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Abstract: The paper is concerned with the issues of modeling dynamic systems with interval pa-
rameters. In previous works, the authors proposed an adaptive interpolation algorithm for solving
interval problems; the essence of the algorithm is the dynamic construction of a piecewise polynomial
function that interpolates the solution of the problem with a given accuracy. The main problem of
applying the algorithm is related to the curse of dimension, i.e., exponential complexity relative
to the number of interval uncertainties in parameters. The main objective of this work is to apply
the previously proposed adaptive interpolation algorithm to dynamic systems with a large number
of interval parameters. In order to reduce the computational complexity of the algorithm, the au-
thors propose using adaptive sparse grids. This article introduces a novelty approach of applying
sparse grids to problems with interval uncertainties. The efficiency of the proposed approach has
been demonstrated on representative interval problems of nonlinear dynamics and computational
materials science.

Keywords: adaptive interpolation algorithm; interval ordinary differential equations (ODEs); sparse
grids; hierarchical basis; multidimensional interpolation; high dimensions; molecular dynamics
modeling

1. Introduction

Problems related to inaccurately specified data arise in many modern fields of science
and technology. When applied to non-stationary processes, they are often formulated
as dynamic systems with interval parameters. The result of solving such problems is an
interval estimate of the set of possible system states depending on the uncertainties in
the parameters. Basic methods of interval analysis are presented in books [1–5]. There
are known methods based on the representation of a set of solutions through geometric
primitives: parallelepipeds and ellipses [6,7], methods based on symbolic computation [8,9],
as well as stochastic methods [10], such as Monte-Carlo methods. Methods based on
classical interval arithmetic are subject to the so-called wrap effect [1], which manifests
itself in an unlimited increase in the width of the obtained interval estimates of solutions.
This effect arises due to the replacement of the exact form of the set of solutions by a
simpler form, and for iterative methods, the divergence of intervals’ boundaries is often
exponential. Existing methods that are not subject to this effect, or weakly susceptible to it,
often have exponential complexity with respect to the number of interval parameters. It
concerns symbolic methods operating in series, Monte-Carlo methods, and the adaptive
interpolation algorithm [11]. Therefore, there is a need for efficient approaches to reduce
the computational complexity of methods that are not affected by the wrapping effect.

While solving a considered class of problems, the main idea is to construct an explicit
dependence of the solution to the corresponding non-interval problem on the point values
of the interval parameters. If such dependence is available, finding an interval estimate
would be reduced to solving a certain number of constrained optimization problems for
explicitly given functions.
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Papers [11–14] describe the adaptive interpolation algorithm in detail. The essence
of the algorithm is the dynamic construction of a piecewise polynomial function that
interpolates the solution of the problem with a given accuracy. The theoretical basis of
the algorithm is given in References [11,12]. The algorithm has a number of essential
features: it is not subject to the wrapping effect [11]; efficiently parallelizes on GPUs;
able to simulate rigid systems [13]; determines the presence of bifurcations and chaos
in the system [14]. It has been tested on applied problems of chemical kinetics [13], gas
dynamics and celestial mechanics, and complex dynamics with bifurcations and chaos [14].
Nevertheless, there is some drawback. The algorithm uses multidimensional interpolation
on a regular grid, which requires (p + 1)d nodes, where p—a polynomial degree for each
dimension and d—the number of dimensions. With a large number of interval parameters,
the application of the algorithm becomes difficult. However, a typical situation is when the
degree of influence of different parameters and their combinations on a solution can differ
significantly; therefore, it naturally follows to use approaches that take into account these
features and, as a consequence, reduce the computational complexity.

Within the framework of modeling methods for dynamical systems with interval
parameters, it is worth noting the work [15], which describes a method based on the
polynomial approximation of the solution, which requires points in the sample less than
(p + 1)d. This method has been successfully applied to the problem of modeling a rotating
system with both random and interval variables [16]. This class of problems is significant
from an applied point of view.

The curse of dimension, that is, the exponential growth of the number of calculations,
is a critical problem. Typically, this situation arises when studying multidimensional
functions presented in the form of a black box. The general tactic for reducing compu-
tational complexity is to determine and take into account the features of the function
under consideration.

