
mathematics

Article

Mutated Specification-Based Test Data Generation
with a Genetic Algorithm †

Rong Wang 1,* , Yuji Sato 1 and Shaoying Liu 2

����������
�������

Citation: Wang, R.; Sato, Y.; Liu, S.

Mutated Specification-Based Test

Data Generation with a Genetic

Algorithm. Mathematics 2021, 9, 331.

https://doi.org/10.3390/

math9040331

Academic Editor: David Greiner

Received: 31 December 2020

Accepted: 4 February 2021

Published: 7 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Hosei University, Tokyo 184-8584, Japan; yuji@hosei.ac.jp
2 Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan;

sliu@hiroshima-u.ac.jp
* Correspondence: rong.wang.99@stu.hosei.ac.jp
† This paper is an extended version of our paper published in 2019 IEEE Congress on Evolutionary

Computation (CEC), Wellington, New Zealand, 10–13 June 2019.

Abstract: Specification-based testing methods generate test data without the knowledge of the
structure of the program. However, the quality of these test data are not well ensured to detect
bugs when non-functional changes are introduced to the program. To generate test data effectively,
we propose a new method that combines formal specifications with the genetic algorithm (GA).
In this method, formal specifications are reformed by GA in order to be used to generate input
values that can kill as many mutants of the target program as possible. Two classic examples are
presented to demonstrate how the method works. The result shows that the proposed method can
help effectively generate test cases to kill the program mutants, which contributes to the further
maintenance of software.

Keywords: test data generation; genetic algorithm; specification-based testing; regression testing;
mutation testing

1. Introduction

Regression testing is an important technique to ensure that previously tested software
still performs in the same way after it is changed or integrated with other software [1–3].
In general, changes to software are mainly concerned with the efficiency enhancement,
robustness improvement, and configuration changes, but these changes should not result
in big alternation of the functionality defined in the specification of the software. Therefore,
specification-based testing (SBT) methods can be effectively used in regression testing.

SBT is characterized by test data being generated from the specification without
concerning the structure of the corresponding program and test results being analyzed
based on the specification [4–8]. Formal specifications may allow the test data generation
and test result analysis to be done rigorously, systematically, and even automatically in
many cases [9–12]. In our work, we mainly use formal specifications in pre- and post-
conditions, such as Vienna Development Method (VDM) [13], a formal method that has
been developed over past years [14,15], and Structured-Object-Oriented Formal Language
(SOFL) [16], which has the potential of practical use in industry and serves as a solid
foundation to develop a method of functional scenario-based test data generation [17].

However, in spite of considerable progresses having been made, it is still not easy for
SBT to generate various test data only from specifications to detect different bugs that are
contained in the program. This is because different features and effects of the program
output cannot be controlled and triggered by only input data suites that satisfy some parts
of the specification (some constraints over only input variables). Consequently, many
faulty program paths would not be detected and thus the bug detection would be likely to
fail in some cases. For the existing SBT, one of the major deficiencies is that the test data
generation only considers the constraints over input variables in the formal specification,
without making use of the constraints over outputs before the execution of a program.

Mathematics 2021, 9, 331. https://doi.org/10.3390/math9040331 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2519-0512
https://orcid.org/0000-0002-6748-5052
https://doi.org/10.3390/math9040331
https://doi.org/10.3390/math9040331
https://doi.org/10.3390/math9040331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040331
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/331?type=check_update&version=3


Mathematics 2021, 9, 331 2 of 19

To overcome the shortcomings of the existing SBT methods, we propose a new method
for test data generation in this paper. The proposed method introduces dummy variables
into some specified constraints in the specification, and makes use of the constraints
over both input and output variables to guide the test data generation, in contrast to the
conventional SBT methods that concerns only constraints over input variables. This method
features the combination of three techniques, SBT, mutation testing, and GA. It is to obtain
the enhanced (mutated) formal specifications by using a GA so that input data generated
from these specifications are more likely to kill different kinds of mutants of the target
program under test. The expected effect of the test data generated in this way is to detect
various bugs probably occurring in the program that is being developed or improved.

The work in this paper is an extension for our previous work in [18]. Comparing with
the previous work, we use more different kinds of mutants (16 types against previously 10)
for each program in our case study to gain better mutated functional scenarios that are
capable of detecting more bugs. In addition, we give additional experimental results of
the proposed approach that uses no dummy variables, and point out the importance of
introducing dummy variables. In addition, we carefully conduct more experiments with
the dummy variables that are introduced to reform different parts of original specification,
the equality and inequality relations. Based on that, we enriched the analysis for the effect
of different ways of introducing dummy variables on bug detection.

The remaining part of the paper is organized as follows. Section 2 briefly introduces
the existing work related to our approach. Section 3 illustrates how to transform formal
specifications to chromosomes as well as the corresponding genetic manipulations in GA.
Section 4 describes the main procedures of obtaining desirable reformed specifications for
test data generation by integrating GA. Section 5 presents two classic cases to demonstrate
the feasibility and efficiency of the approach. Finally, Section 6 concludes the paper and
points out future research directions.

2. Related Work

In this section, we introduce several advanced techniques that relate to our methodol-
ogy for test data generation.

Data flow analysis, a technique for computing the def-use associations for the control
flow graph (CFG) of a program, are often used to develop different strategies for test data
generation over a long history [19–21]. Many research works have proposed promising
methods for automatic test data generation that integrates the data flow analysis with
the heuristics, such as GAs [22–24], particle swarm optimization [25], and ant colony
optimization [26]. Different from these techniques, our approach conducts the testing
under the circumstance where the source code of thirty-party library under test cannot be
accessed. Thus, these techniques rely too much on the knowledge and analysis of internal
design (or code structure), but our approach focuses on generating test data without
analyzing the source code when applying the GA to the formal specification. In addition,
with respect to the usage of the GA, our approach uses the GA to search for the optimal
mutated specifications that are later used for input data generation, while the techniques
mentioned above use the GA to directly search for good input data.

The techniques of mutation-based test data generation [27,28] are used to select a set
of “good” test data by executing designed incorrect versions of an original program with a
great number of test data from the domain. Test data are selected if it can cause unintended
behaviors for a certain number of incorrect versions. These techniques mainly concentrate
on designing appropriate mutation operators to introduce small modifications for different
kinds of programming languages such as Java [29], C# [30], and C++ [31]. The incorrect
versions, also called program mutants, are created by inserting the mutant operators into
the original program. Compared with these techniques, our method selects a set of “good”
mutated specifications as a seed for further test data generation by using not only program
mutants but also the mutated specifications with the GA.



