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Abstract: We consider a Metropolis–Hastings method with proposal N (x, hG(x)−1), where x is
the current state, and study its ergodicity properties. We show that suitable choices of G(x) can
change these ergodicity properties compared to the Random Walk Metropolis case N (x, hΣ), either
for better or worse. We find that if the proposal variance is allowed to grow unboundedly in the tails
of the distribution then geometric ergodicity can be established when the target distribution for the
algorithm has tails that are heavier than exponential, in contrast to the Random Walk Metropolis
case, but that the growth rate must be carefully controlled to prevent the rejection rate approaching
unity. We also illustrate that a judicious choice of G(x) can result in a geometrically ergodic chain
when probability concentrates on an ever narrower ridge in the tails, something that is again not true
for the Random Walk Metropolis.

Keywords: Monte Carlo; MCMC; Markov chains; computational statistics; bayesian inference

1. Introduction

Markov chain Monte Carlo (MCMC) methods are techniques for estimating expecta-
tions with respect to some probability measure π(·), which need not be normalised. This is
done by sampling a Markov chain which has limiting distribution π(·), and computing
empirical averages. A popular form of MCMC is the Metropolis–Hastings algorithm [1,2],
where at each time step a ‘proposed’ move is drawn from some candidate distribution,
and then accepted with some probability, otherwise the chain stays at the current point. In-
terest lies in finding choices of candidate distribution that will produce sensible estimators
for expectations with respect to π(·).

The quality of these estimators can be assessed in many different ways, but a common
approach is to understand conditions on π(·) that will result in a chain which converges
to its limiting distribution at a geometric rate. If such a rate can be established, then a Central
Limit Theorem will exist for expectations of functionals with finite second absolute moment
under π(·) if the chain is reversible.

A simple yet often effective choice is a symmetric candidate distribution centred
at the current point in the chain (with a fixed variance), resulting in the Random Walk
Metropolis (RWM) (e.g., [3]). The convergence properties of a chain produced by the RWM
are well-studied. In one dimension, essentially convergence is geometric if π(x) decays
at an exponential or faster rate in the tails [4], while in higher dimensions an additional
curvature condition is required [5]. Slower rates of convergence have also been established
in the case of heavier tails [6].

Recently, some MCMC methods were proposed which generalise the RWM, whereby
proposals are still centred at the current point x and symmetric, but the variance changes
with x [7–11]. An extension to infinite-dimensional Hilbert spaces is also suggested in
Reference [12]. The motivation is that the chain can become more ‘local’, perhaps making
larger jumps when out in the tails, or mimicking the local dependence structure of π(·)
to propose more intelligent moves. Designing MCMC methods of this nature is particu-
larly relevant for modern Bayesian inference problems, where posterior distributions are
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often high dimensional and exhibit nonlinear correlations [13]. We term this approach
the Position-dependent Random Walk Metropolis (PDRWM), although technically this is a
misnomer, since proposals are no longer random walks. Other choices of candidate dis-
tribution designed with distributions that exhibit nonlinear correlations were introduced
in Reference [13]. Although powerful, these require derivative information for log π(x),
something which can be unavailable in modern inference problems (e.g., [14]). We note
that no such information is required for the PDRWM, as shown by the particular cases sug-
gested in References [7–11]. However, there are relations between the approaches, to the
extent that understanding how the properties of the PDRWM differ from the standard
RWM should also aid understanding of the methods introduced in Reference [13].

In this article, we consider the convergence rate of a Markov chain generated by the
PDRWM to its limiting distribution. Our main interest lies in whether this generalisation
can change these ergodicity properties compared to the standard RWM with fixed covariance.
We focus on the case in which the candidate distribution is Gaussian, and illustrate that such
changes can occur in several different ways, either for better or worse. Our aim is not to give
a complete characterisation of the approach, but rather to illustrate the possibilities through
carefully chosen examples, which are known to be indicative of more general behaviour.

In Section 2 necessary concepts about Markov chains are briefly reviewed, before the
PDRWM is introduced in Section 3. Some results in the one-dimensional case are given in
Section 4, before a higher-dimensional model problem is examined in Section 5. Throughout
π(·) denotes a probability measure (we use the terms probability measure and distribution
synonymously), and π(x) its density with respect to Lebesgue measure dx.

Since an early version of this work appeared online, some contributions to the lit-
erature were made that are worthy of mention. A Markov kernel constructed as a state-
dependent mixture is introduced in Reference [15] and its properties are studied in some
cases that are similar in spirit to the model problem of Section 5. An algorithm called
Directional Metropolis–Hastings, which encompasses a specific instance of the PDRWM, is
introduced and studied in Reference [16], and a modification of the same idea is used to
develop the Hop kernel within the Hug and Hop algorithm of Reference [17]. Kamatani
considers an algorithm designed for the infinite-dimensional setting in Reference [18] of a
similar design to that discussed in Reference [12] and studies the ergodicity properties.