Sparse grids [17] are numerical methods for representing, integrating, or interpolating
multidimensional functions based on a hierarchical basis [18,19] and reducing the curse of
dimension. This approach was first presented by the Russian mathematician Smolyak in
1963. Classic sparse grids result from computational cost optimization for approximating
functions with bounded mixed derivatives [20]. This fact is important since it imposes
certain restrictions on the solution’s dependence on interval parameters. Interpolation
using sparse grids requires significantly fewer nodes than standard full grid interpolation.

There are many works devoted to sparse grids [21–24]. Reference [21] gives an initial
introduction to sparse grids and the technique of combining them. It provides a program
code in the Python programming language. In Reference [22], some parallelization issues
are considered; Reference [23] provides an overview of the foundations and applications of
sparse grids, with particular attention to the solution of partial differential equations.

The behavior of the solution to the ordinary differential equations (ODE) system can
differ significantly depending on the parameters and initial conditions. Adaptive grids can
drastically reduce computational costs by condensing nodes in regions with strong solution
dependence on parameters and rarefaction in areas with weak dependence. Besides such
adaptation, additional properties of the solution can be taken into account using sparse
grids. This approach is effective when the interpolated function has a weak dependence on
subsets of variables. For example, if the solution to an ODE system can be represented as a
linear combination of functions from certain subsets of parameters and initial conditions,
then it is sufficient to consider only the corresponding subsets and construct a grid only
from them. Sparse grids are especially effective in multidimensional problems and can
significantly reduce computational costs.

The main problem is the high computational costs when solving problems with
uncertainties. The main goal of this work is to apply the previously proposed adaptive
interpolation algorithm to the case of dynamical systems with a large number of interval
parameters. The novelty lies in the application of sparse grids to problems with interval
uncertainties, including problems of molecular dynamics.
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The research methodology is based on methods of mathematical modeling, computa-
tional mathematics, and differential calculus. The statement of the problem is formulated
in the form of the Cauchy problem for a system of ordinary differential equations with
interval parameters. The method is tested on a representative set of problems.

The following sections give a description of the adaptive interpolation algorithm on
sparse grids, present the results of testing the algorithm on a number of model problems of
nonlinear dynamics, and solve an important problem of computational materials science,
namely the determination of an interval stress tensor based on molecular dynamics model-
ing.

2. Algorithm for Adaptive Interpolation Using Sparse Grids

Dynamic systems with uncertainties in parameters arise in many practical areas.
Traditionally, interval problems for dynamic systems are formulated in the form of the
Cauchy problem for a system of ordinary differential equations (ODE) with interval initial
conditions or parameters. It is necessary to obtain an interval estimate of the solution based
on interval values of the parameters.

Consider the Cauchy problem with m interval initial conditions:
dyi(t)

dt = fi(y1(t), y2(t), ..., yn(t)), 1 ≤ i ≤ n,
yi(t0) ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m,

yi(t0) = y0
i , m + 1 ≤ i ≤ n,

t ∈ [t0, tN ].

(1)

Hereinafter, the underline denotes the lower bound of the interval, and the overline—
the upper bound of the interval.

If the ODE system is not autonomous or contains interval parameters, then fictitious
equations are added to the system so that it would take the form of system Equation (1).
A vector function f = ( f1, f2, ..., fn)

T meets all conditions ensuring the uniqueness and
existence of a solution for all yi(t0) ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m.

The goal is, for each moment of time tk, to construct a piecewise polynomial vector
function Pk(y0

1, y0
2, ..., y0

m
)
, where yi(t0) ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m, which interpolates the

dependence of the solution on the interval parameters with controlled accuracy. If the
function Pk is available, finding the interval estimate of the solution (finding the left and
right boundaries of the intervals) should be reduced to solving constrained optimization
problems for an explicitly given function.

Suppose that the solution to yk(y0
1, y0

2, ..., y0
m
)

is known at the moment of time tk,

where y0
i ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m. An adaptive sparse grid is constructed for the set formed

by the interval initial conditions. Each grid point has a corresponding solution to the
noninterval system (1) at pointwise values of interval parameters that correspond to the
position of a node. To obtain an interval solution at the moment of time tk+1, the transfer of
all non-interval solutions contained in the grid nodes to the time layer (k + 1) is performed,
followed by the adaptation of the grid and the construction of an interpolation polynomial
Pk+1.

A short description of sparse grid interpolation according to the works [20,21] is
given below.

Consider the interpolation of a smooth function f (x) of one variable on the unit
interval [0, 1]. For the sake of simplicity, it is assumed that the function is equal to zero at
the boundary points: f (0) = f (1) = 0.

