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Abstract: A moving-mesh finite-difference solution of a Lotka-Volterra competition-diffusion model
of theoretical ecology is described in which the competition is sufficiently strong to spatially segregate
the two populations, leading to a two-phase problem with a coupling condition at the moving
interface. A moving mesh approach preserves the identities of the two species in space and time,
so that the parameters always refer to the correct population. The model is implemented numerically
with a variety of parameter combinations, illustrating how the populations may evolve in time.

Keywords: segregation; competition; interface condition; velocity-based moving meshes; finite-differences

1. Introduction

Ecological competition is a widely studied concept in both theoretical and experimen-
tal ecology. In particular, the interspecific competition has long been one of ecology’s most
prevailing pursuits as it is one of the factors that affect the evolution of species and can
alter populations and community structure.

Many researchers have made efforts to develop models to investigate species com-
petition from the viewpoint of mathematical ecology. For a theoretical understanding
of spatial patterns arising in population dynamics for competitive species, several free
boundary problems have been proposed [1–5] which provide useful theoretical results.
Various numerical methods have been applied to solve such free boundary problems, for
instance, in [6] the authors use a front tracking approach and a front fixing approach to
a two-species competition-diffusion model with two free boundaries, whereas in [7] a
moving mesh finite element method is used solve a two competitive segregated species
that cannot coexist in space.

Due to the complexity of the equations numerical approximation is useful both for
extracting quantitative solutions and for achieving a qualitative understanding of the
behaviour of the solution. However, special attention must be paid to the moving interface,
whose location usually requires higher resolution than the rest of the domain while the
solution may exhibit singular behaviour there.

To avoid this difficulty adaptive methods have been used which modify the resolution
of the domain as the solution evolves in response to changes in the dependent variable.
Adaptive methods become preferable to fixed mesh methods when the areas of interest
are a fraction of the domain, such as the moving interface. With adaptive methods greater
precision can be achieved locally without having to increase the resolution everywhere in
the domain, which would lead to a very computationally expensive scheme.

There are three most used adaptive mesh methods, namely h-, p-, and r-refinement.
The first involves repeated subdivision of intervals of a fixed mesh around the areas of
interest. The second is often used in combination with h-refinement and includes higher-
order polynomials in each interval between the mesh points, so that functions are better
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approximated. Finally, r-refinement is the movement of existing mesh points at each
time-step to track a feature of interest.

Constructions of r-refinement moving mesh methods vary considerably. In [8] moving
mesh methods are classified as velocity-based or location-based approaches. In the latter
case the solution is found from a moving form of the PDE which is solved simultaneously
with a mesh equation to generate the node position and the solution together. This mov-
ing mesh approach (MMPDE) is described in [9,10], see also the Moving Finite Element
method [11,12]. In the present paper a velocity-based r-refinement scheme is used in
which the mesh is generated by one Eulerian conservation principle while the solution is
determined algebraically from a Lagrangian form of conservation [13–15]. We first briefly
describe the moving mesh method based on conservation.

The conservation method uses an integral to preserve a desired conserved quantity
within each patch of elements from which the velocities are constructed. For a mass
conserving problem, in which the global mass is constant this quantity is the conserved
local mass. However, for a non-mass conserving problem the theory uses the concept of
relative mass. By the Leibniz Integral Rule we can then construct an equation from which
the velocity of each node is derived. For a unique solution of that equation, the population
density must be known at a node or a velocity must be applied to a node which may be
thought of as an ‘anchor’ point.

The approach used in this paper is similar to the finite difference method used in [15]
where the method was applied to one-dimensional moving boundary problems such as the
mass conserving porous medium equation, Richard equation in hydrology, and the Crank-
Gupta problem that does not conserve mass. Finite element versions of the velocity-based
moving mesh approach have been used by Baines, Hubbard and Jimack in [13,14] and by
Baines, Hubbard, Jimack and Mahmood in [16].