2. Markov Chains and Geometric Ergodicity

We will work on the Borel space (X ,B), with X ⊂ Rd for some d ≥ 1, so that each
Xt ∈ X for a discrete-time Markov chain {Xt}t≥0 with time-homogeneous transition
kernel P : X × B → [0, 1], where P(x, A) = P[Xi+1 ∈ A|Xi = x] and Pn(x, A) is defined
similarly for Xi+n. All chains we consider will have invariant distribution π(·), and be both
π-irreducible and aperiodic, meaning π(·) is the limiting distribution from π-almost any
starting point [19]. We use | · | to denote the Euclidean norm.

In Markov chain Monte Carlo the objective is to construct estimators of Eπ [ f ], for some
f : X → R, by computing

f̂n =
1
n

n

∑
i=1

f (Xi), Xi ∼ Pi(x0, ·).

If π(·) is the limiting distribution for the chain then P will be ergodic, meaning f̂n
a.s.−→

Eπ [ f ] from π-almost any starting point. For finite n the quality of f̂n intuitively depends
on how quickly Pn(x, ·) approaches π(·). We call the chain geometrically ergodic if

‖Pn(x, ·)− π(·)‖TV ≤ M(x)ρn, (1)

from π-almost any x ∈ X , for some M > 0 and ρ < 1, where ‖µ(·) − ν(·)‖TV :=
supA∈B |µ(A)− ν(B)| is the total variation distance between distributions µ(·) and ν(·) [19].
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For π-reversible Markov chains geometric ergodicity implies that if Eπ [ f 2] < ∞
for some f : X → R, then

√
n
(

f̂n −Eπ [ f ]
)

d−→ N (0, v(P, f )), (2)

for some asymptotic variance v(P, f ) [20]. Equation (2) enables the construction of asymp-
totic confidence intervals for f̂n.

In practice, geometric ergodicity does not guarantee that f̂n will be a sensible estimator,
as M(x) can be arbitrarily large if the chain is initialised far from the typical set under π(·),
and ρ may be very close to 1. However, chains which are not geometrically ergodic can
often either get ‘stuck’ for a long time in low-probability regions or fail to explore the entire
distribution adequately, sometimes in ways that are difficult to diagnose using standard
MCMC diagnostics.

Establishing Geometric Ergodicity

It is shown in Chapter 15 of Reference [21] that Equation (1) is equivalent to the con-
dition that there exists a Lyapunov function V : X → [1, ∞) and some λ < 1, b < ∞ such
that

PV(x) ≤ λV(x) + bIC(x), (3)

where PV(x) :=
∫

V(y)P(x, dy). The set C ⊂ X must be small, meaning that for some
m ∈ N, ε > 0 and probability measure ν(·)

Pm(x, A) ≥ εν(A), (4)

for any x ∈ C and A ∈ B. Equations (3) and (4) are referred to as drift and minorisation
conditions. Intuitively, C can be thought of as the centre of the space, and Equation (3)
ensures that some one dimensional projection of {Xt}t≥0 drifts towards C at a geometric
rate when outside. In fact, Equation (3) is sufficient for the return time distribution to C to
have geometric tails [21]. Once in C, (4) ensures that with some probability the chain forgets
its past and hence regenerates. This regeneration allows the chain to couple with another
initialised from π(·), giving a bound on the total variation distance through the coupling
inequality (e.g., [19]). More intuition is given in Reference [22].

Transition kernels considered here will be of the Metropolis–Hastings type, given by

P(x, dy) = α(x, y)Q(x, dy) + r(x)δx(dy), (5)

where Q(x, dy) = q(y|x)dy is some candidate kernel, α is called the acceptance rate and
r(x) = 1−

∫
α(x, y)Q(x, dy). Here we choose

α(x, y) = 1∧ π(y)q(x|y)
π(x)q(y|x) , (6)

where a ∧ b denotes the minimum of a and b. This choice implies that P satisfies detailed
balance for π(·) [23], and hence the chain is π-reversible (note that other choices for α can
result in non-reversible chains, see Reference[24] for details).

Roberts and Tweedie [5], following on from Reference[21], introduced the following
regularity conditions.

Theorem 1. (Roberts and Tweedie). Suppose that π(x) is bounded away from 0 and ∞ on compact
sets, and there exists δq > 0 and εq > 0 such that for every x

|x− y| ≤ δq ⇒ q(y|x) ≥ εq.

Then the chain with kernel (5) is µLeb-irreducible and aperiodic, and every nonempty compact
set is small.
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For the choices of Q considered in this article these conditions hold, and we will
restrict ourselves to forms of π(x) for which the same is true (apart from a specific case in
Section 5). Under Theorem 1 then (1) only holds if a Lyapunov function V : X → [1, ∞]
with Eπ [V] < ∞ exists such that

lim sup
|x|→∞

PV(x)
V(x)

< 1. (7)

when P is of the Metropolis–Hastings type, (7) can be written

lim sup
|x|→∞

∫ [V(y)
V(x)

− 1
]

α(x, y)Q(x, dy) < 0. (8)

In this case, a simple criterion for lack of geometric ergodicity is

lim sup
|x|→∞

r(x) = 1. (9)

Intuitively this implies that the chain is likely to get ‘stuck’ in the tails of a distribution
for large periods.