The interpolation is performed on a piecewise linear hierarchical basis using the
hat function:

ϕ(x) =
{

1− |x|, x ∈ [−1, 1]
0, otherwise

. (2)
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Define a set of grids Gl on a unit interval [0, 1], where l is the level that determines the
grid width hl = 2−l . The grid points xl, i are given as:

xl, i = i · hl , 0 ≤ i ≤ 2l .

Families of basis functions ϕl, i(x) are generated based on the obtained sets of points,
using the stretching and transfer of the hat Equation (2):

ϕl, i(x) = ϕ

(
x− i · hl

hl

)
. (3)

A nodal basis is formed for each given l of Equation (3). Here, the common piecewise
linear interpolation (Figure 1) is applied, and the corresponding polynomial is written
as follows:

P(x) =
2l−1

∑
i=1

al,i ϕl,i(x), al,i = f (xl,i). (4)
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Figure 1. Interpolation on a nodal basis. Figure 1. Interpolation on a nodal basis.

Let us make the transition to a hierarchical basis (Figure 2). The basis functions given
by Equation (3) is expressed with even level indices k in terms of the basis level functions
(k− 1):

ϕk,2i(x) = ϕk−1,i(x)− 1
2
(ϕk,2i−1(x) + ϕk,2i+1(x)), 1 ≤ i ≤ 2k−1 − 1.

In this case, the interpolation polynomial given by Equation (4) takes the follow-
ing form:

P(x) =
l

∑
k=1

2k−1

∑
i = 1,
i odd

ak,i ϕk,i(x), ak,i = f (xk,i)−
1
2
( f (xk,i−1) + f (xk,i+1)) (5)

Next, consider the multidimensional interpolation of a smooth function f (x1, x2, ..., xd)

using d—dimensional unit cube Ω = [0, 1]d, provided that f |∂Ω = 0. A multidimensional
basis is constructed by the direct product of hierarchical one-dimensional bases:

ϕl,i(x) =
d

∏
j=1

ϕlj , ij
(xj), 1 ≤ ij ≤ 2lj − 1, ij odd,
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where l = (l1, l2, ..., ld) are the levels of the corresponding one-dimensional grids, i =

(i1, i2, ..., id) is the basis function multi-index, x = (x1, x2, ..., xd). If
d
∑

j=1
lj ≤ n + d− 1, there

is a sparse grid of n level; if max
j=1,d

(
lj
)
≤ n, there exists a complete grid (Figure 3). The number

of nodes in a sparse grid is estimated as O
(

p(log2 p)d−1
)

, and the interpolation error is

estimated as O
(

h2
n(log2 p)d−1

)
; for a full grid the respective number of nodes is O

(
pd
)

,

and the error is O
(
h2

n
)
, where p = 2n − 1 is the number of nodes in each dimension [20].
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The interpolation polynomial is written as follows:

P(x) = ∑
l,i

al,i ϕl,i(x), |l|1 ≤ n + d− 1, 1 ≤ ij ≤ 2lj − 1, ij odd (6)

where

al,i = ∑
∆1,...,∆d

(
−1

2

) d
∑

j=1
|∆j |

f
(
xl1,i1+∆1 , xl2,i2+∆2 , ..., xld ,id+∆d

)
, −1 ≤ ∆j ≤ 1, 1 ≤ j ≤ d. (7)

In the case when the interpolated function has a nonzero value at the boundary, the
one-dimensional basis is supplemented by two additional functions: ϕ0, 0(x) and ϕ0, 1(x)
(Figure 4). Two values are added to the polynomial given by Equation (5): a0,0 ϕ0,0(x) and
a0,1 ϕ0,1(x), where a0,0 = f (0), a0,1 = f (1). By analogy, for multidimensional interpolation,
it follows that if lj = 0, then ij = 0, 1 in Equation (6) and ∆j = 0 in Equation (7). Allowance
for boundary values in the multidimensional case can be considered as the construction of
sparse grids for all faces of lower dimensions. Figure 5 shows a sparse grid, which takes
into account the boundary values.
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Figure 5. Sparse grid of the level n = 4, which takes into account boundary values.

