ∈ V(H′) and g′(v) = 1.
Observe that in G v is adjacent to all vertices of (V1 ∪V2) \ {v}; by the rule of Lemma 2 we
can extend g′ to a 2RiDF g of G under which there is at most one vertex in V1 \ {v} (and V2)
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not assigned value 0. Thus, w(g) ≤ |V0| − 1+ 3 = |V0|+ 2, a contradiction. This completes
the proof of Claim 1.

Now, we WLOG assume |V1| ≥ |V2|. Then, |V1| ≥ 3 by Formula (2).
Claim 2. G[V0] does not contain any isolated vertex v s.t. NG(v) ∩ V1 = ∅. Otherwise,

define f ′ as: for x ∈ V2 f ′(x) = 2, and f ′(v) = 1. By Claim 1, in G, V1 has not more than
one vertex adjacent to every vertex in V2; say v′ if such a vertex exists. We further let
f ′(y) = 0 for y ∈ V1 ∪ (V0 \ {v}) (or for y ∈ (V1 \ {v′}) ∪ (V0 \ {v}) if v′ exists). Since in
G every vertex in V1 ∪V0 (except for v′) is adjacent to v and also V2, f is a 2RiDF of G of
weight at most |V2|+ 2, a contradiction. This completes the proof of Claim 2.

We proceed by distinguishing two cases: γri2(G[V0]) = |V0| − 1 and γri2(G[V0]) = |V0|.
Case 1. γri2(G[V0]) = |V0| − 1. In this case, by Claim 1 each vertex of Vi owns a

neighbor belonging to Vj in G where {i, j}=[1,2]; by Theorem 2, G[V0] has one component
H isomorphic to one of S|V(H)|−1 (|V(H)| ≥ 3), S+

|V(H)|−1 (|V(H)| ≥ 3), S(|V(H)| − 3, 1)

(|V(H)| ≥ 4) and C5, and other components of G[V0] are isomorphic to K1 or K2. Let
u0 ∈ V(H) be a vertex with dH(u0) = ∆(H). Clearly, dH(u0) ≥ 2. Let u1 ∈ NH(u0) and
u2 ∈ NH(u0) be two vertices such that every vertex in V(H) \ {u0, u1, u2} has degree in
H not exceeding min{dH(u1), dH(u2)}. By the structure of H, for i ∈ [1, 2], we have that
dH(ui) ≤ 2 and if ui has a neighbor u′i(/∈ {u0, u1, u2}) in H, then u0u′i /∈ E(H). Moreover,
by Lemma 5 (1), (NG(u1) ∩ NG(u2)) \ {u0} = ∅, which implies that each vertex of V1 ∪V2
is adjacent to u1 or u2 in G.

Claim 3. |V0 \V(H)| ≤ 1. Otherwise, let {v1, v2} ⊆ (V0 \V(H)). Then, dG[V0]
(v1) ≤ 1

and dG[V0]
(v2) ≤ 1. Suppose that dG[V0]

(v1) = 1 (the case of dG[V0]
(v2) = 1 can be similarly

discussed). Let v1v′1 ∈ E(G[V0]) and clearly dG[V0]
(v′1) = 1. By Lemma 5 (2), a vertex

v0 ∈ (V1 ∪V2) is adjacent to {v1, v′1} in G. We WLOG assume that v1v0 ∈ E(G). According
to Lemma 6, G[V(H) ∪ {v0}] admits a 2RiDF g′ satisfying g′(v0) = 1 and g′(x) = 0 for
some x ∈ V(H). Further, let g′(v1) = 0 and g′(v′1) = 2. So g′ is a 2RiDF of G[V(H) ∪
{v0, v1, v′1}], and by Lemma 2 and Formula (3) we can extend g′ to a 2RiDF of G with weight
at most |V0| − 2 + 4 = |V0|+ 2 (since g′(v1) = g′(x) = 0), a contradiction. We therefore
assume that dG[V0]

(v1) = dG[V0]
(v2) = 0. By Lemma 5 (2) we have |NG({v1, v2}) ∩ (V1 ∪

V2)| ≥ 3. WLOG, suppose that in G, v1 has two neighbors belonging to V1 ∪ V2, say v11
and v12. By Lemma 5 (1), ui is not adjacent to both v11 and v12, and v1j is not adjacent to
both u1 and u2 in G, where i ∈ [1, 2] and j ∈ [1, 2]. Thus, it follows that u1v11 /∈ E(G) and
u2v12 /∈ E(G), or u1v12 /∈ E(G) and u2v11 /∈ E(G), which contradicts to Lemma 5 (1) again.
This completes the proof of Claim 3.