Jarner and Tweedie [25] introduce a necessary condition for geometric ergodicity
through a tightness condition.

Theorem 2. (Jarner and Tweedie). If for any ε > 0 there is a δ > 0 such that for all x ∈ X

P(x, Bδ(x)) > 1− ε,

where Bδ(x) := {y ∈ X : d(x, y) < δ}, then a necessary condition for P to produce a geometrically
ergodic chain is that for some s > 0 ∫

es|x|π(dx) < ∞.

The result highlights that when π(·) is heavy-tailed the chain must be able to make
very large moves and still be capable of returning to the centre quickly for (1) to hold.

3. Position-Dependent Random Walk Metropolis

In the RWM, Q(x, dy) = q(y− x)dy with q(y− x) = q(x− y), meaning (6) reduces
to α(x, y) = 1 ∧ π(y)/π(x). A common choice is Q(x, ·) = N (x, hΣ), with Σ chosen to
mimic the global covariance structure of π(·) [3]. Various results exist concerning the
optimal choice of h in a given setting (e.g., [26]). It is straightforward to see that Theorem 2
holds here, so that the tails of π(x) must be uniformly exponential or lighter for geometric
ergodicity. In one dimension this is in fact a sufficient condition [4], while for higher
dimensions additional conditions are required [5]. We return to this case in Section 5.

In the PDRWM Q(x, ·) = N (x, hG(x)−1), so (6) becomes

α(x, y) = 1∧ π(y)|G(y)| 12
π(x)|G(x)| 12

exp
(
−1

2
(x− y)T [G(y)− G(x)](x− y)

)
.

The motivation for designing such an algorithm is that proposals are more able to
reflect the local dependence structure of π(·). In some cases this dependence may vary
greatly in different parts of the state-space, making a global choice of Σ ineffective [9].

Readers familiar with differential geometry will recognise the volume element
|G(x)|1/2dx and the linear approximations to the distance between x and y taken at each
point through G(x) and G(y) if X is viewed as a Riemannian manifold with metric G.
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We do not explore these observations further here, but the interested reader is referred
to Reference [27] for more discussion.

The choice of G(x) is an obvious question. In fact, specific variants of this method
have appeared on many occasions in the literature, some of which we now summarise.

1. Tempered Langevin diffusions [8] G(x) = π(x)I. The authors highlight that the diffu-

sion with dynamics dXt = π−
1
2 (Xt)dWt has invariant distribution π(·), motivating

the choice. The method was shown to perform well for a bi-modal π(x), as larger
jumps are proposed in the low density region between the two modes.

2. State-dependent Metropolis [7] G(x) = (1 + |x|)−b. Here the intuition is simply
that b > 0 means larger jumps will be made in the tails. In one dimension the authors
compare the expected squared jumping distance E[(Xi+1 − Xi)

2] empirically for
chains exploring a N (0, 1) target distribution, choosing b adaptively, and found
b ≈ 1.6 to be optimal.

3. Regional adaptive Metropolis–Hastings [7,11]. G(x)−1 = ∑m
i=1 I(x ∈ Xi)Σi. In this case

the state-space is partitioned into X1 ∪ ...∪Xm, and a different proposal covariance Σi
is learned adaptively in each region 1 ≤ i ≤ m. An extension which allows for some
errors in choosing an appropriate partition is discussed in [11]

4. Localised Random Walk Metropolis [10]. G(x)−1 = ∑m
k=1 q̌θ(k|x)Σk. Here q̌θ(k|x) are

weights based on approximating π(x) with some mixture of Normal/Student’s t
distributions, using the approach suggested in Reference [28]. At each iteration of the
algorithm a mixture component k is sampled from q̌θ(·|x), and the covariance Σk is
used for the proposal Q(x, dy).

5. Kernel adaptive Metropolis–Hastings [9]. G(x)−1 = γ2 I + ν2Mx HMT
x , where Mx =

2[∇xk(z1, x), ...,∇xk(zn, x)] for some kernel function k and n past samples {z1, ..., zn},
H = I− (1/n)1n×n is a centering matrix (the n× n matrix 1n×n has 1 as each element),
and γ, ν are tuning parameters. The approach is based on performing nonlinear prin-
cipal components analysis on past samples from the chain to learn a local covariance.
Illustrative examples for the case of a Gaussian kernel show that Mx HMT

x acts as a
weighted empirical covariance of samples z, with larger weights given to the zi which
are closer to x [9].

The latter cases also motivate any choice of the form

G(x)−1 =
n

∑
i=1

w(x, zi)(zi − x)T(zi − x)

for some past samples {z1, ..., zn} and weight function w : X × X → [0, ∞) with
∑i w(x, zi) = 1 that decays as |x− zi| grows, which would also mimic the local curvature
of π(·) (taking care to appropriately regularise and diminish adaptation so as to preserve
ergodicity, as outlined in Reference [10]).