In addition, there are adaptive sparse grids for which a general tree can be used
to perform structuring. Each vertex of the tree corresponds to a certain basis function
ϕl,i. If the value of the corresponding coefficient al,i/max( f (xl,i), 1) > ε, where ε is some
predetermined value, then each vertex creates 2d descendants, which correspond to the
basis functions of the next level. This process continues recursively until the values al,i at
all leaf vertices become less than ε. With this approach, it is important to make sure that
there is no duplication of vertices.

Consider some examples. Figure 6 shows several functions R2 → R and the resulting
adaptive grid, Figure 7 shows grids for functions R3 → R .
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It can be seen from the figures that if the initial dependence is a linear combination
of functions determined by certain subgroups of variables, then the adaptive sparse grid
will become more dense not in the entire set (Figures 6c and 7c), but only in subsets of
lower dimension that correspond to these subgroups (Figures 6a and 7a,b). The subsets
for grid construction are determined by those subgroups of parameters, for which the
mixed derivatives are nonzero, and the grid density directly depends on the values of these
derivatives (Figure 6b,c).

To build a solution for the system given by Equation (1), the uncertainty area y0
i ∈[

y0
i , y0

i

]
, 1 ≤ i ≤ m is transformed with the help of displacement and stretching into a m-

dimensional unit cube. Taking into account that solving the problem requires interpolating
n functions at once (n is the number of phase variables of the system), Equations (6) and (7)
will take the following form:

Pk
(

y0
)
= ∑

l,i
ak

l,i ϕl,i

(
y0
)

,

where

ak
l,i = ∑

∆1,...,∆m

(
−1

2

) m
∑

j=1
|∆j |

yk
(

y0
1, l1,i1+∆1

, y0
2, l2,i2+∆2

, ..., y0
m, lm ,im+∆m

)
, −1 ≤ ∆j ≤ 1, 1 ≤ j ≤ m (8)

The vector norm ak
l,i (for example, the maximum one) can be used as a criterion for

adapting the grid.
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Construct an interpolation polynomial Pk+1(y0). All the solutions that participated in
the calculation of the coefficients given by Equation (8) are transferred to the (k + 1)-th time
layer using some numerical integration method, after which a new set of ak+1

l,i coefficients
is calculated and the adaptation of the grid is performed. When compacting the grid, the
addition of new basis functions occurs at the k-th time layer and the solutions involved in
computing the corresponding weight coefficients are transferred to the next layer.

The efficiency of the considered approach will be noticeable when many mixed deriva-

tives of the solution with respect to the parameters
∂Σαi yk(y0

1, y0
2,..., y0

m)
(∂y0

1)
α1(∂y0

2)
α2 ...(∂y0

m)
αm , max

1≤i≤m
αi ≤ 2,

y0
i ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m are negligible or equal to zero. Particularly, this takes place, if

the solution to the ODE system can be represented as a linear combination of functions
determined by a certain subset of interval parameters.

Thus, the scope of application of the proposed approach is rather wide and includes
various dynamic systems. In the next section, it is demonstrated how the method is applied
to some representative problems.

3. Approbation of the Algorithm for Nonlinear Dynamics Problems

To characterize computational costs, a criterion is determined, which is equal to the
average number of integrated non-interval ODE systems at a time step in the computa-
tional process:

I =
1
N

N

∑
k=1

Ck,

where Ck is the number of nodes at the k step. A similar criterion exists for the classical
adaptive interpolation algorithm [11]. The I value is equivalent to the number of sampling
points from the original region of uncertainty.

To estimate the posterior interpolation error at the initial moment of time, ncheck points
are randomly generated:

yj
i(t0) = rand

[
y0

i , y0
i

]
, 1 ≤ i ≤ m, 1 ≤ j ≤ ncheck.

For the initial conditions obtained, with the help of a numerical integration method,
solutions are constructed at the final moment of time tN . The relative posterior global
estimate of the error is written as follows:

error = max
1 ≤ j ≤ ncheck,

1 ≤ i ≤ n

∣∣∣PN
i

(
yj

1(t0), yj
2(t0), ..., yj

m(t0)
)
− yj

i(tN)
∣∣∣

max
(∣∣∣yj

i(tN)
∣∣∣, 1
) .

Let us integrate several ODE interval systems using the described approach. The
calculation is performed for two values of ε = 10−3 and ε = 10−5 (ε imposes a restriction on
the values of the weight coefficients of the basic functions when constructing an adaptive
sparse grid). First, let us take into account an ordinary differential system with two interval
initial conditions, which describes a conservative oscillator:{

x′ = y, y′ = − sin(x),
x(0) = x0 ∈ [−1, 1], y(0) = y0 ∈ [0, 1], t ∈ [0, 25].