In this paper we apply the moving mesh finite difference method based on con-
servation to a PDE system of Lotka-Volterra competition model, first proposed by [17],
which describes a two phase segregated reaction-diffusion system with a high competition
limit where the species are completely spatially segregated and only interact through an
interface condition. It is shown in [17] that where the competition is strong enough to
spatially segregate the two populations the Lotka-Volterra system can be reduced to a form
similar to a Stefan problem in physics [18]. The two major differences are firstly, that there
are additional logistic growth terms in the Lotka-Volterra model and secondly, there is
a parameter in the Lotka-Volterra model of the interface condition (the equivalent of the
latent heat coefficient of the Stefan problem) which is set equal to zero. Unlike the Stefan
problem, one species does not transform into another which means that the competition
system has an interface condition that specifies the interface velocity only implicitly.

In [19] the authors considered the segregation problem due to high competition with
inhomogeneous Dirichlet boundary condition while similar studies in the case of Neumann
boundary conditions are presented in [20,21].

The system of equations presented in this paper is suitable to describe concepts in
ecology when two species with similar ecological niches cannot co-exist, known as the
competitive exclusion principle [22]. One will always overcome the other, so the more
competitive species will stay and the subordinate one will either adapt or be excluded by
either emigration or extinction.

The layout of the paper is as follows. Section 2 gives details of the Lotka-Volterra
competition model with a high competitive rate and describes the relative conservation
principle approach and its finite difference implementation, together with the algorithm of
the moving mesh finite difference method. In Section 3 illustrations are given for a variety
of parameter combinations, observing the various behaviours that dominate as the species
evolve through time. Finally, Section 4 gives a brief discussion of the results and potential
research directions.
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2. Materials and Methods
2.1. The Lotka-Volterra System

The Lotka-Volterra system is the two-component reaction-diffusion system

∂u1

∂t
= δ1

∂2u1

∂x2 + f (u1, u2)u1 x ∈ R1(t), t > 0 (1)

∂u2

∂t
= δ2

∂2u2

∂x2 + g(u1, u2)u2 x ∈ R2(t) t > 0 (2)

where u1(x, t) and u2(x, t) are the population densities of two competing species in abutting
regions R1(t) and R2(t), the parameters δ1, δ2 are constant diffusion coefficients, and

f (u1, u2) = r1

(
1− u1 + K1u2

k1

)

g(u1, u2) = r2

(
1− u2 + K2u1

k2

)
.

are reaction terms in which K1, K2 are species-specific competition rates, k1, k2 are the
carrying capacities of the species, and r1, r2 > 0 are reproductive rate parameters.

In [17] it is demonstrated that for two species completely segregated the reaction terms
can be reduced to

f (u1, u2) = r1(1− u1/k1)

g(u1, u2) = r2(1− u2/k2).

so that Equations (1) and (2) become

∂u1

∂t
= δ1

∂2u1

∂x2 +

{
r1

(
1− u1

k1

)}
u1 x ∈ R1(t), t > 0 (3)

∂u2

∂t
= δ2

∂2u2

∂x2 +

{
r2

(
1− u2

k2

)}
u2 x ∈ R2(t) t > 0 (4)

The resulting system represents the limit in which the carrying capacities k1, k2 values
are very large, i.e., the competition rate is high enough that the two species cannot coexist
in space and interact only through the interface boundary.

Initial conditions on u1 and u2 are selected such that one species is in growth and the
other in decline. These are shown in Figure 1.

Zero Neumann boundary conditions ∂u1/∂x = 0 and ∂u2/∂x = 0 are applied at fixed
external boundaries away from the interface.

2.2. The Interface Conditions

At the interface between the two species there is a condition that gives the relationship
between their fluxes. In essence, the species both flow into the interface and annihilate
each other with a rate determined by the ratio of the interspecific competition coefficients
µ = K2

K1
. This condition is given as

µδ1
∂u1

∂x
= −δ2

∂u2

∂x
. (5)

Because the annihilation is complete we also have zero Dirichlet conditions u1 = u2 = 0
at the interface.
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Figure 1. Initial conditions for the competition system, with population density u1 of species 1 and u2 of species 2 presented
by the graph in 0 ≤ x ≤ 0.5 and in 0.5 ≤ x ≤ 1 respectively. The interface node has zero population and must always satisfy
the interface condition.