Mathematics 2021, 9, 331 3 of 19

The SBT techniques, some of them integrated with heuristic search strategies, have
been well developed to cope with different kinds of specifications, such as SOFL [9,16],
Alloy [32,33], protocol specifications [34,35], and Object Constraint Language (OCL) speci-
fication [36,37]. Among these specifications, we take an interest in the formal specification
of pre-post style like SOFL and Alloy. On the one hand, the SBT techniques for both SOFL
and Alloy generate test data only from the pre-condition and use the post-condition as an
oracle to check if the outcome is correct. On the other hand, the SBT with SOFL still needs
to be improved since a data suite generated only from the original SOFL specification is not
sufficient enough to trigger different kinds of bad behaviors of programs. On the contrary,
our approach uses both the pre- and post- conditions to generate input data, as well as
selects the optimal mutated specifications to enhance the bug detection.

3. GA with Mutated Specification

We first briefly introduce the basics of GA and then discuss how to obtain
reformed specifications.

3.1. Description for GA

GA is a heuristic search method inspired from evolutionary biology and was first
proposed by John Holland [38]. In general, a GA is involved in an iterative process with
three steps: (i) create an initial population of solutions (called individuals) represented by
a pre-defined chromosome that are typically encoded the solutions to a problem; (ii) in the
existing population, select a group of individuals by a specified selection strategy based on a
fitness function, and generate the next population from applying two key genetic operators,
crossover and mutation to those selected individuals; (iii) repeat step (ii) until the remaining
individuals in the generation are good enough according to both the fitness function and
the stop criteria.

Since GA works well in finding optimal solutions for nonlinear problems and the
specifications of pre-post style could be easily transformed to chromosomes with few
efforts, we employ GA to find the best mutated specifications in this paper. Later, we
will first describe how to transform the original formal specifications into a chromosome,
and then carefully describe the evolution in step (ii) in detail for our specific goal: to obtain
all the mutated functional scenarios from the specification, each a constraint over only
input variables.

3.2. Mutation Testing

Mutation testing, also called program mutation [39], is used to design test cases
and evaluates the quality of existing testing techniques. In mutation testing, some small
modifications are injected into the original program. Each mutated version is called program
mutant and test data are regarded as the good one if it kills the program mutants, that is, it
makes the behavior of program mutants different from that of the original program.

In our approach, both programs and the specifications are mutated. The program
mutants are used to evaluate the quality of mutated specifications. We search for good
mutated specifications that can be used to effectively generate test data for bug detection.

3.3. Mutated Specifications

We use SOFL as the formal notation for specifications in this paper. There are two
reasons: one is that SOFL, as a formal notation, is more comprehensible than other for-
mal notations since it uses the comprehensible condition data flow diagrams for system
structure as well as pre- and post- conditions for defining individual operations in the
system. Another reason is that SOFL is familiar to us and its use in industry has been
increasing [40].

In SOFL, the defining condition describes the constraints over input and output variables
after a method in the program performs. Generally, the defining condition is not used for
directly generating input data in most of existing techniques because the values of outputs



Mathematics 2021, 9, 331 4 of 19

in defining condition are unknown to us before the execution of the program. We consider
the defining conditions as an important factor for test data generation from which the test
data are sensitive to bad behaviors of the program.

Since defining conditions describe how output variables relate to input variables, they
are often used to check whether an execution of the program is correct or not, rather than
being used to directly generate input values. For a program, it is usually difficult to directly
generate input values that satisfy a defining condition without knowing the corresponding
output values. For instance, suppose input variable x and output variable y satisfy the
defining condition (x ∗ y > x + y), we cannot generate input x from (x ∗ y > x + y) due to
the unknown output y. Thus, usually (x ∗ y > x + y) is not used to help generate the input
values but can be used to check the result of executing the program with input x.

Nevertheless, by assigning appropriate values to the output variables in the defining
conditions, we can get some useful mutated specifications that can be used to directly
generate input values. For the defining condition (x ∗ y > x + y) mentioned above, input
data generated from (x ∗ 2 > x + 2) (when y = 2) may be more likely to trigger bugs than
from (0 > x) (when y = 0). Currently, it cannot be determined without further checking.
However, (x ∗ 2 > x + 2) is definitely better than (x ∗ 1 > x + 1) (when y = 1) because the
latter is always false and cannot be used to generate test data.

Our work mainly concentrates on developing a way to find appropriate output values
for the specification. These output values are then used to build the mutated specifications
that are the constraints over only input variables. Then, the mutated specifications can be
directly used to generate input values in regression testing. To achieve that, we employ GA
to seek such appropriate values of outputs from the defining condition.

Moreover, to obtain mutated specifications that are more powerful in bug detection,
some extension is considered for reforming defining conditions before applying GA. In this
extension, we make a slight change in defining conditions so as to induce the generated
test data that satisfy those reformed ones to trigger as many bad behaviors of the program
as possible.

In our method, mutated specifications are made from after applying GA to the original
specification. More precisely, the mutated specifications can be obtained by following
two rules:

1. Reforming the original specification by introducing dummy variables into defining
conditions so that test data that satisfy those reformed ones can trigger bad behaviors
of the program;

2. Finding appropriate concrete values through GA and assigning them to the output
and dummy variables that occur in the reformed specification.

Our goal is to obtain a new version of the specification from which the test data suite
can be generated to trigger as many bugs as possible in the program. Next, we will define
the chromosome forms for the reformed specification, as well as describe the crossover
operator and mutation operator. Then, we apply the GA for gaining the suitable mutated
specifications that can do well in bug detection.

We define the form of chromosomes for a condition data flow diagram (CDFD) that is
part of the SOFL language.

A condition data flow diagram (CDFD) is a directed graph that specifies how processes
work together to provide functional behaviors [41]. Every process has its own pre- and
post-conditions. For instance, Figure 1 displays a small CDFD that consists of two processes
A and B where process A first consumes two input variables x and y and produces output
z, and then process B consumes z and produces w.

The two separately defined processes A and B may not be automatically combined into
a bigger process C since we can not always infer C_pre(x, y) ∧ C_post(x, y, w) just from
A_pre(x, y) ∧ A_post(x, y, z) ∧ B_pre(z) ∧ B_post(z, w) unless we know the expression
z = Expr(x, y) in A_post(x, y, z), since, in that case, we can easily replace z with Expr(x, y)
and derive the following predicate expression:



Mathematics 2021, 9, 331 5 of 19

C_pre(x, y) ∧ C_post(x, y, w) = A_pre(x, y) ∧ A_post(x, y, Expr(x, y)) ∧
B_pre(Expr(x, y)) ∧ B_post(Expr(x, y), w).

However, the intermediate variables between two processes like variable z can not
always be replaced in real CDFDs. Therefore, our discussion on test data generation from
specifications focuses on a single process.