(9)

Figure 8 shows a set of solutions for the system given by Equation (9) at different
moments of time; it twists into a spiral structure during the integration. Figure 9 shows the
grid resulting from applying the algorithm. The points in these two figures correspond to
each other.
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Figure 8. The interval solution of system given by Equation (9) at different moments of time.
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Table 1 shows a comparison of computational costs and error estimates for different
approaches. When set to a low precision (ε = 10−3), adaptive sparse grids work a little
faster than the classical adaptive interpolation algorithm, and twice as fast as conventional
sparse grids. However, for ε = 10−5, the classical algorithm wins due to the application
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of an interpolation polynomial of a high degree. The levels of the grids were adjusted to
obtain approximately the same error as in other approaches.

Table 1. Comparison of approaches for system given by Equation (9).

Methods
ε=10−3 ε=10−5

I error I error

full grid (level 6
and level 8) 4225 3.6× 10−3 66, 049 2.2× 10−4

sparse grid (level 7
and level 10) 1793 7.7× 10−3 36, 865 6.9× 10−5

adaptive sparse grid 689 6.6× 10−3 9455 1.1× 10−4

adaptive interpolation
algorithm, p = 2 3877 6.3× 10−3 52, 195 1.8× 10−4

adaptive interpolation
algorithm, p = 4 990 6.8× 10−3 4752 1.5× 10−4

Next, the Volterra-Lotka model with interval initial conditions and one interval coeffi-
cient is considered. The Cauchy problem in the case has the form:{

x′ = 4x− 5
4 xy− αx2, y′ = −2y + 1

2 xy− 1
20 y2,

x(0) = x0 ∈ [4, 5], y(0) = y0 ∈ [2.8, 3.2], t ∈ [0, 25],
(10)

where α ∈ [−0.05, 0.05].
This model describes predator–prey interactions. A feature of the system is the fact

that at α < 0 there is an unstable focus and the amplitude of fluctuations in the population
of species grows, and at α > 0 the focus is stable and the state of the system tends to be
stationary over time.

Figure 10 shows the set of solutions for the system at different points in time. The
following picture is clearly observed here: some part of the set converges to a point, which
corresponds to a stable focus, and another part of the set increases in its size, which
corresponds to an unstable focus. Figure 11 shows the resulting grid. Due to the fact
that uncertainty is present in the parameters, the set of solutions on the phase plane is
only a projection of the three-dimensional set onto the two-dimensional phase space. The
additional dimension corresponds to the interval parameter α.

Table 2 shows a comparison of the different approaches. Similar to the previous task,
adaptive sparse grids are effective with lower accuracy ε.

Table 2. Comparison of approaches on system given by Equation (10).

Methods
ε=10−3 ε=10−5

I error I error

full grid (level 4 and level 6) 4913 3.3× 10−3 274, 625 2.0× 10−4

sparse grid (level 3 and level 7) 705 2.4× 10−3 19, 713 4.3× 10−5

adaptive sparse grid 193 3.1× 10−3 3170 4.8× 10−5

adaptive interpolation
algorithm, p = 2 544 4.6× 10−3 48, 013 6.8× 10−5

adaptive interpolation
algorithm, p = 4 369 1.6× 10−3 3978 5.2× 10−5
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Consider an ordinary differential system presenting the expanded Volterra-Lotka
model with three interval initial conditions and seven interval parameters:

x′ = x(δ1 − y− εx),
y′ = −γ1y(δ2 − x + z)− ϕy2,
z′ = −γ2z(α− y),

∣∣∣∣∣∣
x(0), y(0), z(0), δ1, δ2, γ1, γ2 ∈ [1.0, 1.01],

ε, ϕ ∈ [−0.0005, 0.0005],
α ∈ [0.9, 0.91].

(11)

Figure 12 shows the dependences of the interval estimates of solutions on time.
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For a reasonable time, the solution was obtained using only adaptive sparse grids. For
ε = 10−3, the obtained result was I = 81, 566.1 and error = 1.2× 10−2.