2.3. The MMFDM Conservation Method
2.3.1. A Relative Conservation Principle

Define the total population of species p as

θp(t) =
∫

Rp(t)
up(x, t)dx

(p = 1, 2). Then by Leibnitz’ Integral Rule,

θ̇p =
dθp

dt
=

d
dt

∫
Rp(t)

up(x, t)dx =
∫

Rp(t)

∂up

∂t
dx +

[
upvp

]
Rp(t)

The final term vanishes by the boundary and interface conditions, so

θ̇p =
∫

Rp(t)

∂up

∂t
dx (p = 1, 2).

From (3) and (4),

θ̇p =
∫

Rp(t)

(
δp

∂2up

∂x2 +

{
rp

(
1−

up

kp

)}
up

)
dx (p = 1, 2) (6)

which can be integrated in time to give θp.
We now suppose that population fractions c(Ωp)

c(Ωp) =
1

θp(t)

∫
Ωp(t)

up(x, t)dx, (p = 1, 2), (7)

in each moving subdomain Ωp(t) are independent of time, so that θp(t) and up(x, t) satisfy
the relative conservation principle

c(Ωp) =
∫

Ωp(t)

1
θp(t)

up(x, t)dx, (p = 1, 2), (8)
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Note that up
θp

are conserved quantities.
Since the population fractions c(Ωp) are constant in time, they are determined by the

conditions at the initial time t0, i.e.,

c(Ωp) =
1

θp(t0)

∫
Rp(t0)

up(x, t0)dx

Writing (8) as ∫
Ωp(t)

up(x, t)dx = c(Ωp)θp(t), (p = 1, 2). (9)

and differentiating the left hand side of (9) with respect to time using Leibnitz Integral Rule,

d
dt

[∫
Ωp(t)

up(x, t)dx
]
=
∫

Ωp(t)

(
∂up

∂t
+

∂

∂x
(upvp)

)
dx, (p = 1, 2)

where vp is the velocity of points of the domain. Therefore, by (9), given the population
fractions c(Ωp) of the total mass θ̇p, the velocity vp and up satisfy the equations

c(Ωp)θ̇p −
∫

Ωp(t)

∂

∂x
(upvp)dx =

∫
Ωp(t)

∂up

∂t
dx, (p = 1, 2),

where the θ̇p are given by (3) or (4), leading to

c(Ωp)θ̇p −
[
upvp

]
Ωp(t)

= δp

[
∂up

∂x

]
Ωp(t)

+ rp

∫
Ωp(t)

up(x, t)
(

1−
up(x, t)

kp

)
dx, (10)

We let the subdomains Ω1(t) in the region R1(t) consist of the interval (a, x(t)) where
a is a fixed boundary and let x(t) be any point in the region R1(t). Similarly the subdomains
Ω2(t) in the region R2(t) consist of the interval (x(t), b) where b is a fixed boundary and
x(t) is any point in the region R2(t).

The boundary conditions at the external boundaries a and b are ∂u1/∂x = ∂u2/∂x = 0,
and also v1 = v2 = 0 because the boundaries are fixed. Together with the condition that
u1 = u2 = 0 at the interface boundary, Equation (10) for the velocities v1 and v2 and the
rates of change of the total mass θ̇1 and θ̇2 satisfy

c1(x)θ̇1 − (u1v1)|x(t) = δ1
∂u1

∂x

∣∣∣∣
x(t)

+ r1

∫ x(t)

a
u1(x, t)

(
1− u1(x, t)

k1

)
dx (11)

and

c2(x)θ̇2 + (u2v2)|x(t) = −δ2
∂u2

∂x

∣∣∣∣
x(t)

+ r2

∫ b

x(t)
u2(x, t)

(
1− u2(x, t)

k2

)
dx (12)

respectively, where

θ1 =
∫ xm(t)

0
u(x, t)dx, θ2 =

∫ 1

xm(t)
u(x, t)dx

and

c1(x) =
1

θ1(t)

∫ x(t)

0
u(x, t)dx, c2(x) =

1
θ2(t)

∫ 1

x(t)
u(x, t)dx

From (6),

θ̇1 = δ1
∂u1

∂x

∣∣∣∣
xm(t)

+ r1

∫ xm(t)

a
u1(x, t)

(
1− u1(x, t)

k1

)
dx (13)
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and

θ̇2 = −δ2
∂u2

∂x

∣∣∣∣
xm(t)

+ r2

∫ b

xm(t)
u2(x, t)

(
1− u2(x, t)

k2

)
dx (14)

2.3.2. The Interface Condition

Since the population density u = 0 at the interface and the population densities either
side of the interface are positive, the density function is ’V’ shaped at the interface.