By Claim 3, we see that G[V0] contains no component isomorphic to K2 and contains
at most one K1 component.

Claim 4. G[V0] contains a K1 component. If not, we have G[V0] = H.
Claim 4.1. (NG(u1) ∪ NG(u2)) ∩ (V1 ∪V2) 6= ∅.
Otherwise, for i ∈ [1, 2], ui is adjacent to every vertex of V1 ∪V2 in G, and by Lemma 5

(2) dH(ui) = 2 and u1u2 /∈ E(G). Set {u′i} = NH(ui) \ {u0}, i ∈ [1, 2]; then, u0u′i /∈
E(G). Let f be: f (u1) = f (u′1) = 1, f (u2) = f (u′2) = 2 and f (x) = 0 for any x in
V(G) \ {u1, u′1, u2, u′2}. So, we get a 2RiDF f of G, which has weight 4, a contradiction. So,
Claim 4.1 holds.

Claim 4.2. |V1| = 3.
Observe that |V1| ≥ 3; it is enough by showing that G admits a 2RiDF f s.t. w( f ) ≤

|V2| + 3. When u1u2 ∈ E(G), let f be: f (ui) = 1 for i ∈ [0, 2], f (x) = 0 for x ∈
(V1 ∪ V0) \ {u0, u1, u2}, and f (y) = 2 for y ∈ V2. By Lemma 5 (1), in G, V1 ∪ V0 contains
no vertex adjacent to u1 and also u2. Therefore, f is a 2RiDF of G of weight |V2|+ 3. Now,
suppose that u1u2 /∈ E(G). By Lemma 5 (1), V1 contains at most one vertex adjacent
to both u0 and u1 in G; say u if such a vertex exists. Let f be: f (u0) = f (u1) = 1
(or f (u) = f (u0) = f (u1) = 1 if u exists), f (x) = 0 for x ∈ (V1 ∪ (V0 \ {u0, u1})) (or
x ∈ (V1 ∪V0) \ {u0, u1, u}) and f (y) = 2 for y ∈ V2. Notice that by Claim 1 every vertex
of V0 ∪ V1 is adjacent to V2 in G, and by the structure of H and the selection of u1 and
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u2, every vertex of (V0 ∪V1) \ {u, u0, u1} is adjacent to {u0, u1} in G; f is a 2RiDF of G of
weight at most |V2|+ 3. This completes the proof of Claim 4.2.

By Claim 4.2, we have 2 ≤ |V2| ≤ 3. Let V1 = {w1, w2, w3} in the following.
Claim 4.3. In G, for {i, j} = [1, 2] every vertex in Vi has not more than one neighbor in Vj.
If not, let v ∈ V2 be adjacent to two vertices of V1 in G, say w1, w2. By Lemma 5 (1)

u1 or u2 is not adjacent to v in G, say u1v /∈ E(G). If u2w3 /∈ E(G), define g′ as: g′(ui) = i
for every i ∈ [0, 2], g′(w1) = g′(w2) = 0, g′(w3) = 2, g′(v) = 1. If u2w3 ∈ E(G), then
u1w3 /∈ E(G) and let g′ be: g′(u1) = g′(w3) = 1, g′(w1) = g′(w2) = 0, g′(v) = 2; further,
let g′(u2) = 0 when u2v ∈ E(G), or let g′(u2) = 2 and g′(u0) = 0 when u2v /∈ E(G).
According to Lemma 2, in either case the g′ defined above can be extended to a 2RiDF g of
G under which g(w1) = g(w2) = 0 and g(u0) = 0 or g(u2) = 0. Therefore, by Formula (3)
w(g) ≤ |V0| − 1 + 3 = |V0|+ 2, a contradiction. With a similar discussion, there is also a
contradiction if we assume V1 contains a vertex that has two neighbors in V2 in G. This
completes the proof of Claim 4.3.