Consider a model describing the motion of interacting bodies. The problem can be
formulated as a dynamic system with interval initial velocities. The system of ordinary
differential equations in dimensionless variables is as follows:

(
vx

i
)′

=
4
∑

j=1, j 6=i
mj
(

xj − xi
)
r−3

i,j ,
(

vy
i

)′
=

4
∑

j=1, j 6=i
mj
(
yj − yi

)
r−3

i,j ,
(
vz

i
)′

=
4
∑

j=1, j 6=i
mj
(
zj − zi

)
r−3

i,j ,

x′ i = vx
i , y′ i = vy

i , z′ i = vz
i , 2 ≤ i ≤ 4,

x1(0) = y1(0) = z1(0) = vx
1(0) = vy

1(0) = vz
1(0) = 0,

x2,3(0) = ±1, y2,3(0) = z2,3(0) = 0, v2,3(0) =
(

0 ±v 0
)T

+ ∆vT
2,3,

y4(0) = 1, x4(0) = z4(0) = 0, v4(0) =
(

0 0 v
)T

+ ∆vT
4 ,

t ∈ [0.0, 0.02]

(12)

where ri,j =
√(

xj − xi
)2

+
(
yj − yi

)2
+
(
zj − zi

)2 is the distance between two bodies,
v = 316.23 is the initial velocity of bodies, m1 = 105, m2, 3, 4 = 10−5 are body masses,
∆v2, 3, 4 = ([−2, 2], [−2, 2], [−2, 2]) are the interval uncertainties in body velocities.

Figure 13 shows graphs for the dependence of the interval estimates of the 2nd
body coordinates and velocities on time. Similar to the previous problem, the solution
was calculated only using adaptive sparse grids. For ε = 10−3, the obtained result was
I = 133830.9 and error = 2.6× 10−2.

This system is demonstrative because the uncertainty in the speed of a particular body
mainly affects the position and speed of that particular body and has little effect on other
bodies. In this regard, the solution of the system will have a specific form, as most of the
mixed derivatives will be close to zero.

Note that the classical adaptive interpolation algorithm for systems given by
Equations (6) and (7) constructs sets of solutions with fewer integrations of the corre-
sponding non-interval ordinary differential systems since it uses nonlinear interpola-
tion. However, when the number of interval parameters increases (systems given by
Equations (8) and (9)), the use of adaptive sparse grids becomes more efficient. When
increasing the dimension of the problem, it is practically impossible to increase the degree
of the interpolation polynomial in the adaptive interpolation algorithm to obtain higher
accuracy due to the exponential growth of the number of nodes in the grid. Therefore, for
high dimensional-problems, it is suitable to use methods that have lower accuracy, but at
the same time allow reasonable computational costs; in particular, adaptive sparse grids.

The examples above demonstrate that by using sparse grids it is possible to simulate
dynamic systems with ten interval uncertainties in a reasonable time. When solving system
given by Equation (11), the equivalent number of sampling points was about 80 thousand,
and in the case of using classical interpolation with the degree of polynomial equal to 4, the
value would be of order 107. A lower estimate of the computational cost can be obtained. It
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follows from Equation (8) that the number of solved non-interval ODE systems cannot be
less than 3m. The upper estimate of the computational costs, in the general case, essentially
depends on the features of the ODE system being solved, in particular on the values of the
mixed derivatives of the solution with respect to the point values of the interval parameters.
For comparison, the classical adaptive interpolation algorithm requires at least (p + 1)m

points, and the method proposed in Reference [15] requires (m+p)!
m!p! points, where p is the

degree of the interpolation polynomial.

Figure 13. Time dependencies of upper and lower estimates of the 2nd body coordinates and velocities: (a) x2(t); (b) y2(t);
(c) z2(t); (d) vx

2(t); (e) vy
2(t); (f) vz

2(t).