Some of the above schemes are examples of adaptive MCMC, in which a candidate
from among a family of Markov kernels {Pθ : θ ∈ Θ} is selected by learning the parameter
θ ∈ Θ during the simulation [10]. Additional conditions on the adaptation process (i.e., the
manner in which θ is learned) are required to establish ergodicity results for the resulting
stochastic processes. We consider the decisions on how to learn θ appropriately to be a
separate problem and beyond the scope of the present work, and instead focus attention
on establishing geometric ergodicity of the base kernels Pθ for any fixed θ ∈ Θ. We note
that this is typically a pre-requisite for establishing convergence properties of any adaptive
MCMC method [10].

4. Results in One Dimension

Here we consider two different general scenarios as |x| → ∞, i) G(x) is bounded above
and below, and ii) G(x)→ 0 at some specified rate. Of course there is also the possibility
that G(x) → ∞, though intuitively this would result in chains that spend a long time in
the tails of a distribution, so we do not consider it (if G(x) → ∞ then chains will in fact
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exhibit the negligible moves property studied in Reference [29]). Proofs to Propositions in
Sections 4 and 5 can be found in Appendix A.

We begin with a result that emphasizes that a growing variance is a necessary require-
ment for geometric ergodicity in the heavy-tailed case.

Proposition 1. If G(x) ≥ σ−2 for some σ−2 > 0, then unless
∫

eη|x|π(dx) < ∞ for some η > 0
the PDRWM cannot produce a geometrically ergodic Markov chain.

The above is a simple extension of a result that is well-known in the RWM case.
Essentially the tails of the distribution should be exponential or lighter to ensure fast
convergence. This motivates consideration of three different types of behaviour for the tails
of π(·).

Assumption 1. The density π(x) satisfies one of the following tail conditions for all y, x ∈ X
such that |y| > |x| > t, for some finite t > 0.

1. π(y)/π(x) ≤ exp{−a(|y| − |x|)} for some a > 0
2. π(y)/π(x) ≤ exp{−a(|y|β − |x|β)} for some a > 0 and β ∈ (0, 1)
3. π(y)/π(x) ≤ (|x|/|y|)p for some p > 1.

Naturally Assumption 1 implies 2 and Assumption 2 implies 3. If Assumption 1 is not
satisfied then π(·) is generally called heavy-tailed. When π(x) satisfies Assumption 2 or 3
but not 1, then the RWM typically fails to produce a geometrically ergodic chain [4]. We
show in the sequel, however, that this is not always the case for the PDRWM. We assume
the below assumptions for G(x) to hold throughout this section.

Assumption 2. The function G : X → (0, ∞) is bounded above by some σ−2
b < ∞ for all x ∈ X ,

and bounded below for all x ∈ X with |x| < t, for some t > 0.

The heavy-tailed case is known to be a challenging scenario, but the RWM will produce
a geometrically ergodic Markov chain if π(x) is log-concave. Next we extend this result
to the case of sub-quadratic variance growth in the tails.

Proposition 2. If ∃r < ∞ such that G(x) ∝ |x|−γ whenever |x| > r, then the PDRWM will
produce a geometrically ergodic chain in both of the following cases:

1. π(x) satisfies Assumption 1 and γ ∈ [0, 2)
2. π(x) satisfies Assumption 2 for some β ∈ (0, 1) and γ ∈ (2(1− β), 2)

The second part of Proposition 2 is not true for the RWM, for which Assumption 2
alone is not sufficient for geometric ergodicity [4].

We do not provide a complete proof that the PDRWM will not produce a geometrically
ergodic chain when only Assumption 3 holds and G(x) ∝ |x|−γ for some γ < 2, but do
show informally that this will be the case. Assuming that in the tails π(x) ∝ |x|−p for some
p > 1 then for large x

α(x, x + cxγ/2) = 1∧
(

x
x + cxγ/2

)p+γ/2
exp

(
− c2xγ

2h

[
1

(x + cxγ/2)γ
− 1

xγ

])
. (10)

The first expression on the right hand side converges to 1 as x → ∞, which is akin to
the case of fixed proposal covariance. The second term will be larger than one for c > 0 and
less than one for c < 0. So the algorithm will exhibit the same ‘random walk in the tails’
behaviour which is often characteristic of the RWM in this scenario, meaning that the
acceptance rate fails to enforce a geometric drift back into the centre of the space.

When γ = 2 the above intuition will not necessarily hold, as the terms in Equation (10)
will be roughly constant with x. When only Assumption 3 holds, it is, therefore, tempting
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to make the choice G(x) = x−2 for |x| > r. Informally we can see that such behaviour may
lead to a favourable algorithm if a small enough h is chosen. For any fixed x > r a typical
proposal will now take the form y = (1+ ξ

√
h)x, where ξ ∼ N(0, 1). It therefore holds that

y = eξ
√

hx + r(x, h, ξ), (11)

where for any fixed x and ξ the term r(x, h, ξ)/
√

h → 0 as h → 0. The first term on the
right-hand side of Equation (11) corresponds to the proposal of the multiplicative Random
Walk Metropolis, which is known to be geometrically ergodic under Assumption 3 (e.g., [3]),
as this equates to taking a logarithmic transformation of x, which ‘lightens’ the tails of the
target density to the point where it becomes log-concave. So in practice we can expect good
performance from this choice of G(x). The above intuition does not, however, provide
enough to establish geometric ergodicity, as the final term on the right-hand side of (11)
grows unboundedly with x for any fixed choice of h. The difference between the acceptance
rates of the multiplicative Random Walk Metropolis and the PDRWM with G(x) = x−2

will be the exponential term in Equation (10). This will instead become polynomial by
letting the proposal noise ξ follow a distribution with polynomial tails (e.g., student’s t),
which is known to be a favourable strategy for the RWM when only Assumption 3 holds [6].
One can see that if the heaviness of the proposal distribution is carefully chosen then the
acceptance rate may well enforce a geometric drift into the centre of the space, though for
brevity we restrict attention to Gaussian proposals in this article.