Now, we consider |V2|. Suppose that |V2| = 3 and let V2 = {w4, w5, w6}. According
to Claim 4.1, we WLOG assume that u1w1 ∈ E(G). This indicates that u2w1 /∈ E(G) by
Lemma 5 (1). If u2 has a neighbor in V2, say u2w4 ∈ E(G), then according to Lemma 5 (1),
u1w4 /∈ E(G), w1w4 ∈ E(G), and u1 (resp. u2) is not adjacent to {w2, w3} (resp. {w5, w6})
in G (otherwise w4 or w1 has two neighbors in V1 or V2 in G, respectively. This contradicts
to Claim 4.3). Let f be: f (u1) = f (w1) = 1, f (u2) = f (w4) = 2 and f (x) = 0 for
x ∈ V(G) \ {u1, u2, w1, w4}. Observe that w1 (resp. w4) is not adjacent to {w5, w6} (resp.
{w2, w3}) in G and by Lemma 5 (1) V0 \ {u0, u1, u2} contains no vertex adjacent to both ui
and wi for some i ∈ [1, 2]. Hence, f is a 2RiDF of G[V(G) \ {u0}] of weight 4 and we are
able to extend f to a 2RiDF of G with weight at most 5 < |V1|+ |V2| according to Lemma 2,
a contradiction. Therefore, we may assume that NG(u2) ∩ V2 = ∅. In this case, when
NG(u2) ∩V1 = ∅, let f be: f (u2) = 2, f (u0) = f (u1) = 1. By Lemma 5 (1) V1 ∪V2 has not
more than one vertex w′ adjacent to both u0 and u1 in G and V0 \ {u0} has not more than
one vertex u′ adjacent to u2 in G; for x ∈ V(G) \ {u0, u1, u2, u′, w′} we further let f (x) = 0.
Then, f is a 2RiDF of G[V(G) \ {u′, w′}] of weight 3 and according to Lemma 2 we can
extend f to a 2RiDF of G of weight at most 5 < |V1|+ |V2|, a contradiction. We therefore
suppose that u2 has a neighbor in V1 in G, say u2w2 ∈ E(G). With the same argument as
NG(u2) ∩V2 = ∅, we can show that NG(u1) ∩V2 = ∅ as well.

Then, if w3u1 /∈ E(G) and w3u2 /∈ E(G), the function f : f (u1) = f (w1) = 1, f (u2) =
f (w4) = 2 and f (x) = 0 for x ∈ V(G) \ {u1, u2, w1, w4, u0}, is a 2RiDF of G[V(G) \ {u0}]
with weight 4, and according to Lemma 2, we are able to extend f to a 2RiDF of G with
weight at most 5 < |V1| + |V2|, a contradiction. Therefore, we suppose that w3u1 ∈
E(G) by the symmetry. By Lemma 5 (1), it has that w3u2 /∈ E(G), and u0w1 /∈ E(G) or
u0w3 /∈ E(G), say u0w1 /∈ E(G) by the symmetry. Let f be: f (u0) = f (u1) = 1, f (u2) =
f (w2) = 2 and f (x) = 0 for x ∈ V(G) \ {u1, u2, u0, w2, w3}. Since in G every vertex in
V(G) \ {u1, u2, u0, w2, w3} has a neighbor in {u0, u1} and also {u2, w2}, f is a 2RiDF of
G[V(G) \ {w3}] of weight 4 and according to Lemma 2 we can extend f to a 2RiDF of G of
weight at most 5 < |V1|+ |V2|, and a contradiction.

A similar line of thought leads to a contradiction if we assume that |V2| = 2, and so
Claim 4 holds.

By Claim 4, we see that G[V0] contains one component isomorphic to K1. Let s be
the vertex of the K1 component. We first show that |NG(s) ∩ (V1 ∪ V2)| ≤ 1. If not, in G
we assume that s has two neighbors in V1 ∪V2, say s1, s2. By Lemma 5 (1) for i, j ∈ [1, 2],
si (resp. uj) can not be adjacent to u1 and u2 (resp. s1 and s2) simultaneously in G. This
implies that either siui /∈ E(G), i ∈ [1, 2], or s1u2 /∈ E(G) and s2u1 /∈ E(G), which violates
Lemma 5 (1) as well. Thus, by Claim 2 |NG(s)∩ (V1 ∪V2)| = 1 and the vertex s′ adjacent to
s in G belongs to V1. Let f be: f (x) = 1 for x ∈ V1, f (s) = 2, f (y) = 0 for y ∈ V2 ∪V(H)).
Observe that by Claim 1 all vertices in V2 are adjacent to V1 in G. Hence, every vertex
in V2 ∪ V(H) is adjacent to s and also V1 in G. Therefore, f is a 2RiDF of G with weight
|V1|+ 1 < |V1|+ |V2| (since |V2| ≥ 2), a contradiction.
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The foregoing discussion shows that there exists a contradiction if we assume that
γri2(G[V0]) = |V0| − 1. In what remains, we handle the case when γri2(G[V0]) = |V0|.