4. Computation of an Interval Stress Tensor for Materials with a Covalent
Chemical Bond

Let us consider an applied problem of computational materials science, within the
framework of which the stresses arising during the deformation of an ideal crystal are
calculated [12]. Different angles are possible between the orientation of the crystal lattice
and the direction of stretching with a fixed stretch value. The stress tensor thus becomes
interval. This problem is solved using molecular dynamics simulation. The motion of
atoms is described by the classical equations of dynamics:{

ri
′ = vi,

vi
′ = 1

mi
Fi,

where ri is the radius vector of the atom with the number i, vi is its velocity, mi is its mass,
and Fi is the force acting on the atom, in this case Fi = −∇iE, where E is the total energy
of the system, and ∇i is the gradient along the position of the atom with the number i.
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In this problem, materials with a covalent interatomic bond are considered. The total
energy of interaction between atoms of such materials is well described using the Tersoff
potential [25]: 

E = 1
2 ∑

i
∑
j 6=i

Vij, Vij = fC
(
rij
)(

fR
(
rij
)
+ bij fA

(
rij
))

,

fC(r) =


1, r < R− D,

1
2

(
1− sin

(
π
2

r−R
D

))
, R− D ≤ r < R + D,

0, R + D ≤ r,
fR(r) = A exp(−λ1r), fA(r) = −B exp(−λ2r),

bij =
(

1 + βnςn
ij

)− 1
2n ,

ςij = ∑
k 6=i,j

fC(rik)g
(

θijk

)
exp

(
λm

3
(
rij − rik

)m
)

,

g(θ) = γ

(
1 + c2

d2 − c2

d2+(cos(θ)−cos(θ0))
2

)
,

where E is total system energy, Vij is the contribution to the interaction energy of atoms with
numbers i and j, rij is the distance between atoms with numbers i and j, fC(r) is a cut-off
function, fR(r) and fA(r) are the repulsion and attraction potentials, respectively, and R,
D, A, B, n, m, λ1, λ2, λ3, β, γ, c, d and cos(θ0) are potential parameters that are selected
in order to reproduce the properties of the simulated material. Methods of parametric
identification of the Tersoff potential parameters are considered in papers [26,27].

The initial positions of atoms and their number are determined by the structure of the
crystal lattice and the restriction on the minimum size of the simulated space is specified
by the structure of the potential.

Consider crystalline silicon as a typical material. The simulated sample is represented
by eight unit cells of a diamond crystal lattice making up a cube of 2× 2× 2 in size, with
periodic boundary conditions; each unit cell contains eight unique atoms (Figure 14), so a
total of 64 atoms are involved in the simulation. Initial speeds are considered to be zero.
The initial conditions for a dynamical system can be represented as follows:

ri(0) =
(
(x, y, z)T + (dx, dy, dz)T

)
a, (x, y, z) ∈ Base, dx, dy, dz ∈ {0, 1}, vi(0) = (0, 0, 0)T ,

Base =
{

(0, 0, 0), (0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0), (0.75, 0.75, 0.75),
(0.75, 0.25, 0.25), (0.25, 0.75, 0.25), (0.25, 0.25, 0.75)

}
,

where a = 5.429× 10−10 m is the linear size of a unit cell of a silicon crystal.
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To take into account deformation, 4 additional variables are introduced: one of them
reflects the elongation value, and three more are responsible for the angle between the
orientation of the lattice and the direction of stretching. In this case, the elongation is set
to be fixed, and the variables responsible for the rotation are taken as interval. Rotation is
generated evenly using quaternions [28].

The final system looks like this:

ri
′ = vi, vi

′ = − 1
2mi

∑
i

∑
j 6=i
∇i
(

fC
(
rij
)(

fR
(
rij
)
+ bij fA

(
rij
)))

,

rij(s, µ1, µ2, µ3) = ‖S(s)R(µ1, µ2, µ3)rij‖,
S(s) = diag(1 + s, 1, 1),

R(µ1, µ2, µ3) =

 1− 2
(
q2

2 + q2
3
)

2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 1− 2

(
q2

1 + q2
3
)

2(q2q3 − q1q0)
2(q1q3 − q2q0) 2(q2q3 + q1q0) 1− 2

(
q2

1 + q2
2
)
,

(q0, q1, q2, q3) =
(√

1− µ1 sin(2πµ2),
√

1− µ1 cos(2πµ2),
√

µ1 sin(2πµ3),
√

µ1 sin(2πµ3)
)
,

t ∈
[
0, 10−12],

(13)

where m = 4.65× 10−26 kg is the mass of atoms, s = 0.1 is the relative elongation of the
sample, µ1 ∈ [0.1, 0.9], µ2 ∈ [0.1, 0.9], and µ3 ∈ [0.1, 0.9] are stretching direction param-
eters, R = 2.85× 10−10 m, D = 0.15× 10−10 m, A = 6.12× 10−16 J, B = 1.81× 10−17 J,
c = 9.69, d = 2.35, n = 4.16, β = 0.132, λ1 = 3.36× 1010 m−1, λ2 = 1.27× 1010 m−1,
λ3 = 1.19× 1010 m−1, γ = 5.71, and cos(θ0) = −0.408 are the parameters of the potential.