Figure 1. The process A and process B.

3.4. Chromosome Formation

In this approach, the specification is converted into an equivalent expression called
functional scenario form (FSF).

Definition 1. A FSF of process is the disjunction of functional scenarios: ∨n
i=1(Ti ∧ Di) :=

Spre ∧ (∨n
i=1(Gi ∧ Di))(i = 1, · · · , N) where Ti = Spre ∧ Gi is called a test condition, which is

the conjunction of the pre-condition Spre and the guard-condition Gi; and Di is a predicate called a
defining condition.

The pre-condition Spre of process S is a constraint on the input, and it contains only
input variables. A guard condition Gi is part of the post-condition but contains no output
variables. A defining condition Di is also part of the post-condition but contains at least
one output variable. The functional scenario Ti ∧ Di describes a single specific functional
behavior: when test condition Ti is true, the output of the operation is defined using
defining condition Di. In this paper, we assume that any FSF ∨n

i=1(Ti ∧ Di) of process S is
complete, which means that any input satisfying Spre must make ∨n

i=1Ti true.
Each functional scenario defines an independent function of the operation: when the

test condition holds on the input variables, the output variables will be defined by the
defining condition. Currently, test data generation from a functional scenario only takes the
test condition into account meanwhile leaving the defining condition untouched [9,42,43].

Now, we explain how to make a slight extension to change the form of defining
conditions so as to allow bad behaviors to occur. To obtain a more flexible and useful
reformed specification, we introduce dummy variables, di(i = 1, · · · , c), to the relationship
of inputs and outputs from the defining condition. Then, we build an output vector from
both the dummy variables and output variables.

Definition 2. An output vector o
′
is a vector constructed by output variables and dummy variables:

o
′
= (o1, · · · , on, d1, · · · , dc), where oi (i = 1, · · · , n) are output variables, and di (i = 1, · · · , c)

are dummy integer variables.

For a relation ( f (inputs, outputs)4 0) (where 4 is a operator such as =,>,< . . . )
in the defining condition Di, by introducing dummy variables d1 and d2, we construct
an inequality d1 <= f (inputs, outputs) <= d2 and replace the relation f with this new
inequality in Di. Then, the output vector is formed as o

′
= (o1, · · · , on, d1,d2). In our work,

we mainly make such change to only equality relations.
We change an equality relation to such an inequality relation because an equality

relation is quite a strict condition that would drastically narrow down the exploration of
input values for a single functional scenario when output values are determined by GA.



Mathematics 2021, 9, 331 6 of 19

Therefore, dummy variables need to be introduced for equality. For the inequality relation
in the specification, dummy variables are not introduced to them because, compared with
equality relation, inequality relation is not a too strict condition for the generation of
input values. Thus, these kind of relations are used to preserve some original features
of specifications. In addition, the experimental results in Section 5 also indicate that
additional dummy variables for inequality cannot help considerably improve the quality
of the mutated specifications.

Definition 3. A chromosome [Ti ∧Di]o′ (i = 1, · · · , N) is a reformed functional scenario Ti ∧Di,
where some dummy variables are introduced to Di. An individual (a mutated specification) is
a constraint over symbolic inputs, established from the chromosome [Ti ∧ Di]o′ by assigning
concrete values to the output vector o

′
= (o1, · · · , on, d1, · · · , dc). A population is a group of such

individuals. For convenience, the output vector o
′

is also called d-chromo, and each element of o
′

is
called a genetic.

From this definition, a d-chromo o
′

with concrete values determines an individual
formula [Ti ∧Di]o′ that is a constraint on symbolic inputs. Such an individual is a reformed
specification that can be used to generate test data for the program. In order to obtain good
individuals to generate test data that are useful for bug detection, we apply the genetic
manipulation to a group of individuals [Ti ∧ Di]o′ and find the appropriate d-chromo o

′
.

Each individual will be scored by evaluating the quality of the test data that are generated
from it.

3.5. Genetic Manipulations and Selection

The genetic manipulation refers to the change of genetic structure in biology, but, in
the GA, it indicates that a “child” solution is produced from a pair of “parent” solutions by
using genetic operators like crossover and mutation.

In the existing population, a pair of individuals (solutions) are selected as parents to
perform the crossover operator to produce their offspring. More specifically, as illustrated in
Figure 2, first select two individuals [Ti ∧ Di]o′1

and [Ti ∧ Di]o′2
from the current population

as parents and get their d-chromos o
′
1 and o

′
2, then swap each two genetics of the two

d-chromos with possibility p (0 < p < 1) to obtain two new individuals.

Figure 2. Crossover operator.

To perform the mutation operator, each genetic of an individual is mutated with possi-
bility q (0 < q < 1), as displayed in Figure 3. More clearly, for one individual [Ti ∧ Di]o′

with its d-chromo o
′
= (o1, · · · , on, d1, · · · , dc), each genetic of it has the possibility q to be

mutated:
o
′
i := o

′
i +4, where4 is a different scalar of small value.



Mathematics 2021, 9, 331 7 of 19

Figure 3. Mutation operator.

Fitness function Grade is used to evaluate an individual (a solution) [Ti ∧ Di]o′ by
assigning a fitness value. Let Datas = data_suite_ f rom([Ti ∧Di]o′ ) where data_suite_ f rom
generates a suite of input data from [Ti ∧ Di]o′ by using a constraint solver. Let N_killi,o′ =
(k1, . . . , km) where k j is the number of test data that have been generated from [Ti ∧ Di]o′
and have killed the program mutant muj as well. A test case that kills a program mutant
indicates that it fails based on the original specifications after it is executed by the program
mutant. We consider both the killing rate of program mutants Kill_rate, and the killing
rate of a data suite as important factors to compute the grade for [Ti ∧ Di]o′ :

Grade([Ti ∧ Di]o′ ) =
Kill_rate(N_killi,o′ ) · Sum(N_killi,o′ )

(m · (length(Datas) + 1))
(1)

where


Kill_rate(N_killi,o′ ) =

Σm
j=1 I(k j > 0)

length(N_killi,o′ )
,

I(k j > 0) =
{

1 k j > 0
0 k j ≤ 0

(2)

The factor Σm
j=1 I(k j > 0) in Kill_rate is intended to encourage each mutated functional

scenario to generate a test data suite that can kill as many different kinds of program
mutants as possible. The factor Sum(N_killi,o′ ) as a part of the numerator in Grade would
inspire every mutated functional scenario to generate a test data suite where most test data
are effective enough to kill as many program mutants as possible.