Case 2. γri2(G[V0]) = |V0|. Then by Lemma 1 every component of G[V0] is isomorphic
to K1 or K2. Recall that |Vi| ≥ 2 for i ∈ [0, 2]. Take two vertices u, v in V0 s.t. uv ∈ E(G)
if G[V0] contains a K2 component and u, v are isolated vertices in G[V0] otherwise. By
Lemma 5 (1), we have

|(NG(u) ∩ NG(v)) ∩ (V1 ∪V2)| ≤ 1 (4)

We deal with two subcases in terms of the adjacency property of u and v.
Case 2.1. uv ∈ E(G). Then in G, V0 \ {u, v} contains no vertex adjacent to {u, v}.
Claim 5. In G[V1 ∪V2], V1 ∪V2 contains only vertices with degree at most |V1|+ |V2| − 2.

Suppose that V1 contains a vertex w such that ww′ ∈ E(G) for every w′ ∈ V2. If uw ∈ E(G)
(or vw ∈ E(G)), define a 2RiDF g′ of G[{u, v, w}] as: g′(u) = 0 (or g′(v) = 0), g′(w) = 1
and g′(v) = 2 (g′(u) = 2). According to Lemma 2 we can extend g′ to a 2RiDF of
G, under which (V1 ∪ V2) \ {w} contains at most two vertices not assigned 0. Thus,
w(g) ≤ |V0| − 1 + 3 = |V0|+ 2, a contradiction. We therefore assume that uw /∈ E(G) and
vw /∈ E(G). By Lemma 5 (2), there are at least three vertices in (V1 ∪V2) that are adjacent
to u or v. We WLOG assume that V1 ∪V2 contains a vertex u′ s.t. u′u ∈ E(G). Construct a
2RiDF g′ of G[{u, v, u′, w}] as follows: g′(u) = 0, g′(u′) = 2, and g′(v) = g′(w) = 1. Then,
by Lemma 2 g′ can be extended to a 2RiDF g of G, under which (V1 ∪V2) \ {w, u′} contains
at most one vertex not assigned value 0. Therefore, w(g) ≤ |V0| − 1 + 3 = |V0| + 2, a
contradiction. Similarly, we can also obtain a contradiction if we assume that V2 contains a
vertex adjacent to every vertex of V1. So, Claim 5 holds.

By Claim 5, for {i, j}=[1,2], each vertex of Vi is adjacent to a vertex of Vj in G. If V1 ∩
(NG(u) ∩ NG(v)) = ∅, then in G all vertices of V1 are adjacent to {u, v}. Let f be: f (x) = 2
for x ∈ V2, f (y) = 0 for y ∈ V1 ∪ (V0 \ {u, v}), and f (u) = f (v) = 1. Obviously, f is a
2RiDF of G s.t. w( f ) = |V2|+ 2 < |V1|+ |V2|, a contradiction. We therefore assume that
V1 contains a vertex s s.t. su ∈ E(G) and sv ∈ E(G). Then, in G, by Lemma 5 (1) no
vertex in V2 ∪ (V1 \ {s}) is adjacent to u and v simultaneously. Analogously, the function f :
f (v) = f (u) = 1, f (x) = 2 for x ∈ V1, and f (y) = 0 for y ∈ V2 ∪ (V0 \ {u, v}) (and f (s) =
f (v) = f (u) = 1, f (x) = 2 for x ∈ V2, and f (y) = 0 for y ∈ (V1 \ {s}) ∪ (V0 \ {u, v})) is a
2RiDF of G with weight |V1|+ 2 (and |V2|+ 3). This implies that |V1| = 3 and |V2| = 2.
Let V1 = {s, s1, s2} and V2 = {s3, s4}. Then, in G, neither u nor v is a neighbor of s1 and s2
simultaneously; otherwise, we, by the symmetry, suppose that us1 ∈ E(G) and us2 ∈ E(G).
Let g′ be: g′(v) = g′(s1) = g′(s2) = 0, g′(u) = 1, and g′(s) = 2. Obviously, g′ is a 2RiDF
of G[{u, v, s, s1, s2}] with weight 2. According to Lemma 2, we can extend g′ to a 2RiDF of
G with weight at most |V0| − 1 + |V2|+ 1 = |V0|+ 2, a contradiction. In addition, in G, si,
i ∈ [1, 2], is not adjacent to u and v simultaneously according to Lemma 5 (1). Therefore,
we may assume, by the symmetry, that s1v /∈ E(G) and s2u /∈ E(G).