From [17] the interface condition is given by (5). Whilst the interface velocity is not
given explicitly by (5) this equation does determine the location of the interface implicitly.
Thus, if we know ∂u/∂x adjacent to the interface in each region we may use the condition
that u = 0 at the interface to infer an interface position such that the values of δp∂up/∂x
either side of the interface are in the ratio −µ.

We now describe a finite difference numerical method for the solution of the problem.

2.3.3. Numerical Solution

Let the domain (a, b) be (0, 1). At time level t = tn define time-dependent mesh points

0 = x0 < xn
1 < ... < xn

m−1 < xn
m < xn

m+1 < ... < xn
N < xn

N+1 = 1

where xn
m is the node at the moving interface, and let un

i , (0 ≤ i ≤ N + 1), approximate
u(x, t) by un

i at these points.
The initial values θ0

1 and θ0
2 of the total mass approximations θn

1 ≈ θ1(t) and θn
2 ≈ θ2(t)

of (13) and (14) are estimated by the composite trapezium rule

θ0
1 =

m

∑
i=1

1
2
(u0

i−1 + u0
i )(x0

i − x0
i−1), θ0

2 =
N

∑
i=m

1
2
(u0

i + u0
i+1)(x0

i+1 − x0
i ), (15)

and the constant-in-time relative masses c1,i and c2,i in the interval (xn
i−1, xn

i ) by

c1,i =
1
θ0

1

1
2
(u0

i + u0
i+1)(x0

i+1 − x0
i ), (0 ≤ i < m− 1), (16)

c2,i =
1
θ0

2

1
2
(u0

i + u0
i−1)(x0

i − x0
i−1), (m + 1 < i ≤ N + 1), (17)

at the initial time t = t0.
For the initial conditions we take the x0

i to be equally spaced and the u0
i pointwise

from an initial function

u(x, 0) = 30, (0 ≤ x ≤ 0.34)

u(x, 0) = (x− 0.2)(0.5− x)× 170× 7.85, (0.35 ≤ x ≤ 0.5)

u(x, 0) = 0, (x = 0.51)

u(x, 0) = (x− 0.65)(0.5− x)× 170× 94, (0.52 ≤ x ≤ 0.58)

u(x, 0) = 90, (0.59 ≤ x ≤ 1)

chosen to resemble the one in [7] (see Figure 1).
We remark that in the case of the chosen initial conditions, a uniform mesh x0

i can be
obtained only for an odd N.

2.3.4. Rates of Change of the Total Populations

The rates of change of the total populations θ̇1, θ̇2 of (6) are approximated by composite
trapezium rules, in region 1 from (13),

θ̇n
1 = δ1

(
un

m − un
m−1

xn
m − xn

m−1

)
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+r1

m

∑
i=1

1
2

{
un

i−1

(
1−

un
i−1
k1

)
+ un

i

(
1−

un
i

k1

)}
(xn

i − xn
i−1) (18)

and in region 2, from (14),

θ̇n
2 = −δ2

(
un

m+1 − un
m

xn
m+1 − xn

m

)

+r2

N

∑
i=m

1
2

{
un

i

(
1−

un
i

k2

)
+ un

i+1

(
1−

un
i+1
k2

)}
(xn

i+1 − xn
i ) (19)

2.3.5. Approximating the Velocities

From (11), using the composite trapezium rule, the velocity vn
i in region 1 satisfies,

c1,i θ̇
n
1 + un

i vn
i = δ1

∂u
∂x

∣∣∣∣i
m

+r1

i

∑
j=2

1
2

{
un

j−1

(
1−

un
j−1

k1

)
+ un

j

(
1−

un
j

k1

)}
(xn

j − xn
j−1), (1 < i < m− 1),

where we have taken the subdomain Ωn
1 to be the interval (xn, xn

m). Similarly, from (12),
the velocity vn

2 in region 2 satisfies

c2,i θ̇
n
2 + un

i vn
i = −δ2

∂u
∂x

∣∣∣∣i
m

+r2

N

∑
j=i

1
2

{
un

j

(
1−

un
j

k2

)
+ un

j+1

(
1−

un
j+1

k2

)}
(xn

j+1 − xn
j ), (m + 1 < i < N).

where we have taken the subdomain Ωn
2 to be the interval (xn

m, xn).