For a given chromosome [Ti ∧ Di]o′ , its individual with appropriate d-chromo o
′
i,best is

regarded as the best if and only if this individual possesses the highest value of Grade in the
whole population. GA is to find such best individuals for these chromosomes [Ti ∧ Di]o′
(i = 1, · · · , N).

After all the individuals from the current population are evaluated, GA would select
most of the best ones to form a new population for the next generation. This process
is called selection. In our approach, we evaluate all the individuals and sort them by
descending, then select individuals in the top 50 percent of the current population to breed
the next generation.

As we can see, GA is used to find the best individuals separately for each chromosomes
[Ti ∧ Di]o′ (i = 1, · · · , N). In order to evaluate all the best individuals represented by
different chromosomes, the final formula of evaluation is made as follows:

Grade(∨n
i=1[Ti ∧ Di]o′i,best

) =
Kill_rate(N_kill) · Sum(N_kill)

(m · length(Datas))
(3)

where


N_kill = Σn

i=1N_killi,ó′i,best
,

Datas = {data_suite_ f rom([Ti ∧ Di]o′i,best
)}i

(4)

We use the final formula to find all the mutated functional scenarios that together hit
the highest final grade (i.e., do the best in bug detection), each mutated one with well-tuned
values for dummy variables and output variables. Additionally, this final grade is also
used for comparison between our approach and other techniques. In the case study, our



Mathematics 2021, 9, 331 8 of 19

method is compared with the conventional specification-based method with respect to test
data generation for bug detection.

4. Algorithm Summary

Our approach that incorporates GA accomplishes the goal of obtaining the mutated
specifications by taking three key steps:

1. Inject faults into the original program to obtain a set of program mutants;
2. Use reformed specification [Ti ∧ Di]o′ as seed chromosomes. Each chromosome

corresponds to a group of individuals that are generated by assigning concrete values
to the output vector in the chromosome;

3. Apply GA to each chromosome and select the best individuals (the best mutated spec-
ifications). According to the original specifications, determine whether or not a test
case from a mutated specification (a constraint over inputs) kills the program mutants.

Figure 4 displays the whole evolution process of GA. In the first round of evolution,
a group of individuals are initialized and evaluated. Then, the best individuals in the top k
(k = 50% in this paper) of the group are selected to perform both crossover and mutation
operators to produce their offspring for the next round. In the next round, all of the
individuals are evaluated and the top k of them again prepare to breed a new generation by
performing genetic manipulations. The population iteratively evolves in this process until
there has been no improvement in the population or it reaches the predefined maximum
number of generations.

In the mutation testing, we use Z3 [44], a widely used satisfiability modulo theories
(SMT) solver, as our constraint solver to generate the data suite for each individual formula
(i.e., each mutated functional scenario). The generation for a data suite takes three steps:
(1) use Z3 to generate a test data that satisfies the logical formula, (2) exclude all the test
data obtained previously from the logical formula; (3) go to step (1) to obtain another piece
of test data unless enough test data are obtained. Each individual formula is evaluated by
the fitness function that measures the quality of the test data suite.

Figure 4. The evolution in GA.

We give the pseudo-code of the algorithm in Appendix A.



Mathematics 2021, 9, 331 9 of 19

5. Case Study

In this section, we apply GA to two classic examples to demonstrate the effectiveness
of the proposed method. The original specifications are used as test oracles for determining
whether the outputs are correct or not during the evaluation of individuals.

We compare our method with the conventional method, called original specification-
based method, which directly generates input data from the original specifications by using
Z3. In the original specification-based method, neither dummy variables nor defining
condition are used to generate input values, since the defining condition contains output
variables with unknown values. The input data are directly generated from only test
conditions (pre-condition and guard-condition over only input variables) by using Z3.

Sixteen program mutants are prepared for each program in the way that the injected
faults will not cause execution crash and infinite loops since we only focus on the functional
bugs in this paper. Both methods generate a test suite of the same size 20 every time to
execute these program mutants in the evaluation process.

5.1. Case Study 1: Mod

In this program, process Mod is to find the quotient q and remainder r from dividing y
by x. For Mod, we give its formal specification in SOFL and the implementation in Python.

The formal specification of Mod is:

process Mod (y: int, x: int) r: int, q: int
pre x 6= 0
post x > 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0∨

x < 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0∨
y = 0∧ q = 0∧ r = 0

end_process

Its implementation in Python is:

def Abs(x):
if x>=0:
return x
else:
return -x
def mod(y, x):
r = y;
q = 0;
if y!=0:
if x*y > 0:
while Abs(x) <= Abs(r):
r = r - x
q = q + 1

else:
while x*r < 0:
r = r + x
q = q - 1
return r, q

In this specification, Abs is a function for calculating the absolute value of its input.
To shorten the explanation of each step, assume Abs is an inline executable predicate. Both
−7 mod 5 = 3 and −7 mod 5 = −2 satisfy the classic definition y = q ∗ x + r ∧ Abs(r) <
Abs(x). To avoid the ambiguity, the specification of Mod puts an additional condition
xr ≥ 0 in order to get only one result of −7 mod 5 = 3.

In the specification, the pre-condition, guard-conditions, and defining conditions are
listed as:



Mathematics 2021, 9, 331 10 of 19

Spre := x 6= 0;
G1 := x > 0∧ y 6= 0; D1 := y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0;
G2 := x < 0∧ y 6= 0; D2 := y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0;
G3 := x > 0∧ y = 0; D3 := q = 0∧ r = 0.

We can obtain the functional scenarios Ti ∧ Di := Spre ∧ Gi ∧ Di as follows:
T1 ∧ D1 := x > 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0;
T2 ∧ D2 := x < 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0;
T3 ∧ D3 := x 6= 0∧ y = 0∧ q = 0∧ r = 0.

For T3 ∧ D3, the input x and y are not related to the output q and r, so we do not need
to apply GA to it. Since there is an equality y = q ∗ x + r in which inputs and outputs
are related, we introduce two dummy variables d1 and d2. The chromosomes of Mod are
displayed in Table 1.

Table 1. Chromosome forms for functional scenarios of process Mod.

Chromosome D-Chromo Dummy Vars

[T1 ∧ D1]o′ : x > 0∧ y 6= 0∧ o
′
=

d1 ≤ q ∗ x + r− y ≤ d2∧ (q, r, d1,d2) d1,d2
Abs(r) < x ∧ xr ≥ 0

[T2 ∧ D2]o′ : x < 0∧ y 6= 0∧ o
′
=

d1 ≤ q ∗ x + r− y ≤ d2∧ (q, r, d1,d2) d1,d2
Abs(r) < −x ∧ xr ≥ 0

Apply Algorithm A1 to these chromosomes. The results are displayed in Table 2.

Table 2. Results for process Mod after applying GA.

