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Abstract: Markov-type inequalities are often used in numerical solutions of differential equations,
and their constants improve error bounds. In this paper, the upper approximation of the constant
in a Markov-type inequality on a simplex is considered. To determine the constant, the minimal
polynomial and pluripotential theories were employed. They include a complex equilibrium measure
that solves the extreme problem by minimizing the energy integral. Consequently, examples of
polynomials of the second degree are introduced. Then, a challenging bilevel optimization problem
that uses the polynomials for the approximation was formulated. Finally, three popular meta-
heuristics were applied to the problem, and their results were investigated.

Keywords: minimal polynomials; complex equilibrium measure; Markov’s inequality; bilevel opti-
mization; optimization methods

1. Introduction

Markov-type polynomial inequalities (or inverse inequalities) [1–6], similarly to
Bernstein-type inequalities [1,5–9], are often found in many areas of applied mathematics,
including popular numerical solutions of differential equations. Proper estimates of opti-
mal constants in both types of inequalities can help to improve the bounds of numerical
errors. They are often used in the error analysis of variational techniques, including the
finite element method or the discontinuous Galerkin method used for solving partial differ-
ential equations (PDEs) [10]. Moreover, Markov’s inequality can be found in constructions
of polynomial meshes, as it is a representative sampling method, and is used as a tool for
studying the uniform convergence of discrete least-squares polynomial approximations or
for spectral methods for the solutions of PDEs [11–13]. Generally, finding exact values of
optimal constants in a given compact set E in RN is considered particularly challenging. In
this paper, an approach to determining the upper estimation of the constant in a Markov-
type inequality on a simplex is proposed. The method aims to provide a greater value than
that estimated by L. Bialas-Ciez and P. Goetgheluck [4].

For an arbitrary algebraic polynomial P of N variables and degree not greater than n,
Markov’s inequality is expressed as

‖|gradP|‖E ≤ Cn2‖P‖E, (1)

where gradP :=
(

∂P
∂x1

, ..., ∂P
∂xN

)
, |gradP| :=

(
∑N

j=1

(
∂P
∂xj

))1/2
, ‖P‖E = sup{|P(x)| : x ∈ E},

C > 0, E is a convex compact subset of KN (with non-void interior), and K ∈ R. The
exponent 2 in (1) is optimal for a convex compact set E (with non-void interior) [2,4].

In 1974, D. Wilhelmsen [14] got an upper estimate for the constant C < 4
ωE

in Markov’s
inequality (1), where ωE is the width of E. The width of E ∈ RN is defined as ωE :=
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inf{dist(Pl1, Pl2) | (Pl1, Pl2) ∈ G} [4], where G is the set of all possible couples of parallel
planes Pl1 and Pl2 such that E lies between Pl1 and Pl2. Furthermore, for any convex
compact set E ⊂ RN , the author proposed the hypothesis that C = 2

ωE
. M. Baran [3,7] and Y.

Sarantopoulos [15] independently proved that Wilhelmsen’s conjecture is true for centrally
symmetric convex compact sets. In turn, L. Bialas-Ciez and P. Goetgheluck [4] showed that
the hypothesis is false in the simplex case and proved that the constant C > 2.842534.

The best constant in Markov’s inequality (1) for a convex set was also studied by
D. Nadzhmiddinow and Y. N. Subbotin [6] and by A. Kroó and S. Révész [16]. It is worth
mentioning that for any triangles in R2, A. Kroó and S. Révész [16] generalized the result for
a simplex given in [4], considering an admissible upper bound for C ≤

√
10

ωE
, and received an

upper estimate value of constant C in (1): C ≤ s(∆)
w(E) , where s(∆) := 2

a

√
a2 + b2 + 2ab cos γ′,

with ∆ being a triangle with the sides a, b, c and the angles α′, β′, γ′, respectively, such that
c ≤ b ≤ a and γ′ ≤ β′ ≤ α′.