The final result of this section provides a note of warning that lack of care in choosing
G(x) can have severe consequences for the method.

Proposition 3. If G(x)x2 → 0 as |x| → ∞, then the PDRWM will not produce a geometrically
ergodic Markov chain.

The intuition for this result is straightforward when explained. In the tails, typically
|y − x| will be the same order of magnitude as

√
G(x)−1, meaning |y − x|/|x| grows

arbitrarily large as |x| grows. As such, proposals will ‘overshoot’ the typical set of the
distribution, sending the sampler further out into the tails, and will therefore almost always
be rejected. The result can be related superficially to a lack of geometric ergodicity for
Metropolis–Hastings algorithms in which the proposal mean is comprised of the current
state translated by a drift function (often based in ∇ log π(x)) when this drift function
grows faster than linearly with |x| (e.g., [30,31]).

5. A Higher-Dimensional Case Study

An easy criticism of the above analysis is that the one-dimensional scenario is some-
times not indicative of the more general behaviour of a method. We note, however, that
typically the geometric convergence properties of Metropolis–Hastings algorithms do
carry over somewhat naturally to more than one dimension when π(·) is suitably regular
(e.g., [5,32]). Because of this we expect that the growth conditions specified above could be
supplanted onto the determinant of G(x) when the dimension is greater than one (leaving
the details of this argument for future work).

A key difference in the higher-dimensional setting is that G(x) now dictates both
the size and direction of proposals. In the case G(x)−1 = Σ, some additional regularity
conditions on π(x) are required for geometric ergodicity in more than one dimension,
outlined in References [5,32]. An example is also given in Reference [5] of the simple
two-dimensional density π(x, y) ∝ exp(−x2− y2− x2y2), which fails to meet these criteria.
The difficult models are those for which probability concentrates on a ridge in the tails,
which becomes ever narrower as |x| increases. In this instance, proposals from the RWM
are less and less likely to be accepted as |x| grows. Another well-known example of this
phenomenon is the funnel distribution introduced in Reference [33].
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To explore the behaviour of the PDRWM in this setting, we design a model problem,
the staircase distribution, with density

s(x) ∝ 3−bx2cIR(x), R := {y ∈ R2; y2 ≥ 1, |y1| ≤ 31−by2c}, (12)

where bzc denotes the integer part of z > 0. Graphically the density is a sequence of cuboids
on the upper-half plane of R2 (starting at y2 = 1), each centred on the vertical axis, with each
successive cuboid one third of the width and height of the previous. The density resembles
an ever narrowing staircase, as shown in Figure 1.

Figure 1. The staircase distribution, with density given by Equation (12).

We denote by QR the proposal kernel associated with the Random Walk Metropolis
algorithm with fixed covariance hΣ. In fact, the specific choice of h and Σ does not matter
provided that the result is positive-definite. For the PDRWM we denote by QP the proposal
kernel with covariance matrix

hG(x)−1 =

(
3−2bx2c 0

0 1

)
,

which will naturally adapt the scale of the first coordinate to the width of the ridge.

Proposition 4. The Metropolis–Hastings algorithm with proposal QR does not produce a geomet-
rically ergodic Markov chain when π(x) = s(x).

The design of the PDRWM proposal kernel QP in this instance is such that the proposal
covariance reduces at the same rate as the width of the stairs, therefore naturally adapting
the proposal to the width of the ridge on which the density concentrates. This state-
dependent adaptation results in a geometrically ergodic chain, as shown in the below result.

Proposition 5. The Metropolis–Hastings algorithm with proposal QP produces a geometrically
ergodic Markov chain when π(x) = s(x).

6. Discussion

In this paper we have analysed the ergodic behaviour of a Metropolis–Hastings
method with proposal kernel Q(x, ·) = N (x, hG(x)−1). In one dimension we have char-
acterised the behaviour in terms of growth conditions on G(x)−1 and tail conditions on
the target distribution, and in higher dimensions a carefully constructed model problem
is discussed. The fundamental question of interest was whether generalising an existing
Metropolis–Hastings method by allowing the proposal covariance to change with position



Mathematics 2021, 9, 341 9 of 15

can alter the ergodicity properties of the sampler. We can confirm that this is indeed
possible, either for the better or worse, depending on the choice of covariance. The take
home points for practitioners are (i) lack of sufficient care in the design of G(x) can have
severe consequences (as in Proposition 3), and (ii) careful choice of G(x) can have much
more beneficial ones, perhaps the most surprising of which are in the higher-dimensional
setting, as shown in Section 5.