The Best Individual of Chromosome Grade

[T1 ∧ D1]o′

o
′
= (q, r, d1,d2) 0.58

o
′
1,best = (−4, 0,−6,−6)
[T2 ∧ D2]o′

o
′
= (q, r, d1,d2) 0.55

o
′
2,best = (−7, 0, 9, 13)

Total : ∨2
i=1[Ti ∧ Di]o′i,best

0.59

To illustrate the effectiveness of data generation from the mutated specifications,
Table 3 displays the results of the conventional method that generates the test data directly
from the original specifications. For the original specification, we generate test data only
from the test condition Ti consisting of both pre-condition Spre and guard-condition Gi
meanwhile ignoring the defining condition Di because the defining condition Di involves
unknown output variables that can not directly help to generate test data.

Table 3. Results for process Mod with original specifications.

Original Specification Grade

T1 : x > 0∧ y 6= 0 0.32
T2 : x < 0∧ y 6= 0 0.38
Total : ∨2

i=1Ti 0.37



Mathematics 2021, 9, 331 11 of 19

For the proposed method, the final Kill_rate of ∨2
i=1[Ti ∧ Di]o′i,best

is 100%, the same as

the conventional method. It means that every program mutant has been killed by at least
one piece of test data. The corresponding final Grade is 0.59, larger than the Grade of 0.37
with the original specification-based method, indicating that the test data generated from
∨2

i=1[Ti ∧ Di]o′i,best
are of high quality that are more likely to kill all the program mutants.

The result suggests that it is plausible to use these best individuals of chromosomes to
make four mutated specifications for test case generation in the further maintenance of the
original program.

Comparing the reformed specifications with the original ones in Figure 5, we can find
the Grade of reformed ones that are always larger than that of original ones. It means that
the data suite generated from the mutated specifications is more likely to pinpoint bugs
than that of original ones, although both of them share the same Kill_rate of 100%.

Figure 5. The grade of the mutated and original.

The Effect with Dummy Variables

We conduct additional experiments to figure out how dummy variables introduced
into the different parts of defining conditions would affect the quality of the obtained
mutated specifications. We make three versions of modifications to our approach as follows:

1. Version V1: Introducing dummy variables into only inequality relation;
2. Version V2: Introducing dummy variables into both equality and inequality relation;
3. Version V3: Putting no dummy variables in defining conditions.

For convenience, the approach with no modification, that is, with dummy variables
for only equality relation, is called Version V0.

The previous experimental result for V0 and the original, as well as the results from
after applying variations of the approach V1,V2, and V3 to process Mod, are together
displayed in Figure 6.

According to Figure 6, three approaches with dummy variables V0, V1, and V2 gain
higher Grades than the approach without dummy variables V3, and even V3 seems to
behave better than the conventional method. There are no significant differences between
the evaluation of V0 and V2. However, V2 would occupy more computation resources
than V0 due to the consideration of more dummy variables. It seems that V1 gains a little
better final Grade than V0, though its Grade for each single mutated functional scenario is
not good enough.



Mathematics 2021, 9, 331 12 of 19

Figure 6. Results by four versions and the original for Mod.

In addition, by using an approach without dummy variables V1 and V3, every ob-
tained single mutated functional scenario demonstrates the strong capability to kill some
specific program mutants while leaving other program mutants not killed, though the
combination of all the functional scenarios in V1 can reach 100% total Kill_rate while,
for V3, the total Kill_rate unfortunately remains in 87.5%. This result demonstrates the
importance of introducing dummy variables into equality relation in order to accomplish
both good single and total Grades and Kill_rates.

In summary, it is necessary to introduce dummy variables into equality relations,
and the additional dummy variables for inequality relation cannot significantly improve
the proposed approach.

5.2. Case Study 2: Gcd

Process gcd is to compute the greatest common divisor of two inputs by using Stein’s al-
gorithm.

The formal specifications of gcd is:

process gcd (x: int, y: int) r: int
pre x ≥ 0∧ y ≥ 0
post x > 0∧ y > 0∧ x ≥ y ∧ r = gcd(y, x%y) ∨

x > 0∧ y > 0∧ x < y ∧r = gcd(y, y%x) ∨
y = 0∧ r = x ∨
x = 0 ∧ r = y

end_process

The implementation of process gcd in Python is:

def gcd(x, y):
if x < y:
x, y = y, x
if (0 == y):
return x
if x % 2 == 0 and y % 2 == 0:
return 2 * gcd(x//2, y//2)
if x % 2 == 0:
return gcd(x // 2, y)
if y % 2 == 0:
return gcd(x, y // 2)
return gcd((x - y) // 2, y)



Mathematics 2021, 9, 331 13 of 19

Process gcd is a recursive process and its post-condition contains itself, so it is difficult
to generate data from this kind of post-condition. We transform the original post-condition
to the following ones:

T1 ∧ D1 := x > 0∧ y > 0∧ x ≥ y ∧ x%r = 0∧ y%r = 0∧ x%y%r = 0;
T2 ∧ D2 := x > 0∧ y > 0∧ x < y ∧ x%r = 0∧ y%r = 0∧ y%x%r = 0;
T3 ∧ D3 := x ≥ 0∧ y = 0∧ r = x;
T4 ∧ D4 := y ≥ 0∧ x = 0 ∧ r = y.

Table 4 shows the chromosomes of process gcd.
Apply the algorithm to all of the chromosomes; in the meantime, make use of the

original post-condition to determine whether the outputs of codes are correct or not.
The results are displayed in Table 5.

The final Kill_rate of∨4
i=1[Ti ∧Di]o′i,best

is 100%. The corresponding Grade is 0.46, which

means roughly 46 percent of test data that are randomly generated from ∨4
i=1[Ti ∧ Di]o′i,best

can kill all the program mutants.

Table 4. Chromosome forms for functional scenarios of process gcd.

Chromosome D-Chromo Dummy Vars

[T1 ∧ D1]o′ : x ≥ y ∧ o
′
=

(d1 ≤ x%r ≤ d2)∧ (r, d1,d2, d3 d1,d2, d3,

(d3 ≤ y%r ≤ d4)∧ d4, d5, d6) d4, d5, d6

(d5 ≤ x%y%r ≤ d6)

[T2 ∧ D2]o′ : x < y ∧ o
′
=

(d1 ≤ x%r ≤ d2)∧ (r, d1,d2, d3 d1,d2, d3,

(d3 ≤ y%r ≤ d4)∧ d4, d5, d6) d4, d5, d6

(d5 ≤ y%x%r ≤ d6)

[T3 ∧ D3]o′ : y = 0 ∧ o
′
= d1, d2

(d1 ≤ x− r ≤ d2) (r, d1, d2)

[T4 ∧ D4]o′ : x = 0 ∧ o
′
= d1, d2

(d1 ≤ y− r ≤ d2) (r, d1, d2)

Table 5. Results for process gcd after applying GA.