In the recent literature, many works have considered Markov inequalities. For exam-
ple, S. Ozisik et al. [10] determined the constants in multivariate Markov inequalities on an
interval, a triangle, and a tetrahedron with the L2-norm. They derived explicit expressions
for the constants on all above-mentioned simplexes using orthonormal polynomials. It
is worth noticing that exact values of the constants are the key for the correct derivation
of both a priori and a posteriori error estimates in adaptive computations. F. Piazzon
and M. Vianello [11] used the approximation theory notions of a polynomial mesh and
the Dubiner distance in a compact set to determine error estimates for the total degree of
polynomial optimization on Chebyshev grids of the hypercube. Additionally, F. Piazzon
and M. Vianello [12] constructed norming meshes for polynomial optimization by using
a classical Markov inequality on the general convex body in RN. A. Sommariva and
M. Vianello [13] used discrete trigonometric norming inequalities on subintervals of the
period. They constructed norming meshes with optimal cardinality growth for algebraic
polynomials on the sections of a sphere, a ball, and a torus. Moreover, A. Kroó [17] studied
the so-called optimal polynomial meshes and O. Davydov [18] presented error bounds for
the approximation in the space of multivariate piecewise polynomials admitting stable
local bases. In particular, the bounds apply to all spaces of smooth finite elements, and
they are used in the finite element method for general fully nonlinear elliptic differential
equations of the second order. L. Angermann and Ch. Heneke [19] proved error estimates
for the Lagrange interpolation and for discrete L2-projection, which were optimal on the el-
ements and almost optimal on the element edges. In another study, M. Bun and J. Thaler [5]
reproved several Markov-type inequalities from approximation theory by constructing
explicit dual solutions to natural linear programs. Overall, these inequalities are a basis for
proofs of many approximated solutions that can be found in the literature.

In this paper, an approach to determining an approximation of the constant in
Markov’s inequality using introduced minimal polynomials is proposed. Then, the polyno-
mials are used in the formulated bilevel optimization problem. Since many optimization
techniques could be employed to find the constant, three popular meta-heuristics are
applied and their results are investigated.

The rest of this paper is structured as follows. In Section 2, minimal polynomials are
introduced. Then, in Section 3, their application in the approximation of the constant in a
Markov-type inequality is considered. In Section 4, in turn, the approximation is defined
as an optimization problem and the problem is solved using three meta-heuristics. Finally,
in Section 5, the study is summarized and directions for future work are indicated.

2. Minimal Polynomials

The monic polynomial is defined as: P(x) := xα + ∑β≺α aβxβ, for each x ∈ CN,
and with aβ ∈ C [20–22] (the coefficient of its leading monomial is equal 1), where α =

(α1, ..., αN) ∈ NN , |α| := α1 + ... + αN is its length and xα := xα1
1 xα2

2 · · · xαN
N ; ≺ indicates

the graded lexicographic order, defined as: If |α| < |α′|, then α ≺ α′ (xα ≺ xα′), while if
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|α| = |α′| when α ≺ α′ (xα ≺ xα′), the first (starting from the left) non-zero coefficient of
α′ − α is positive [21,22]. Polynomial P(x) of the smallest deviation from zero on E with
respect to the supremum norm is called the minimal polynomial (Chebyshev polynomial)
for E [22–25].

Let E be a compact set in a complex plane that contains at least |α|+ 1 points. Based on
the classical theorem of Tonelli [26], among the monic polynomials of degree |α|, there exists
only one polynomial T|α| that minimizes the supremum norm on E. The T|α| is called the

Chebyshev polynomial of order |α|. It is defined as ‖T|α|‖E = inf
{
‖x|α| + ∑

|α|−1
i=0 aixi‖E

}
,

where the infimum is taken with respect to (a0, a1, ..., a|α|−1) ∈ C|α|. In other words, T|α| −
x|α| is the polynomial of best approximation to x|α| on E. This polynomial is called the
minimal (monic) polynomial of degree |α|.

The complex equilibrium measure for a standard simplex in RN is calculated for
E = {x ∈ RN : x1, ..., xN ≥ 0, x1 + ... + xN ≤ 1} = SN , which is a simplex in RN [8]. Then,
the plurisubharmonic extremal function on E, uE(z) = log h(|z1|+ ... + |zN |+ |z1 + ... +
zN − 1|), is used to calculate the (complex) equilibrium measure λSN = N!vol(BN)(x1 · · ·
· · xN)

−1/2(1− x1− · · · − xN)
−1/2dx, where vol(BN) is the usual volume of the closed-unit

Euclidean ball in RN.