2.3.6. Time-Stepping

For the time integration we adopt an explicit Euler time-stepping approach. Given
the ui, we update the total masses θp from the equation θ̇p = dθp/dt, (p = 1, 2) using (18)
and (19) by

θn+1
p = θn

p + ∆t θ̇n
p (20)

(p = 1, 2), where ∆t is the time step, and the mesh points xn
i are updated from the equation

dxi/dt = vi by
xn+1

i = xn
i + ∆t vn

i (i 6= m), (21)

The updates are first-order accurate in time and subject to limitations on the time step
to preserve node ordering.

The explicit Euler method is adequate since the time step used is small and the main
purpose of the paper is the treatment of the interface. Implicit schemes for the nonlinear
Equations (3) and (4) require convergence of an iteration, details of which are not central to
the method. Higher order explicit schemes can be found in [23,24].

Note that in case of a zero velocity there is the following well-known sufficient
condition on a time step ∆t in the explicit scheme to prevent the un+1

i (and hence the local
mass in an interval) going unstable,

δp∆t
(∆xmin)2 ≤

1
2

, (p = 1, 2) (22)

Here we take (22) as a guide for a safe time step in the moving mesh case.
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2.3.7. The Population Densities

In order to determine the approximate population densities ui at the new time step
t = tn+1 from the θn+1

p and xn+1
i we approximate the relative conservation principle (8) as

1
θn+1

p
(xn+1

i+1 − xn+1
i−1 )u

n+1
i = cp,i (p = 1, 2), (23)

where from (16) and (17) the constants

cp,i =
1
θ0

p
(x0

i+1 − x0
i−1)u

0
i (p = 1, 2), (24)

are dependent only on initial values.
Thus, once the xn+1

i have been found, in region 1, the approximate population density
un+1

i is given by

un+1
i =

c1,iθ
n+1
1

(xn+1
i+1 − xn+1

i )
, (0 ≤ i ≤ m− 1), (25)

and in that region 2 by

un+1
i =

c2,iθ
n+1
2

(xn+1
i − xn+1

i−1 )
(m + 1 ≤ i ≤ N + 1). (26)

while un+1
m = 0 from the interface condition.

Note that the values of un+1
m±1 determined by (23) depend on xn+1

m , which is not yet
known at tn+1. This value can however be found using the one-sided approximations

un+1
m−1 =

c1θn+1
1

1
2 (xn+1

m−1 − xn+1
m−2)

, un+1
m+1 =

c2θn+1
2

1
2 (xn+1

m+2 − xn+1
m+1)

where from (16) and (17)

c1 =
1
2

u0
m−1(x0

m−1 − x0
m−2), c2 =

1
2

u0
m+1(x0

m+2 − x0
m+1)

2.3.8. Approximating the Interface

The interface condition (5) is approximated by

µδ1
um − um−1

xm − xm−1
= −δ2

um+1 − um

xm+1 − xm
, (27)

where the subscript m denotes the interface node and the xm±1, um±1 are adjacent node
positions and solution values. Since um = 0, from (27) an approximation to the position of
the interface node xn+1

m in terms of adjacent nodal values at m± 1 is

xn+1
m =

(
µδ1un+1

m−1xn+1
m+1 + δ2un+1

m+1xn+1
m−1

µδ1un+1
m−1 + δ2un+1

m+1

)
. (28)

Thus, once the other xn+1
i , un+1

i have been updated, xn+1
m can be found from (28).