We feel that such results can also offer insight into similar generalisations of different
Metropolis–Hastings algorithms (e.g., [13,34]). For example, it seems intuitive that any
method in which the variance grows at a faster than quadratic rate in the tails is unlikely
to produce a geometrically ergodic chain. There are connections between the PDRWM
and some extensions of the Metropolis-adjusted Langevin algorithm [34], the ergodicity
properties of which are discussed in Reference [35]. The key difference between the
schemes is the inclusion of the drift term G(x)−1∇ log π(x)/2 in the latter. It is this term
which in the main governs the behaviour of the sampler, which is why the behaviour of
the PDRWM is different to this scheme. Markov processes are also used in a wide variety
of application areas beyond the design of Metropolis–Hastings algorithms (e.g., [36]),
and we hope that some of the results established in the present work prove to be beneficial
in some of these other settings.

We can apply these results to the specific variants discussed in Section 3. Provided
that sensible choices of regions/weights are made and that an adaptation scheme which
obeys the diminishing adaptation criterion is employed, the Regional adaptive Metropolis–
Hastings, Locally weighted Metropolis and Kernel-adaptive Metropolis–Hastings samplers
should all satisfy G(x) → Σ as |x| → ∞, meaning they can be expected to inherit the
ergodicity properties of the standard RWM (the behaviour in the centre of the space,
however, will likely be different). In the State-dependent Metropolis method provided
b < 2 the sampler should also behave reasonably. Whether or not a large enough value
of b would be found by a particular adaptation rule is not entirely clear, and this could
be an interesting direction of further study. The Tempered Langevin diffusion scheme,
however, will fail to produce a geometrically ergodic Markov chain whenever the tails
of π(x) are lighter than that of a Cauchy distribution. To allow reasonable tail exploration
when this is the case, two pragmatic options would be to upper bound G(x)−1 manually
or use this scheme in conjunction with another, as there is evidence that the sampler can
perform favourably when exploring the centre of a distribution [8]. None of the specific
variants discussed here are able to mimic the local curvature of the π(x) in the tails, so
as to enjoy the favourable behaviour exemplified in Proposition 5. This is possible using
Hessian information as in Reference [13], but should also be possible in some cases using
appropriate surrogates.
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Appendix A. Proofs

Proof of Proposition 1. In this case, for any choice of ε > 0 there is a δ > 0 such that
Q(x, Bδ(x)) > 1 − ε. Noting that P(x, Bδ(x)) ≥ Q(x, Bδ(x)) when P is of Metropolis–
Hastings type, Theorem 2 can be applied directly.
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Proof of Proposition 2. For the log-concave case, take V(x) = es|x| for some s > 0, and let
BA denote the integral (8) over the set A. We first break up X into (−∞, 0] ∪ (0, x− cx

γ
2 ] ∪

(x− cx
γ
2 , x + cx

γ
2 ] ∪ (x + cx

γ
2 , x + cxγ] ∪ (x + cxγ, ∞) for some x > 0 and fixed constant

c ∈ (0, ∞), and show that the integral is strictly negative on at least one of these sets,
and can be made arbitrarily small as x → ∞ on all others. The −∞ case is analogous from
the tail conditions on π(x). From the conditions we can choose x > r and therefore write
G(x)−1 = ηxγ for some fixed η < ∞.

On (−∞, 0], we have

B(−∞,0] = e−sx
∫ 0

−∞
es|y|α(x, y)Q(x, dy)−

∫ 0

−∞
α(x, y)Q(x, dy),

≤ e−sx
∫ ∞

0
esyQ(−x, dy).

The integral is now proportional to the moment generating function of a truncated
Gaussian distribution (see Appendix B), so is given by

e−sx+hηxγs2/2
[
1−Φ

(
x1−γ/2/

√
hη −

√
hηsxγ/2

)]
.

A simple bound on the error function is
√

2πxΦc(x) < e−x2/2 [37], so setting ϑ =
x1−γ/2/

√
hη −

√
hηsxγ/2 we have

B(−∞,0] ≤
1√
2π

exp
(
−2sx +

hηs2

2
xγ − 1

2

(
1

hη
x2−γ − 2sx + hηs2xγ

)
+ log ϑ

)
,

=
1√
2π

exp
(
−sx− 1

2hη
x2−γ + log ϑ

)
.

which→ 0 as x → ∞, so can be made arbitrarily small.
On (0, x − cxγ/2], note that es(|y|−|x|) − 1 is clearly negative throughout this region

provided that c < x1−γ/2, which can be enforced by choosing x large enough for any given
c < ∞. So the integral is straightforwardly bounded as B(0,x−cxγ/2] ≤ 0 for all x ∈ X .

On (x− cxγ/2, x + cxγ/2], provided x− cxγ/2 > r then for any y in this region we can
either upper or lower bound α(x, y) with the expression

exp
(
−a(y− x) +

γ

2
log
∣∣∣∣ xy
∣∣∣∣− 1

2hη

[
(x− y)2y−γ − (x− y)2x−γ

])
.