3. Estimation of the Constant C in a Markov-Type Inequality

Let S2 be a simplex in R2. Consequently,

S2 = {(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 + x2 ≤ 1}.

The normalized equilibrium measure S2, as a subset of C2, is a two-dimensional Lebesgue
measure with the weight A(x1, x2) := 1√

x1
√

x2
√

1−x1−x2
. For continuous functions f , g on

S2, the scalar product is defined as

( f , g) =
∫∫
S2

f (x1, x2)g(x1, x2)A(x1, x2)dx1dx2.

Then, a polynomial Q(x1, x2) = x1 + x2 − 1/2 is defined. It is the minimal polynomial
for the simplex, and P(x1, x2) = a0x2

1 + a1x2
2 + a2x1x2 + a3x1 + a4x2 + a5, for some real

numbers a0, a1, a2, a3, a4, and a5. Thus,

(P, Q) =
∫∫
S2

P(x1, x2)Q(x1, x2)A(x1, x2)dx1dx2 = a0x3,0 + a1x1,2 + a2x2,1 + a3x2,0 + a4x1,1

+a5x1,0 + a0x2,1 + a1x0,3 + a2x1,2 + a3x1,1 + a4x0,2 + a5x0,1 − a0x2,0/2 + a1x0,2/2

−a2x1,1/2− a3x1,0/2− a4x0,1/2− a5x0,0/2,

where xi,j for i, j ∈ {0, 1, 2, 3} are symbols given in Table 1.

Table 1. Symbols and their values.

SYMBOLS x0,0 x1,0 x0,1 x1,1 x1,2 x2,1 x2,0 x0,2 x3,0 x0,3

VALUES 2π 2π/3 2π/3 2π/15 2π/35 2π/35 2π/5 2π/5 2π/7 2π/7

We want the polynomial P to be orthogonal to Q so that (P, Q) = 0. Substituting the
values given in Table 1 into the expression above, a0/7 + a1/7 + a2/21 + a3/5 + a4/5 +
a5/3 = 0 is obtained. Finally, a5 = −3a0/7− 3a1/7− a2/7− 3a3/5− 3a4/5.

Here, a counterexample to the Wilhelmsen hypothesis can be formulated, which is
different from that discussed by L. Bialas-Ciez and P. Goetgheluck [4], to support the
claim that the approach leads to a better approximation. Counterexample: Consider the
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following polynomial P(x1, x2) = a0x2
1 + a1x2

2 + a2x1x2 + a3x1 + a4x2 + a5, where a5 =
−3a0/7− 3a1/7− a2/7− 3a3/5− 3a5/5. Putting a0 = 6, a1 = 3/4, a2 = 33/4, a3 =
−6, a4 = −57/28, a5 = 3/4, P(x1, x2) = 6x2

1 + 0.75x2
2 + 8.25x1x2 − 6x1 − 2.04x2 + 0.75

is obtained. It is easy to calculate that ‖P‖S2
is reached for point (13/14, 1/14), and its

value is 297/392. Similarly, ‖gradP(0, 1)‖S2
=
√

58500/28. Hence, this simple and far from
optimal approximation value is greater than those of L. Bialas-Ciez and P. Goetgheluck [4]:
‖gradP‖S2 /(4‖P‖S2) = 2.850293143.

4. Optimization Problem in a Markov-Type Inequality

The estimation of the constant C in Markov’s inequality can be improved by
considering a minimal polynomial and an equilibrium measure. The exemplary calcu-
lations of minimal polynomials and their corresponding Markov inequalities on the
simplex are shown in Table 2. In the first example of the polynomial, the obtained
constant is equal to the value reported by L. Bialas-Ciez and P. Goetgheluck [4]. In the
remaining two polynomials, the constants are improved. However, a slight change in the
coefficients decreases the constant, as is shown in the fourth example. Therefore, in this
paper, the polynomial is proposed as a result of a nontrivial optimization problem in which
an improvement of the estimate of the constant C is considered.