2.4. Algorithm

In summary, the moving mesh finite difference solution of the competition-diffusion
problem given by Equations (3) and (4) with the interface condition (5) on the moving mesh
in 1-D generated by (8) is given by the following algorithm.
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From the initial mesh and the initial condition compute the initial values θp(0), (p = 1, 2)
of the total populations of the species from (15) and the values of the relative masses cp,i
and cp,i from (16), (17) and (24).

Then for each time step:

1. Find the rates of change θ̇1, θ̇2 of the total masses from (18) and (19),
2. Calculate the nodal velocities vi from (11) and (12),
3. Update θ1 and θ2 from θ̇1 and θ̇2 using the explicit Euler scheme (20),
4. Generate the nodes xi at the next time-step from the vi using the explicit Euler

scheme (21),
5. Update the population densities ui at the next time level in each region from (25)

and (26),
6. Update the new position of the interface node xm at the next time level from (28).

3. Results

We find that the model is stable and robust for a variety of parameter choices even
when using the explicit Euler integration scheme when using a sufficiently small time step.
We observe minimal oscillations affecting the smoothness of the results.

3.1. A Parameter Choice

In the body of work concerning Lotka-Volterra equations there is a vast range of
parameter values in use because there are so many varied but suitable examples of the
type of competition that are described here. We select a conservatively representative
set of parameters, chosen to demonstrate some of the behaviour that this model is able
to describe.

For the first example we choose a set of parameters that favour species 1, namely
δ1 = δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. Even if species 2 makes territorial
gains at early stages with the moving interface shifting towards left, the increase in mass
of species 1 becomes its weapon to transform it from the inferior species to the superior
one (Figure 2). The moving interface changes direction, moving towards the right at an
approximately constant velocity where species 1 continues to increase in density with a rate
that decreases as time progresses (Figure 3). As we approach the annihilation of species 2,
the interface velocity increases again. This is due to the low mass of species 2 affecting its
ability to grow (Figure 4). The movement of the interface is shown in Figure 5.
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Figure 2. Result of competition model at t = 1.5. Here we use δ1 = δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run
the model with a time step of 0.00001 for 150,000 iterations and plot the results every 0.01.We see the internal dynamics of
the species driving the population densities and interface fluxes, and the position of the interface responding to those fluxes.
The initial conditions are shown in red, with species 1 in blue and species 2 in green.
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Figure 3. Result of competition model at t = 4.5. Here we use δ1 = δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run
the model with a time step of 0.00001 for 450,000 iterations and plot the results every 0.01. The interface continues to evolve
and the masses of the species are now limited by the respective carrying capacities. The initial conditions are shown in red,
with species 1 in blue and species 2 in green.
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Figure 4. Result of competition model at t = 8. Here we use δ1 = δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run
the model with a time step of 0.00001 for 800,000 iterations and plot the results every 0.01. We observe that whilst species 2
initially grew in mass, it will now be wiped out by competition with species 1.The initial conditions are shown in red, with
species 1 in blue and species 2 in green.
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Figure 5. Movement of the interface position xm for the competition model with parameters δ1 = δ2 = 0.01, k1 = k2 = 100,
r1 = r2 = 1 and µ = 3. We run the model with a time step of 0.00001 for 800,000 iterations. We see the interface velocity
accelerate as we approach an annihilation event.

3.2. Other Parameter Choices
3.2.1. Carrying Capacities

We now investigate other parameter choices. We restrict the growth of species 1 by
lowering its carrying capacity and observe that in this scenario neither species is dominant,
even though all the competition and diffusion characteristics are unchanged. Here we use
δ1 = δ2 = 0.01, k1 = 50, k2 = 150, r1 = r2 = 1 and µ = 3. With these differently chosen
carrying capacities we find that the interface position is approximately steady and the two
species are in balance. This scenario is shown in Figure 6. Density dependence can affect
the ability of a species to compete. In the case of decreasing the carrying capacity of species
1 we observe that species can both exist in space, still competing for common resources
with none shifting towards other regions in space or in some cases becoming extinct.