A Taylor expansion of y−γ about x gives

y−γ = x−γ − γx−γ−1(y− x) + γ(γ + 1)x−γ−2(y− x)2 + ...

and multiplying by (y− x)2 gives

(y− x)2y−γ =
(y− x)2

xγ
− γ

(y− x)3

xγ+1 + γ(γ + 1)
(y− x)4

xγ+2 + ...

If |y− x| = cxγ/2 then this is:

c2xγ

xγ
− γ

c3x3γ/2

xγ+1 + γ(γ + 1)
c4x2γ

xγ+2 + ...

As γ < 2 then 3γ/2 < γ + 1, and similarly for successive terms, meaning each gets
smaller as |x| → ∞. So we have for large x, y ∈ (x− cxγ/2, x + cxγ/2) and any δ > 0

(y− x)2y−γ ≥ (y− x)2

xγ
− γ

(y− x)3

xγ+1 − 2hηδ. (A1)
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So we can analyse how the acceptance rate behaves. First note that for fixed ε > 0

α(x, x + ε) ≤ exp
(
−aε +

γ

2
log
∣∣∣∣ x
x + ε

∣∣∣∣+ 1
2h

γ
ε3

xγ+1 + δ

)
→ exp(−aε + δ),

recalling that δ can be made arbitrarily small. In fact, it holds that the e−aε term will be
dominant for any ε for which ε3/xγ+1 → 0, i.e., any ε = o(xγ+1/3). If γ < 2 then ε = cxγ/2

satisfies this condition. So for any y > x in this region we can choose an x such that

α(x, y) ≤ exp(−a(y− x) + δx),

where δx → 0 as x → ∞. Similarly we have (for any fixed ε > 0)

α(x, x− ε) ≥ exp
(

aε +
γ

2
log
∣∣∣∣ x
x− ε

∣∣∣∣− 1
2h

γ
ε3

xγ+1 − δ

)
→ exp(aε− δ).

So by a similar argument we have α(x, y) > 1 here when x → ∞. Combining gives

B(x−cxγ/2,x+cxγ/2] ≤
∫ cxγ/2

0

[
e(s−a)z+δx − e−az+δx + e−sz − 1

]
qx(dz),

where qx(·) denotes a zero mean Gaussian distribution with the same variance as Q(x, ·).
Using the change of variables z′ = z/(hηxγ/2) we can write the above integral

∫ c
hη

0

[
e(s−a)hηxγ/2z′+δx − e−ahηxγ/2z+δx + e−shηxγ/2z′ − 1

]
µ(dz)

where µ(·) denotes a Gaussian distribution with zero mean and variance one. Provided
s < a, then by dominated convergence as x → ∞ this asymptotes to

−
∫ c

hη

0
µ(dz) = −1

2
erf

(
c√
2hη

)
< 0,

where erf(z) := (2/
√

π)
∫ z

0 e−t2
dt is the Gaussian error function.

On (x + cxγ/2, x + cxγ] we can upper bound the acceptance rate as

α(x, y) ≤ π(y)
π(x)

exp
(

1
2

log
|G(y)|
|G(x)| +

G(x)
2h

(x− y)2
)

If y ≥ x and x > x0 we have

α(x, y) ≤ exp
(
−a(|y| − |x|) + 1

2hη

(x− y)2

xγ

)
.

For |y− x| = cx` this becomes

α(x, y) ≤ exp
(
−acx` +

c2

2hη
x2`−γ

)
So provided γ > ` the first term inside the exponential will dominate the second for

large enough x. In the equality case we have

α(x, y) ≤ exp
((

c2

2hη
− a
)

cxγ

)
,
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so provided we choose c such that a > c2/(2hη) then the acceptance rate will also decay
exponentially. Because of this we have

B(x+cxγ/2,x+cxγ ] ≤
∫ x+cxγ

x+cxγ/2
es(y−x)α(x, y)Q(x, dy),

≤ e(c
2/(2hη)+s−a)cxγ/2

Q(x, (x + cxγ/2, x + cxγ]),

so provided a > c2/(2hη) + s then this term can be made arbitrarily small.
On (x + cxγ, ∞) using the same properties of truncated Gaussians we have

B(x+cxγ ,∞) ≤ e−sx
∫ ∞

x+cxγ
esyQ(x, dy),

= es2hηxγ/2Φc

((
c√
hη
−
√

hηs

)
xγ

)
,

which can be made arbitrarily small provided that s is chosen to be small enough using the
same simple bound on Φc as for the case of B(−∞,0].

Combining gives that the integral (8) is bounded above by −erf(c/
√

2h2η2)/2, which
is strictly less than zero as c, h and η are all positive. This completes the proof under
Assumption 1.

Under Assumption 2 the proof is similar. Take V(x) = es|x|β , and divide X up into the
same regions. Outside of (x− cxγ/2, x + cxγ/2] the same arguments show that the integral
can be made arbitrarily small. On this set, note that in the tails

(x + cx`)β − xβ = βcx`+β−1 +
β(β− 1)

2
c2x2`+β−2 + ...