Table 2. Constants C in Markov inequalities on the simplex for exemplary polynomials.

Example Minimal Polynomial P(x, y) ‖P‖S2 ‖gradP‖S2 ‖gradP‖S2 /4‖P‖S2

1 y2 − y + 1
9 + xy− 4

9 x2 + 2
9 x 5/36

√
202/9 C = 2.842534081

2 y2 − y + 1
8 + 1

8 x2 + 33
24 xy− 19

56 99/784 10
√

585/168 C = 2.850293143
3 y2 − y + 1

8 + 61
40 xy + 1

4 x2 − 1
2 x 221/1760

√
3281/40 C = 2.851041419

4 y2 − y + 1
8 + 3

2 xy + 1
4 x2 − 1

2 x 1/8
√

2 C = 2.828427125

In this paper, the constant in Markov’s inequality on the simplex for the proposed
minimal polynomials is estimated. Assuming that

‖gradP(x, u)‖S2 /(4‖P(x, u)‖S2) = C(x, u), (2)

where P is one of the following minimal polynomials:

P1 = x2
2 − a0x2 + a1 + a2x1x2 + a3x2

1 + a4x1, (3)

P2 = x2
1 − a0x1 + a1 + a2x1x2 + a3x2

2 + a4x2, (4)

P3 = x2
1 − x1 + 1/8 + a0x1x2 + a1x2

2 + a2x2, (5)

P4 = x2
2 − x2 + 1/8 + a0x1x2 + a1x2

1 + a2x1, (6)

and u = [a0, a1, a2, a3, a4], in order to determine the greatest value of the function C(x, u),
an optimization problem is formulated.

R. M. Aron and M. Klimek [27] gave explicit formulas for supremum norms: ‖(a, b, c)||R
= sup{|ax2 + bx + c| : x ∈ [−1, 1]} and ‖(a, b, c)||C = sup{|az2 + bz+ c| : z ∈ C, |z| ≤ 1},
where (a, b, c) ∈ R3.

The vectors u = [a0, a1, a2, a3, a4] and x = [x1, x2] are regarded as decision variables
in the optimization problem. Consequently, û and x̂ denote the vectors that maximize the
C(x, u). Considering the relationship between P1 and P2, or P3 and P4, only the coefficients
that maximize their corresponding C1(x, u) and C3(x, u) need to be found, i.e., they are
then applied to the remaining polynomials. For polynomials P3 and P4, a3 = a4 = 0. The
calculation of Equation (2) requires finding the extrema of the polynomial P inside the
simplex limited by values (x1, x2) ∈ {(0, 0), (0, 1), (1, 0)}. Therefore, the following bilevel
optimization problem is solved. Here, one optimization task is nested within the other, i.e.,
the decision variables of the upper problem are the parameters in the lower one, and the
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lower problem is a constraint to the upper problem, limiting the feasible u values to those
that are lower-level optimal [28].

The problem is given by

max
u∈R5,x∈[0,1]

C(x, u)

subject to x̂ = argmax
x∈[0,1]

{C(x, u) : x1 + x2 − 1 ≤ 0}, (7)

where argmax denotes the arguments of the function that maximize its value.
Finally, the values of x̂ and û are found as the solutions to the optimization problem.