The Best Individual of Chromosome Grade

[T1 ∧ D1]o′

o
′
1,best = 0.72

(0, 1, 10, 10, 10, 3, 6)

[T2 ∧ D2]o′

o
′
2,best = 0.58

(8, 4, 6, 2, 2, 0, 8)

[T3 ∧ D3]o′

o
′
3,best = (5,−1, 20) 0.0037

[T4 ∧ D4]o′

o
′
4,best = (4,−3, 16) 0.0037

Total : ∨4
i=1[Ti ∧ Di]o′i,best

0.46



Mathematics 2021, 9, 331 14 of 19

Conversely, the result for applying the method that generates test data directly from
the original specification is displayed in Table 6.

Table 6. Results for process gcd with original specifications.

Original Specification Grade

T1 : x > 0∧ y > 0∧ x ≥ y 0.29

T2 : x > 0∧ y > 0∧ x < y 0.49

T3 : x ≥ 0∧ y = 0 0.0035

T4 : y ≥ 0∧ x = 0 0.0035

Total : ∨2
i=1Ti 0.25

Comparing the reformed specifications with the original ones in Figure 7, we can
find that the first two reformed ones [T1 ∧ D1]o′ and [T2 ∧ D2]o′ have very high values of
Grade, 0.72 and 0.58, respectively, higher than 0.29 and 0.49 with the original specifications.
In addition, the Kill_rate of a sole [Ti ∧ Di]o′ (i = 1, 2) is 94%, indicating that the test
data generated from the first two reformed specifications are likely to pinpoint most bugs
probably occurring in the program. Only a few program mutants (6% of total), with
some faults that directly relates to the last two functional scenarios T3 ∧ D3 and T4 ∧ D4
(where x = 0 or y = 0), cannot be killed by the test data generated from either the first two
reformed specifications or the first two original specifications. Due to the very simple forms
and the limited functionality of the last two functional scenarios, there is no improvement
of test data generation using our method against the original ones.

Figure 7. The grade of the reformed and original.

The results from both classic examples demonstrate that the input data generated
from the mutated specifications are more likely to kill the mutants of programs than that
from the original specifications.

The Effect without Dummy Variables

Like what we have done for process Mod, we conduct additional experiments with
the approach without using dummy variable V3 since gcd only has equality relations in the
defining conditions. The results are shown in Figure 8.



Mathematics 2021, 9, 331 15 of 19

Figure 8. Results by four versions and the original for gcd.

The experimental results are similar to that in Mod. V0 performs better than V3. V3
still encounters the problem that every single mutated functional scenario is not able to kill
all the program mutants. It shows that the test data generated from those strict equality
relations are less likely to trigger some bad behaviors of program.

5.3. Complexity of Our Approach

We present an abstract analysis of the complexity for our approach. Generally, a GA
complexity is on the order of O(g ∗ n ∗m) without the effect of the fitness function, where
g is the number of generations, n is the population size, and m is the number of functional
scenarios. Since our approach uses a fitness function involved in the mutation testing,
we should take both the program execution time and the data suite generation time
into consideration.

As the speed of the constraint solver to solve an individual formula (to generate a
test suite) depends on the complexity of the functional scenarios (logical formulas) whose
complexity cannot be easily determined, we associate the cost of using the constraint solver
for a singular individual with the number of input variables in, the number of output
variables out, and the number of dummy variables d. In addition, the number of dummy
variables relies on the number of equality relation in each functional scenario, which varies
in different kinds of programs. We simply assume that each functional scenario has at
least one equality relation. Thus, the complexity of using the constraint solver for each
individual is O(in + out + 2 ∗ d ∗m). Moreover, the complexity of all the executions for
program mutants is approximately O(mu ∗ sui) with mu the number of program mutants
and sui the size of test data suite. Finally, considering the complexity of the GA together
with the mutation testing, the complexity for our approach is

O(g ∗ n ∗ ((in + out + 2 ∗ d ∗m) ∗ (mu ∗ sui)) ∗m).

6. Conclusions

We propose a new method for effective test data generation based on mutated pre-post
style formal specifications. The method is characterized by the integration of the functional
scenario-based testing, a genetic algorithm and the mutation testing. In the approach,
by assigning appropriate values to the unknown output and dummy variables to the
variations for the original specifications, we can obtain useful mutated specifications that
are sensitive to small syntactic structural changes of program codes.



Mathematics 2021, 9, 331 16 of 19

We have also carried out two classic cases to evaluate the performance of our method.
The results of case studies demonstrate that, for a complicated functional scenario, the pro-
posed approach is capable of effectively generating useful test data to kill as many program
mutants as possible, which outperforms the conventional data generation method.

In spite of the advantages of our method as mentioned above, there are also some
limitations and disadvantages in the application of our method. First, the proposed method
can only work on arithmetical relationships between inputs and outputs in which outputs
affect the generation of inputs. Second, as the GA usually iterates many times and executes
all the program mutants for every iteration, the cost would not be low. However, if we
have enough computing resources for applying our method, it might be worth taking time
to obtain good reformed specifications for the further maintenance of software.

In order to cope well with complex real programs, some additional extensions can be
made in our approach. Firstly, by using the character encoding standard like US-ASCII
[45], we can convert a String to a byte array so that the relationship that contains string
variables can also be manipulated by our method. Moreover, since many research works
exist concerning about the techniques of encoding complex data [46–48] that may occur
in specifications like images and videos, it is possible to transform these specifications
into appropriate arithmetical relationships so that our approach can be used in such cases.
Secondly, although there exist specifications where the input and output variables are
not specified by some explicit arithmetical equality relation, our method would still be
applicable. Because instead of directly using these specifications, we can design some
mutated arithmetical relationships (in form of inequality) of input and output that can not
only approximate to the real properties of program but also leave open the possibility of
occurrence of unexpected behaviors. Thirdly, when testing a big complex system, we can
decompose it into a set of subroutines and focus on testing small procedures one by one
using our approach. Thus, there is no need to repeatedly executing the whole system with
our algorithm.

In future work, we will focus on enhancing the capability of this method to deal with
more kinds of relationships between inputs and outputs where the values of outputs may
not directly determine the inputs. We will conduct more experiments to ensure that our
method can be well used in different kinds of programs.