Integration of the resulting ordinary differential system (13) was carried out using the
Verlet velocity method with a constant integration step of 10−15 s. As a result, the interval
stress tensor was obtained (values are given in Pascals): [−1.58× 1010,−1.43× 1010] [−1.35× 109, 1.35× 109] [−1.35× 109, 1.35× 109]

[−1.35× 109, 1.35× 109] [−4.79× 109,−1.46× 109] [−1.42× 109, 1.42× 109]
[−1.35× 109, 1.35× 109] [−1.42× 109, 1.42× 109] [−4.79× 109,−1.46× 109]


For ε = 10−2, the obtained result was I = 1079132.3 and error = 2× 10−1.
Note that the possibilities of the proposed approach are not limited to a specific type of

interatomic interaction potential in a material. The method can be applied to the simulation
of the stress–strain state of materials with various types of chemical bonds, including the
modeling of composite materials.

5. Discussion

In the previous sections, the proposed approach was tested on representative interval
problems of nonlinear dynamics and computational materials science. It is found that,
thanks to sparse grids, it is possible to integrate ODE systems with a large number of
interval uncertainties in a reasonable time. To estimate the computational costs, a criterion
was used that is equal to the equivalent number of sampling points from the original
uncertainty region.

Table 1 shows estimates of the computational costs for the ODE system given by
Equation (9) describing a conservative oscillator with two interval initial conditions for
two values ε. For ε = 10−3, the approach proposed in the paper works 1.5 to 5 times faster
than the classical adaptive interpolation algorithm.

Table 2 shows the computational costs when integrating the ODE system given by
Equation (10), describing the Lotka-Volterra model with two interval initial conditions
and one interval parameter. Here, for ε = 10−3, the use of adaptive sparse grids gives an
acceleration of 1.9− 2.8 times compared to the classical algorithm, and for ε = 10−5, the
acceleration is from 1.25 time to 15 time.

For ODE systems given by Equations (11) and (12), it was possible to obtain a solution
in a reasonable time only using the approach proposed in the paper since the number of
interval uncertainties is quite large. To solve system given by Equation (11), the equivalent
number of sampling points was about 80 thousand, and in the case of using the classical
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algorithm with a degree of polynomial 4, the value would be about 10 million. Thus, using
sparse grids in this problem gives an acceleration of at least 125 times.

The tables show that adaptive sparse grids work faster than regular sparse grids, and
even faster than full grids. This fact is in line with the theoretical foundations. The classical
adaptive interpolation algorithm in example (9) with two interval uncertainties showed
itself slightly better only when ε = 10−5 and p = 4. This is primarily due to the chosen
value of p. It is known that the greater the degree of the interpolation polynomial, the
faster the error decreases with increasing mesh density. Therefore, it seems promising to
use sparse grids on a nonlinear basis. We should also note the possibilities of applying
adaptive grids to ODE systems not only with interval uncertainties but also with stochastic
uncertainties, including applied nonlinear systems.

6. Conclusions

The adaptive interpolation algorithm allows simulating dynamic systems with interval
parameters. In the course of the algorithm operation, a regular grid is constructed in the
parameter space. The number of grid nodes depends exponentially on the number of
interval parameters, which limits the scope of the algorithm. A typical situation is when
the degree of influence of different parameters and their combinations on the solution
can differ significantly. This can be used in adaptive interpolation. The paper presents an
adaptive interpolation algorithm on sparse grids, which allows for reducing the exponential
complexity when solving multidimensional problems in parameter space. The efficiency
of the proposed approach has been demonstrated on representative interval problems of
nonlinear dynamics and computational materials science. It is shown that, for most variants,
adaptive sparse grids are more efficient than the classical adaptive interpolation algorithm
in terms of computational costs. With the suggested method, it was possible to solve
problems with up to 10 interval parameters in a reasonable amount of time. At the same
time, the classical algorithm of adaptive interpolation failed to do so. Taking into account
that an increase in the degree of the interpolation polynomial in the classical adaptive
interpolation algorithm leads to higher accuracy and lower computational costs, we can
outline the use of sparse grids with a nonlinear basis as a direction for further research.
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