In order to determine the greatest value of C, the nonlinearity of the considered objective
function, as well as the existence of multiple local optima, must be taken into account. Here,
different values of u can lead to the same value of C, or close values of u can result in a large
difference between the corresponding values of C. This can be seen in Figure 1, in which
only a small part of the search space is visualized. For the visualization, C is calculated,
keeping one coefficient constant and selecting the remaining one from the range [−1, 1]
with the step 0.1. The coefficients are selected from the set {−0.1, 0, 0.1}. The difference
between the values of the constant is purposely small to show the changes of values of C.
Each subplot in Figure 1 contains a marker to additionally highlight such changes.
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Figure 1. Influence of the coefficients u on the objective function C4. Three coefficients are selected: a0 (first row), a1 (second
row), and a2 (third row).
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To solve the defined optimization problem, a suitable method should be determined.
Therefore, in this paper, a hybrid approach is proposed. It is justified by the need to find
the extrema of the polynomial P inside the simplex for the computation of C. Such extrema
are found using the Interior Point Algorithm (IPT) [29,30], i.e., x̂ is found for an examined
u from the upper level. The upper-level optimization is more difficult. Since the considered
problem has not been formulated and solved in the literature, it cannot be determined
in advance which method should be used to determine the solution. Therefore, taking
into account possible time-consuming computations, three popular meta-heuristics are
used and compared: the Particle Swarm Optimization method (PSO) [31–33], Genetic
Algorithm (GA) [34,35], and Simulated Annealing technique (SA) [36,37]. The application
of population-based algorithms for solving different bilevel problems is popular (e.g., [28]).

The PSO is a global evolutionary method based on swarm intelligence. It finds the
optimal solution by exploring the search space using a set of particles. Each particle
represents a candidate solution to the problem. The PSO mimics the movement of a bird
flock or a fish school; hence, the dynamics of the set of particles in the solution space are
iteratively governed by the following equations [31]:

pi(n) = pi(n− 1) + vi(n)

vi(n) = wvi(n− 1) + c1rnd1(pbi − pi(n− 1)) + c2rnd2(pB− pi(n− 1)),

where pi(n) and vi(n) are the position and the velocity of the i-th particle at time n,
n = 1, 2, . . . , N; pbi is the best position of the i-th particle, while pB is the best position of
the swarm at n. w is the inertia weight, and c1 and c2 are coefficients constraining the parts
of the equation that simulate cognitive and social factors of the swarm [31–33]); rnd1 and
rnd2 are random numbers drawn from the range [0, 1]. The termination criterion of the
algorithm is the number of iterations N or the violation of the minimal acceptable difference
in the objective function C between consecutive iterations. Both criteria are commonly
used in most heuristic optimization algorithms. Finally, the PSO returns û = pB(N).

The GA uses a population of individuals (called chromosomes), representing candi-
date solutions [34,35]. In the GA, at each generation (iteration), a population of individuals
is assessed to select the best solutions, which are then used to create the population in the
next generation. The assessment is based on the values of the objective function, while new
individuals are obtained using crossover and mutation operators. The crossover combines
the information carried by two selected parents in one solution by mixing values of their
vector representations. The mutation, in turn, introduces random changes to the individual.
After the predefined number of generations, the algorithm returns the best individual û.

The simulated annealing, unlike the population-based PSO and GA, uses much fewer
resources and requires fewer objective function computations, since it processes only one
solution at each iteration [36,37]. The SA mimics the process of heating a metal and slowly
lowering its temperature. The algorithm starts from a random solution, which is iteratively
modified. At each iteration, reflecting a temperature drop, the algorithm modifies the
current solution and compares the values of the objective function before and after the
modification. If a new solution is better or the difference between their values is within a
predefined range, the modification is accepted. The acceptance of a slightly worse solution
helps the method to escape local minima [36,37].

All of these methods are commonly used for solving nonlinear optimization problems
with local optima. However, their suitability for a given problem is mostly determined
experimentally. In this paper, they are used to determine û. However, in order to calculate
C for any u, the lower-level optimum x̂ must be solved each time. In this paper, it is
obtained using the IPT algorithm [29,30]. Finally, the considered problem is solved using
the hybrid approach [28]. In the IPT algorithm, an optimization problem is defined as

min
x

f (x)

subject to h(x) = 0 and g(x) ≤ 0,
(8)
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where f (x) is objective function to be minimized and h and g are equality and inequality
constraints, respectively. The solved approximate problem is defined as

min
x,s

fµ(x, s) = min
x,s

f (x)− µ ∑
i

ln(si)

subject to h(x) = 0 and g(x) + s = 0,
(9)

where si are slack variables and µ > 0 is a barrier parameter. As µ converges to zero, the
sequence of approximate solutions converges to the minimum of f [29,30].