If no edge between {u, v} and V2 in G exists, then by Lemmas 5 (2), us1 ∈ E(G) and
vs2 ∈ E(G). Then, the function g′ such that g′(s) = g′(s1) = g′(v) = 0, g′(s2) = 2, and
g′(u) = 1 is a 2RiDF of G[{u, v, s, s1, s2}] with weight 2. According to Lemma 2, we can
extend g′ to a 2RiDF of G with weight at most |V2|+ 1+ |V0| − 1 = |V0|+ 2, a contradiction.
We therefore assume that G contains an edge connecting {u, v} and V2, say vs3 ∈ E(G) by
the symmetry.

If s4s ∈ E(G), define g′ as: g′(s3) = 2, g′(s4) = 0, g′(s) = 1, g′(v) = 0. Then, g′ is a
2RiDF of G[{s, v, s3, s4}] with weight 2. By Lemma 2 and Formula 3, we are able to extend g′

to a 2RiDF of G of weight at most |V0| − 1+ 3 = |V0|+ 2, a contradiction. Consequently, we
have s4s /∈ E(G). Then, the function g′ such that g′(s3) = 0, g′(s4) = g′(s) = 2, g′(v) = 1,
g′(u) = 0 is a 2RiDF of G[{s, u, v, s3, s4}] with weight 3, and by Lemma 2 and Formula 3 we
can extend g′ to a 2RiDF of G with weight at most |V0| − 1 + 3 = |V0|+ 2. This contradicts
the assumption.

Case 2.2. uv /∈ E(G). Then, by the selection of u, v and f0, G[V0] contains only isolated
vertices and G does not admit a γri2(G)-function for which the induced subgraph of G by
vertices with value 0 contains K2 components.
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For every x ∈ V0, let Ux
i = NG(x) ∩ Vi for i ∈ [1, 2]. Let f ′ be: f ′(x) = 0 for x ∈

((V1 ∪ V2) \ (Uu
1 ∪Uu

2 ∪Uv
1 ∪Uv

2 )) ∪ (V0 \ {u, v}), f ′(v) = 2, and f ′(u) = 1. Apparently,
f ′ is a 2RiDF of G − (Uu

1 ∪Uu
2 ∪Uv

1 ∪Uv
2 )) with weight 2. According to Lemma 2, we

can extend f ′ to a 2RiDF of G with weight at most |(Uu
1 ∪Uu

2 ∪Uv
1 ∪Uv

2 ))|+ 2. To ensure
|(Uu

1 ∪Uu
2 ∪Uv

1 ∪Uv
2 ))|+ 2 ≥ |V1|+ |V2|, we have

|(V1 ∪V2) \ (Uu
1 ∪Uu

2 ∪Uv
1 ∪Uv

2 )| ≤ 2 (5)

Claim 6. |(V1 ∪ V2) \ (Uu
1 ∪ Uu

2 ∪ Uv
1 ∪ Uv

2 )| = 2 and the two vertices in (V1 ∪ V2) \
(Uu

1 ∪Uu
2 ∪Uv

1 ∪Uv
2 ) are adjacent in G. Define a 2RiDF g′ of G[V0] as: g′(u) = g′(v) = 1.