3.2.2. Diffusion Characteristics

Alternatively we may adjust the diffusion characteristics of the system. By allowing
species 2 to diffuse at a higher rate, we observe that species 2 is able to make territorial
gains due to this property alone (Figure 7). Here we use δ1 = 0.01, δ2 = 0.05, k1 = k2 = 100,
r1 = r2 = 1 and µ = 3. Due to the growth characteristics, we can see interesting temporal
effects. Here the interface velocity has actually reversed directions as the system changes
from diffusion dominated to growth dominated. We observe that species 2 is able to make
territory gains initially due to its high diffusion rate, even though the competition rate is
unaltered. However, as time goes on, the growth and competition characteristics become
increasingly important. We see species 1 becoming more dominant over time, so that the
interface velocity actually reverses direction.

Figure 8 shows the evolution of the system at t = 11 and Figure 9 shows the movement
of the interface with the direction reversal.
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Figure 6. Result of competition model at t = 9, considering the effect of altered carrying capacities. Here we use
δ1 = δ2 = 0.01, k1 = 50, k2 = 150, r1 = r2 = 1 and µ = 3. We run the model with a time step of 0.00001 for 150,000
iterations and plot the results every 0.01. The figure shows the rapid territorial gains. The initial conditions are shown in
red, with species 1 in blue and species 2 in green.
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Figure 7. Result of competition model at t = 1.5, considering the effect of an increased diffusion rate for species 2. Here we
use δ1 = 0.01, δ2 = 0.05, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step of 0.00001 for 150,000
iterations and plot the results every 0.01. The figure shows the rapid territorial gains of species 2 over species 1 due to its
high diffusion rate. The initial conditions are shown in red, with species 1 in blue and species 2 in green.
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Figure 8. Result of competition model at t = 11, considering the effect of an increased diffusion rate for species 2. Here we
use δ1 = 0.01, δ2 = 0.05, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step of 0.00001 for 1,100,000
iterations and plot the results every 0.01. We see that the initial diffusion-driven gains by species 2 are reversed, and that the
overall growth characteristics are dominating so that species 1 is gaining territory. The initial conditions are shown in red,
with species 1 in blue and species 2 in green.
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Figure 9. Position of interface, xm, showing interface movement for the competition model at up to t = 11, considering
the effect of an increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05, k1 = k2 = 100, r1 = r2 = 1 and
µ = 3. We run the model with a time step of 0.00001 for 1,100,000 iterations. Due to the growth characteristics we can
see interesting temporal effects. Here the interface velocity has actually reversed direction as the system changes from
diffusion-dominated to growth-dominated.
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4. Discussion

In this paper we constructed a moving mesh finite difference method based on conser-
vation for the Lotka-Volterra competition system with a high competition limit, such that
the species are completely spatially segregated at an interface. The system of equations
produced interesting and realistic behaviour in a very stable model. We were able to im-
plement the model with a wide variety of creative parameter combinations, and observed
various effects dominating in turn as the populations evolve through time.

The illustrations presented above give confidence that the model and the moving
mesh finite difference approach is likely to be able to satisfy the requirements of modelling
a wide variety of competition systems and is numerically stable to a large choice of set-up
parameters and is able to produce complex behaviours without problems.

For a set of parameters that favour species 1 we see an increasing interface velocity
in the initial stages followed by a change in direction and a long steady phase where the
interface velocity is approximately constant. Although the population of species 2 initially
makes territorial gains it is eventually wiped out by the competition with species 1. As the
annihilation of species 2 is approached, the interface velocity increases again. This is due
to the low population of species 2 affecting its ability to compete with species 1.

If the growth of species 1 is restricted by lowering its carrying capacity, interestingly,
we observe that neither species is dominant, even though all the competition and diffusion
characteristics are unchanged. Therefore, density dependence can affect the competitive
ability of a species.

In the case of increasing the diffusion rate for species 2, this species is able to make
initial territorial gains, even though the competition rate is unaltered. However, as time
goes on, growth and competition characteristics become increasingly important and species
1 becomes more dominant, so the interface velocity reverses direction.

A natural extension is to two dimensions along the lines described in [18], a first
attempt appearing in reference [25] which foundered only on stability issues. In further
work it would be interesting to compare the behaviour of the model against an empirical
data set. The model lends itself to alterations to the logistic terms and changes to parameters
without the need for any further development. The aim should be to understand the
requirements from both a mathematical and quantitative perspective.
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