In the numerical experiments, the solution processed by heuristic algorithms was rep-
resented by a five-dimensional vector of floating-point values, since u = [a0, a1, a2, a3, a4],
and the IPT used a two-dimensional vector x = [x1, x2]. To ensure a fair comparison of
meta-heuristics, each technique was run 50 times, and a maximum of 25,000 objective
function calls were performed in each run. The number of function calls was achieved by
selecting a large-enough population size, aiming at the best performance of the PSO and
GA. The implementations of the algorithms that can be found in the Matlab Optimization
Toolbox are used. Algorithms were run with their default parameters: the PSO (w=[01, 1.1],
c1 = 1.4, c2 = 1.4), the GA (EliteCount = 0.05 of the population size, CrossoverFraction = 0.8,
the scattered crossover, Gaussian mutation, and stochastic uniform selection), and the
SA (InitialTemperature = 100, temperature is equal to InitialTemperature * 0.95iteration). Note
that the values in u were not bounded (i.e., u ∈ R5), and the GA and PSO, unlike the SA,
did not require the specification of the starting point of the optimization, as the initial
populations of the solutions were selected randomly. For this reason, the SA started from
u = [0, 0, 0, 0, 0]. As demonstrated in Table 3, the PSO was able to determine the best C for
each polynomial. The algorithms explored the solution space in different ways, obtaining
different results.

Table 3. Optimization results obtained by the compared algorithms. The best values of C obtained in
the first experiment are written in bold.

Algorithm C1, C2 C3, C4

GA 2.861879141 2.852924202
SA 2.917638439 2.854084285

PSO 2.925401560 2.854206134

To further show the difficulty of the optimization task for the used algorithms, Figure 2
presents the convergence of the algorithms towards the optimum. Here, the progress of the
set of solutions at each calculation of the objective function is reported. As presented, the
approaches with the PSO and GA quickly converge, and most of the time is spent on the
exploration of the solution space near the optimum. The SA, unlike the population-based
methods, processes one solution at each iteration, which influences its convergence rate.
The results reveal that the PSO is better suited to the problem than the GA, since it can
determine a better C (see Table 3), and it finds it with fewer function calls. Interestingly, the
set of solutions in the first function call is more diverse for the PSO, which may contribute
to its superior performance, as in the remaining computation time, it is more focused on
escaping the local optima. Similarly, it can be seen that the solutions emerging in the run
of the SA exhibit large variability. Note that the number of runs (50) and the maximal
number of function calls in these experiments (25,000) are purposely greater than could be
concluded from the convergence plots to give the methods enough resources to find better
solutions. However, the methods often terminate the computations if the change in the
best function value is too small.
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Figure 2. Convergence plots for the values of C4 for sample runs of the hybrid approach with the Particle Swarm
Optimization (PSO), Simulated Annealing (SA), and Genetic Algorithm (GA). The plots contain the best result at each
function call and the mean value of C4 for the processed solutions.

This experiment indicates that the proposed approach with the PSO can provide the
best C. Therefore, in the second experiment, the parameters of this algorithm were set to
conduct an even better search of the solution space. By increasing the number of particles
and generations, the maximal number of function calls was set to 25 million, and the
method was run 100 times. Note that the estimated time to finish one run of the PSO with
25 million function calls in Matlab on the i7-6700 K 4 GHz with 64 GB RAM CPU is 335 h.
The calculations were run in a parallel manner, and the methods were allowed to terminate
the optimization if a function value change was small. They are presented in Table 4. The
second experiment improved the already obtained values for C1 (or C2) and C3 (or C4) at
the fifth and eighth decimal places, respectively (see Table 3). The run in which the best C1
was obtained required 720 thousand function calls, and C3 was found in a run after the
objective function was calculated 1570 thousand times.

Table 4. Values of C obtained in the second experiment and their corresponding coefficients.

C1, C2 2.925415050

a0 −2765.096993
a1 −1383.048545
a2 −15148.04101
a3 −10633.59420
a4 10846.85282

C3, C4 2.854206170

a0 1.169292858
a1 −0.121651344
a2 −0.129695921

5. Conclusions

In this paper, it was demonstrated that the best constant C in Markov’s inequality
for the minimal polynomials on the simplex can be determined as a solution to a nested
optimization problem. First, the examples of the polynomials that allow estimation of the
constant were proposed. Then, the optimization problem was defined and its solution was
investigated. Since it could not be determined in advance which heuristic optimization
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algorithm should be used, three popular meta-heuristics were adopted and compared.
Finally, the optimal value of the constant was obtained with a hybrid of the ITP and PSO.