Author Contributions: Conceptualization, R.W., S.L., and Y.S.; methodology, R.W. and Y.S.; in-
vestigation, R.W.; resources, R.W.; data curation, R.W.; writing—original draft preparation, R.W.;
writing—review and editing, S.L. and Y.S.; visualization, R.W.; supervision, S.L. and Y.S.; project
administration, S.L. and Y.S.; funding acquisition, S.L. and Y.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded by JSPS KAKENHI Grant No. 26240008.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Algorithm A1, the function one_step creates a new population with fitness values
from the previous population through applying crossover and mutation operations; and
the function do_valuation assigns fitness values calculated by the function Grade to all of
the individuals by using the feedback of testing program mutants.



Mathematics 2021, 9, 331 17 of 19

Algorithm A1 GA to obtain mutated specifications.

Inputs: the functional scenarios from the specification: Ti ∧ Di
Individuals: o

′
= (o1, · · · , on, d1,··· ,dm) with concrete values

Outputs: the reformed specification [Ti ∧ Di]o′
run(){

result = list()
for [Ti ∧ Di]o′ in functional scenarios:

spec = Ti ∧ Di
population = initial(o

′
)

while(not enough iterations){
one_step(spec)

}
best_individual =

select_best_individual(population)
reformed_specification = (spec, best_individual)
result.append(reformed_specification)

}
one_step(spec) {

# This function selects top 50% of the current population
population = keep_good_individuals(population)
do:

father, mother = random_select_two(population)
child1, child2 = crossover_operation(father,mother)
child1, child2 = mutation_operation(child1,child2)
population.put(child1,child2)

until population increases enough
do_valuation(population,spec)

}
do_valuation(population,spec){

for individual in population:
datas = data_suite_from(individual,spec)
statistic_sum = kill_program_mutants(datas)
individual.value = Grade(statistic_sum)

}

References
1. Wong, W.E.; Horgan, J.R.; London, S.; Agrawal, H. A study of effective regression testing in practice. In Proceedings of the Eighth

International Symposium on Software Reliability Engineering, Albuquerque, NM, USA, 2–5 November 1997; pp. 264–274.
2. Leung, H.K.; White, L. Insights into regression testing (software testing). In Proceedings of the Conference on Software

Maintenance, Miami, FL, USA, 16–19 October 1989; pp. 60–69.
3. Kazmi, R.; Jawawi, D.N.; Mohamad, R.; Ghani, I. Effective regression test case selection: A systematic literature review.

ACM Comput. Surv. (CSUR) 2017, 50, 1–32. [CrossRef]
4. Stocks, P.; Carrington, D. A framework for specification-based testing. IEEE Trans. Softw. Eng. 1996, 777–793. [CrossRef]
5. Richardson, D.; O’Malley, O.; Tittle, C. Approaches to Specification-Based Testing; ACM: New York, NY, USA, 1989; Volume 14.
6. Khurshid, S.; Marinov, D. TestEra: Specification-based testing of Java programs using SAT. Autom. Softw. Eng. 2004, 11, 403–434.

[CrossRef]
7. Hierons, R.M.; Bogdanov, K.; Bowen, J.P.; Cleaveland, R.; Derrick, J.; Dick, J.; Gheorghe, M.; Harman, M.; Kapoor, K.; Krause, P.;

et al. Using formal specifications to support testing. ACM Comput. Surv. (CSUR) 2009, 41, 1–76. [CrossRef]
8. Dokhanchi, A.; Hoxha, B.; Fainekos, G. Formal requirement debugging for testing and verification of cyber-physical systems.

ACM Trans. Embed. Comput. Syst. (TECS) 2017, 17, 1–26. [CrossRef]
9. Offutt, A.J.; Liu, S. Generating Test Data from SOFL Specifications. J. Syst. Softw. 1999, 49, 49–62. [CrossRef]
10. Dick, J.; Faivre, A. Automating the generation and sequencing of test cases from model-based specifications. In Proceedings of the

International Symposium of Formal Methods Europe, Odense, Denmark, 19–23 April 1993; Springer: Berlin/Heidelberg, Germany,
1993; pp. 268–284.

http://doi.org/10.1145/3057269
http://doi.org/10.1109/32.553698
http://dx.doi.org/10.1023/B:AUSE.0000038938.10589.b9
http://dx.doi.org/10.1145/1459352.1459354
http://dx.doi.org/10.1145/3147451
http://dx.doi.org/10.1016/S0164-1212(99)00066-7


Mathematics 2021, 9, 331 18 of 19

11. Ed-Douibi, H.; Izquierdo, J.L.C.; Cabot, J. Automatic generation of test cases for REST APIs: A specification-based approach.
In Proceedings of the 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), IEEE,
Stockholm, Sweden, 16–19 October 2018; pp. 181–190.

12. Alrawashed, T.A.; Almomani, A.; Althunibat, A.; Tamimi, A. An Automated Approach to Generate Test Cases From Use Case
Description Model. Comput. Model. Eng. Sci. 2019, 119, 409–425. [CrossRef]

13. Jones, C.B. Systematic Software Development Using VDM; Citeseer: Princeton, NJ, USA, 1990; Volume 2.
14. Larsen, P.G.; Battle, N.; Ferreira, M.; Fitzgerald, J.; Lausdahl, K.; Verhoef, M. The overture initiative integrating tools for VDM.

ACM SIGSOFT Softw. Eng. Notes 2010, 35, 1–6. [CrossRef]
15. Tran-Jørgensen, P.W.; Nilsson, R.S.; Lausdahl, K. Enhancing Testing of VDM-SL models. In Proceedings of the 16th Overture

Workshop, Oxford, UK, 14 July 2018; pp. 7–22.
16. Liu, S. Formal Engineering for Industrial Software Development: Using the SOFL Method; Springer Science & Business Media:

Berlin, Germany, 2013.
17. Liu, S.; Nakajima, S. Combining Specification Testing, Correctness Proof, and Inspection for Program Verification in Practice.

In Proceedings of the 3rd International Workshop on SOFL + MSVL (SOFL+MSVL 2013), LNCS 8332, Queenstown, New Zealand,
29 October 2013; Springer: Queenstown, New Zealand, 2013; pp. 3–16.

18. Wang, R.; Sato, Y.; Liu, S. Specification-based Test Case Generation with Genetic Algorithm. In Proceedings of the 2019 IEEE
Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1382–1389.

19. Rapps, S.; Weyuker, E.J. Selecting software test data using data flow information. IEEE Trans. Softw. Eng. 1985, 367–375.
[CrossRef]

20. Weyuker, E.J. More experience with data flow testing. IEEE Trans. Softw. Eng. 1993, 19, 912–919. [CrossRef]
21. Khedker, U.; Sanyal, A.; Sathe, B. Data Flow Analysis: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2017.
22. Pargas, R.P.; Harrold, M.J.; Peck, R.R. Test-data generation using genetic algorithms. Softw. Test. Verif. Reliab. 1999, 9, 263–282.