For y− x = cx`, then for ` < 1− β this becomes negligible. So in this case we further
divide the typical set into (x, x + cx1−β]∪ (x + cx1−β, x + cxγ/2). On (x− cx1−β, x + cx1−β)
the integral is bounded above by e−c1 Q(x, (x− cx1−β, x + cx1−β))→ 0, for some suitably
chosen c1 > 0. On (x− cxγ/2, x− cx1−β] ∪ (x + cx1−β, x + cxγ/2] then for y > x we have
α(x, y) ≤ e−c2(yβ−xβ), so we can use the same argument as in the the log-concave case to
show that the integral will be strictly negative in the limit.

Proof of Proposition 3. First note that in this case for any g : R → (0, ∞) such that as
|x| → ∞ it holds that g(x)/|x| → ∞ but g(x)

√
G(x)→ 0, then

Q(x, {x− g(x), x + g(x)}) = Φ
(

g(x)
√

G(x)
)
−Φ

(
−g(x)

√
G(x)

)
→ 0

as |x| → ∞. The chain therefore has the property that P({|Xi+1| > g(Xi)/2} ∪ {Xi+1 =
Xi}) can be made arbitrarily close to 1 as |Xi| grows, which leads to two possible behaviours.
If the form of π(·) enforces such large jumps to be rejected then r(x) → 1 and lack of
geometric ergodicity follows from (9). If this is not the case then the chain will be transient
(this can be made rigorous using a standard Borel–Cantelli argument, see e.g., the proof of
Theorem 12.2.2 on p. 299 of [21]).

Proof of Proposition 4. It is sufficient to construct a sequence of points xp ∈ R2 such that
|xp| → ∞ as p → ∞, and show that r(xp) → 1 in the same limit, then apply (9). Take
xp = (0, p) for p ∈ N. In this case

r(xp) = 1−
∫

α(xp, y)QR(xp, dy)

Note that for every ε > 0 there is a δ < ∞ such that Q(xp, Bc
δ(xp)) < ε for all

xp, where Bδ(x) := {y ∈ R2 : |y − x| ≤ δ}. The set A(xp, δ) := Bδ(xp) ∩ R denotes
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the possible values of y ∈ Bδ(x) for which the acceptance rate is non-zero. Note that
A(xp, δ) ⊂ S(xp, δ) := {y ∈ Bδ(xp) : |y1| ≤ 31−bp−δc}, which is simply a strip that can
be made arbitrarily narrow for any fixed δ by taking p large enough. Combining these
ideas gives ∫

α(xp, y)QR(xp, dy) ≤
∫

A(xp ,δ)
α(xp, y)QR(xp, dy) + ε

≤ QR(xp, S(xp, δ)) + ε.

Both of the quantities on the last line can be made arbitrarily small by choosing p
suitably large. Thus, r(xp)→ 1 as |xp| → ∞, as required.

Proof of Proposition 5. First note that infx∈R QP(x, R) is bounded away from zero, unlike
in the case of QR, owing to the design of QP. The acceptance rate here simplifies, since for
any y ∈ R

s(y)|G(y)| 12
s(x)|G(x)| 12

= 1,

meaning only the expression exp
(
− 1

2 (y− x)T [G(y)− G(x)](y− x)
)

needs to be consid-
ered. In this case the expression is simply

exp
(
−1

2
(32by2c − 32bx2c)(y1 − x1)

2
)

.

Provided that x1 6= y1, then when 1 ≤ by2c < bx2c this expression is strictly greater
than 1, whereas in the reverse case it is strictly less than one. The resulting Metropolis–
Hastings kernel P using proposal kernel QP will therefore satisfy

∫
y2P(x, dy) < x2 for large

enough x2, and hence geometric ergodicity follows by taking the Lyapunov function
V(x) = es|x2| (which can be used here since the domain of x1 is compact) and following an
identical argument to that given on pages 404–405 of Reference [21] for the case of the proof
of geometric ergodicity of the random walk on the half-line model for suitably small s > 0,
taking the small set C := [0, 1]× [1, r] for suitably large r < ∞ and ν(·) =

∫
· s(x)dx.

Appendix B. Needed Facts about Truncated Gaussian Distributions

Here we collect some elementary facts used in the article. For more detail see e.g., [38].
If X follows a truncated Gaussian distribution N T

[a,b](µ, σ2) then it has density

f (x) =
1

σZa,b
φ

(
x− µ

σ

)
I[a,b](x),

where φ(x) = e−x2/2/
√

2π, Φ(x) =
∫ x
−∞ φ(y)dy and Za,b = Φ((b− µ)/σ)−Φ((a− µ)/σ).

Defining B = (b− µ)/σ and A = (a− µ)/σ, we have

E[X] = µ +
φ(A)− φ(B)

Za,b
σ

and

E[etX ] = eµt+σ2t2/2
[

Φ(B− σt)−Φ(A− σt)
Za,b

]
.

In the special case b = ∞, a = 0 this becomes eµt+σ2t2/2Φ(σt)/Za,b.
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