Future work will focus on the application of the polynomials of the higher degrees
to the considered problem. In addition, the usage of the introduced bilevel optimization
problem as an evaluation tool for the comparison of the performance of meta-heuristics
seems to be a promising future direction.
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read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baran, M.; Bialas-Ciez, L. On the behaviour of constants in some polynomial inequalities. Ann. Pol. Math. 2019, 123, 43–60.

[CrossRef]
2. Baran, M.; Bialas-Ciez, L.; Milowka, B. On the best exponent in Markov’s inequality. Potential Anal. 2013, 38, 635–651. [CrossRef]
3. Baran, M. Markov inequality on sets with polynomial parametrization. Ann. Polon. Math. 1994, 60, 69–79. [CrossRef]
4. Bialas-Ciez, L.; Goetgheluck, P. Constants in Markov’s inequality on convex sets. East J. Approx. 1995, 1, 379–389.
5. Bun, M.; Thaler, J. Dual lower bounds for approximate degree and Markov-Bernstein inequalities. Inf. Comput. 2015, 243, 2–25.
6. Nadzhmiddinov, D.; Subbotin, Y.N. Markov Inequalities for Polynomials on Triangles. Math. Notes Acad. Sci. USSR 1989,

46, 627–631. [CrossRef]
7. Baran, M. Bernstein type theorems for compact sets in RN revisited. J. Approx. Theory 1994, 79, 190–198. [CrossRef]
8. Baran, M. Complex equilibrium measure and Bernstein type theorems for compact sets in Rn. Proc. Amer. Math. Soc. 1995,

123, 485–494.
9. Sofonea, F.; Tincu, I. On an Inequality for Legendre Polynomials. Mathematics 2020, 8; 2044.
10. Ozisik, S.; Riverce, B.; Warburon, T. On the Constants in Inverse Inequalities in L2. Technical Report. 2010. Available online:

https://hdl.handle.net/1911/102161 (accessed on 5 December 2020)
11. Piazzon, F.; Vianello, M. A note on total degree polynomial optimization by Chebyshev grids. Optim. Lett. 2018, 12, 63–71.
12. Piazzon, F.; Vianello, M. Markov inequalities, Dubiner distance, norming meshes and polynomial optimization on convex bodies.

Optim. Lett. 2019, 13, 1325–1343.
[CrossRef]

13. Sommariva, A.; Vianello, M. Discrete norming inequalities on sections of sphere, ball and torus. arXiv 2018, arXiv:1802.01711.
14. Wilhelmsen, D.R. A Markov inequality in several dimensions. J. Approx. Theory 1974, 11, 216–220. [CrossRef]
15. Sarantopoulos, Y. Bounds on the derivatives of polynomials on Banach spaces. Math. Proc. Camb. Philos. Soc. 1991, 110, 307–312.

[CrossRef]
16. Kroó, A. Révész, S. On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies. J. Approx. Theory

1999, 99, 134–152.
[CrossRef]

17. Kroó, A. On the existence of optimal meshes in every convex domain on the plane. J. Approx. Theory 2019, 238, 26–37.
[CrossRef]

18. Davydov, O. Smooth Finite Elements and Stable Splitting; Berichte “Reihe Mathe-matik” der Philipps-Universit at Marburg: Marburg,
Germany, 2007.

19. Angermann, L.; Heneke, C. Interpolation, Projection and Hierarchical Bases in Discontinuous Galerkin Methods. Numer. Math.
Theory Methods Appl. 2015, 8, 425–450.