[CrossRef]
23. Girgis, M.R. Automatic Test Data Generation for Data Flow Testing Using a Genetic Algorithm. J. UCS 2005, 11, 898–915.
24. Girgis, M.R.; Ghiduk, A.S.; Abd-Elkawy, E.H. Automatic generation of data flow test paths using a genetic algorithm.

Int. J. Comput. Appl. 2014, 89, 29–36.
25. Nayak, N.; Mohapatra, D.P. Automatic test data generation for data flow testing using particle swarm optimization.

In Proceedings of the International Conference on Contemporary Computing, Noida, India, 9–11 August 2010; Springer:
Cham, Switzerland, 2010; pp. 1–12.

26. Biswas, S.; Kaiser, M.S.; Mamun, S. Applying ant colony optimization in software testing to generate prioritized optimal path
and test data. In Proceedings of the 2015 International Conference on Electrical Engineering and Information Communication
Technology (ICEEICT), IEEE, Dhaka, Bangladesh, 21–23 May 2015; pp. 1–6.

27. Harman, M.; Jia, Y.; Langdon, W.B. Strong higher order mutation-based test data generation. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ACM, Szeged, Hungary,
5–9 September 2011; pp. 212–222.

28. Papadakis, M.; Kintis, M.; Zhang, J.; Jia, Y.; Le Traon, Y.; Harman, M. Mutation testing advances: An analysis and survey.
In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2019; Volume 112, pp. 275–378.

29. Ma, Y.S.; Offutt, J.; Kwon, Y.R. MuJava: An automated class mutation system. Softw. Test. Verif. Reliab. 2005, 15, 97–133. [CrossRef]
30. Derezinska, A.; Kowalski, K. Object-oriented mutation applied in common intermediate language programs originated from c.

In Proceedings of the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops,
Berlin, Germany, 21–25 March 2011; pp. 342–350.

31. Delgado-Pérez, P.; Medina-Bulo, I.; Palomo-Lozano, F.; García-Domínguez, A.; Domínguez-Jiménez, J.J. Assessment of class
mutation operators for C++ with the MuCPP mutation system. Inf. Softw. Technol. 2017, 81, 169–184. [CrossRef]

32. Jackson, D. Alloy: A lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2002, 11, 256–290.
[CrossRef]

33. Sullivan, A.; Wang, K.; Zaeem, R.N.; Khurshid, S. Automated test generation and mutation testing for Alloy. In Proceedings of the
2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, 13–17 March 2017;
pp. 264–275.

34. Martins, E.; Sabião, S.B.; Ambrosio, A.M. ConData: A tool for automating specification-based test case generation for communica-
tion systems. Softw. Qual. J. 1999, 8, 303–320. [CrossRef]

35. McMillan, K.L.; Zuck, L.D. Formal specification and testing of QUIC. In Proceedings of the ACM Special Interest Group on Data
Communication; ACM: New York, NY, USA, 2019; pp. 227–240.

36. Ali, S.; Iqbal, M.Z.; Arcuri, A.; Briand, L.C. Generating test data from OCL constraints with search techniques. IEEE Trans. Softw.
Eng. 2013, 39, 1376–1402. [CrossRef]

37. Jalila, A.; Mala, D.J. Automated optimal test data generation for OCL specification using harmony search algorithm.
Int. J. Bus. Intell. Data Min. 2020, 16, 231–259. [CrossRef]

38. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

http://dx.doi.org/10.32604/cmes.2019.04681
http://dx.doi.org/10.1145/1668862.1668864
http://dx.doi.org/10.1109/TSE.1985.232226
http://dx.doi.org/10.1109/32.241773
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
http://dx.doi.org/10.1002/stvr.308
http://dx.doi.org/10.1016/j.infsof.2016.07.002
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1023/A:1008930105477
http://dx.doi.org/10.1109/TSE.2013.17
http://dx.doi.org/10.1504/IJBIDM.2020.104743


Mathematics 2021, 9, 331 19 of 19

39. DeMillo, R.A.; Lipton, R.J.; Sayward, F.G. Hints on test data selection: Help for the practicing programmer. Computer 1978,
11, 34–41. [CrossRef]

40. Luo, J.; Liu, S.; Wang, Y.; Zhou, T. Applying SOFL to a railway interlocking system in industry. In Proceedings of the Inter-
national Workshop on Structured Object-Oriented Formal Language and Method, Tokyo, Japan, 15 November 2016; Springer:
Cham, Switzerland, 2016; pp. 160–177.

41. Liu, S. Formal Engineering for Industrial Software Development Using the SOFL Method; Springer: Berlin, Germany, 2004;
ISBN 3-540-20602-7.

42. Sen, K. Concolic testing. In Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software
Engineering, ACM, Atlanta, GA, USA, 5–9 November 2007; pp. 571–572.

43. Sato, Y.; Sugihara, T. Automatic Generation of Specification-Based Test Cases by Applying Genetic Algorithms in Reinforce-
ment Learning. In Proceedings of the International Workshop on Structured Object-Oriented Formal Language and Method,
Paris, France, 6 November 2015; Springer: Cham, Switzerland, 2015; pp. 59–71.

44. De Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In Proceedings of the International conference on Tools and Algorithms
for the Construction and Analysis of Systems, Budapest, Hungary, 29 March–6 April 2008; Springer: Cham, Switzerland, 2008;
pp. 337–340.

45. Mackenzie, C.E. Coded-Character Sets: History and Development; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA,
USA, 1980.

46. Basavaprasad, B.; Ravi, M. A study on the importance of image processing and its applications. IJRET Int. J. Res. Eng. Technol.
2014, 3, 1.

47. Barannik, V.; Podlesny, S.; Tarasenko, D.; Barannik, D.; Kulitsa, O. The video stream encoding method in infocommunication
systems. In Proceedings of the 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and
Computer Engineering (TCSET), IEEE, Lviv-Slavske, Ukraine, 20–24 February 2018; pp. 538–541.

48. Hur, T.; Bang, J.; Huynh-The, T.; Lee, J.; Kim, J.I.; Lee, S. Iss2Image: A novel signal-encoding technique for CNN-based human
activity recognition. Sensors 2018, 18, 3910. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.3390/s18113910
http://www.ncbi.nlm.nih.gov/pubmed/30428600

	Introduction
	Related Work 
	GA with Mutated Specification 
	Description for GA
	Mutation Testing
	Mutated Specifications
	Chromosome Formation
	Genetic Manipulations and Selection

	Algorithm Summary 
	Case Study 
	Case Study 1: Mod
	Case Study 2: Gcd
	Complexity of Our Approach

	Conclusions 
	
	References