Suppose that |(V1 ∪ V2) \ (Uu
1 ∪ Uu

2 ∪ Uv
1 ∪ Uv

2 )| ≤ 1. Since V1 and V2 are cliques in G
and every vertex in Uu

1 ∪Uu
2 ∪Uv

1 ∪Uv
2 is adjacent to u or v in G, by Lemma 2 we are

able to extend g′ to a 2RiDF g of G under which at most one vertex in Vi, i ∈ [1, 2], is
not assigned value 0 (here if (V1 ∪ V2) \ (Uu

1 ∪Uu
2 ∪Uv

1 ∪Uv
2 ) contains a vertex, say w,

then let g(w) = 2). Clearly, w(g) = w(g′) + 2 ≤ |V0|+ 2, a contradiction. Moreover, if
(V1 ∪V2) \ (Uu

1 ∪Uu
2 ∪Uv

1 ∪Uv
2 ) contains two nonadjacent vertices in G, say w1, w2, then w1

and w2 are not in the same set Vi for some i ∈ [1, 2]. Therefore, we can extend g′ to a 2RiDF
g of G via letting g′(x) = 0 when x is in (V1 ∪ V2) \ {w1, w2} and g′(w1) = g′(w2) = 2.
However, w(g) = w(g′) + 2 ≤ |V0| + 2, a contradiction. This completes the proof of
Claim 6.

By Claim 6, (V1 ∪V2) \ (Uu
1 ∪Uu

2 ∪Uv
1 ∪Uv

2 ) contains two adjacent vertices in G, say
w1, w2. If there exists a z ∈ (V0 \ {u, v}) s.t. zw1 ∈ E(G) (or zw2 ∈ E(G)), then set g′ as:
g′(z) = g′(u) = g′(v) = 1, g′(w1) = 0 (or g′(w2) = 0), g′(w2) = 2 (or g′(w1) = 2). Since in
G every vertex in (V1 ∪V2) \ {w2} has a neighbor in {z, u, v} and every vertex in V′ \ {w2}
is a neighbor of w2, where w2 ∈ V′ for some V′ ∈ {V1, V2}, we can extend g′ to a 2RiDF
g of G according to Lemma 2. Under g, every vertex in V′ \ {w2} is assigned value 0 and
at most one vertex in {V1, V2} \ V′ is not assigned value 0. Therefore, w(g) ≤ |V0|+ 2,
a contradiction. This demonstrates that in G no vertex in V0 is adjacent to {w1, w2}.
Furthermore, if there is a z ∈ V0 \ {u, v}, then by Claim 6 we have (V1 ∪V2) \ (Uu

1 ∪Uu
2 ∪

Uz
1 ∪Uz

2) = {w1, w2} and (V1 ∪V2) \ (Uv
1 ∪Uv

2 ∪Uz
1 ∪Uz

2) = {w1, w2}, which implies that
NG(z) = Uu

1 ∪Uu
2 ∪Uv

1 ∪Uv
2 . Set g′ as: g′(z) = 1, g′(u) = g′(v) = 2 and g′(x) = 0 for

x ∈ Uu
1 ∪Uu

2 ∪Uv
1 ∪Uv

2 . Then, g′ is a 2RiDF of G− ({w1, w2} ∪ (V0 \ {u, v, z})) with weight
3, and we can extend g′ to a 2RiDF of G with weight at most (|V0|+ 2− 3) + 3 = |V0|+ 2
according to Lemma 2, a contradiction. So far, we have shown that V0 = {u, v}, that is,
γri2(G) = n− 2.

Now, we define a 2RiDF f ′ of G[{u, v, w1, w2}] as follows: f ′(w1) = f ′(w2) = 0,
f ′(u) = 1 and f ′(v) = 2. According to Lemma 2, we can extend f ′ to a 2RiDF f of G with
weight at most n− 2. To ensure w( f ) ≥ γri2(G) = n− 2, f must be a γri2(G)-function
(since w( f ) = n − 2). However, G[{w1w2}] is isomorphic to K2. This contradicts the
selection of f0. Eventually, the proof of Theorem 3 is finished.

Based on the foregoing analysis, we observed that the upper bound n + 2 can be
attained by graphs Sr(r ≥ 2), S+

r (r ≥ 2), and S(r, 1) (r ≥ 1), while we did not find other
graphs that possess this property. So, we propose a problem as follows.

Question 1. Is it enough to determine graphs G with γri2(G) + γri2(G) = |V(G)|+ 2
by Sr(r ≥ 2), S+

r (r ≥ 2), and S(r, 1)(r ≥ 1)?
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