20. Baran, M.; Kowalska, A.; Ozorka, P. Optimal factors in Vladimir Markov’s inequality in L2 Norm. Sci. Tech. Innov. 2018, 2, 64–73.
21. Bialas-Ciez, L.; Jedrzejowski, M. Transfinite Diameter of Bernstein Sets in CN . J. Inequal. Appl. 2002, 7, 393–404.
22. Bloom, T.; Calvi, J.P. On multivariate minimal polynomials. Math. Proc. Camb. Phil. Soc. 2000, 129, 417–432.
23. Bialas-Ciez, L.; Calvi, J.P. Homogeneous minimal polynomials with prescribed interpolation conditions. Proc. Am. Math. Soc. 2016,

368, 8383–8402. [CrossRef]
24. Newman, D.J.; Xu, Y. Tchebycheff polynomials on a triangular region. Constr. Approx 1993, 9, 543–546. [CrossRef]
25. Peherstorfer, F. Minimal polynomials for compact sets of the complex plane. Constr. Approx 1996, 12, 481–488. [CrossRef]
26. Davis, P.J. Approximation and Interpolation; Dover Publication: New York, NY, USA, 1975.
27. Aron, R.M.; Klimek, M. Supremum norms for quadratic polynomials. Arch. Math. 2001, 76, 73–80. [CrossRef]
28. Sinha, A.; Malo, P.; Deb, K. Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal

solution mapping. Eur. J. Oper. Res. 2017, 257, 395–411. [CrossRef]

http://doi.org/10.4064/ap180803-23-4
http://dx.doi.org/10.1007/s11118-012-9290-0
http://dx.doi.org/10.4064/ap-60-1-69-79
http://dx.doi.org/10.1007/BF01137627
http://dx.doi.org/10.1006/jath.1994.1124
https://hdl.handle.net/1911/102161
http://dx.doi.org/10.1007/s11590-018-1377-0
http://dx.doi.org/10.1016/0021-9045(74)90012-4
http://dx.doi.org/10.1017/S0305004100070389
http://dx.doi.org/10.1006/jath.1998.3314
http://dx.doi.org/10.1016/j.jat.2017.02.004
http://dx.doi.org/10.1090/tran/6604
http://dx.doi.org/10.1007/BF01204656
http://dx.doi.org/10.1007/BF02437504
http://dx.doi.org/10.1007/s000130050544
http://dx.doi.org/10.1016/j.ejor.2016.08.027


Mathematics 2021, 9, 264 10 of 10

29. Byrd, R.H.; Gilbert, J.C.; Nocedal, J. A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming. Math.
Prog. 2000, 89, 149–185. [CrossRef]

30. Byrd, R.H.; Hribar, M.E.; Nocedal, J. An Interior Point Algorithm for Large-Scale Nonlinear Programming. SIAM J. Optim. 1999,
9, 877–900. [CrossRef]

31. Gao, Y.; Zhang, G.; Lu, J.; Wee, H.-M. Particle swarm optimization for bi-level pricing problems in supply chains. J. Glob. Optim.
2011, 51, 245–254. [CrossRef]

32. Pedersen, M.E. Good Parameters for Particle Swarm Optimization; Hvass Laboratories: Luxembourg, 2010.
33. Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl.

Eng. 2015, 2015, 38.
34. Goldberg, D.E. Genetic Algorithms in Search. In Optimization & Machine Learning; Addison-Wesley: Boston, MA, USA, 1989.
35. Yang, J.; Zhang, M.; He, B.; Yang, C. Bi-level programming model and hybrid genetic algorithm for flow interception problem with

customer choice. Comput. Math. Appl. 2009, 57, 1985–1994. [CrossRef]
36. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
37. Sahin, K.H.; Ciric, A.R. A dual temperature simulated annealing approach for solving bilevel programming problems. Comput.

Chem. Eng. 1998, 23, 11–25. [CrossRef]

http://dx.doi.org/10.1007/PL00011391
http://dx.doi.org/10.1137/S1052623497325107
http://dx.doi.org/10.1007/s10898-010-9595-8
http://dx.doi.org/10.1016/j.camwa.2008.10.035
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/S0098-1354(98)00267-1

	Introduction
	Minimal Polynomials
	Estimation of the Constant C in a Markov-Type Inequality
	Optimization Problem in a Markov-Type Inequality
	Conclusions
	References

