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1. Introduction

A mixed-norm Lebesgue space is a natural generalization of the classical Lebesgue
space Lp(Rd), in which independent variables that may have different meanings are consid-
ered. We first recall the notion of mixed-norm Lebesgue space L~p(Rd) with ~p = (p1, . . . , pd)

∈ [1, ∞]d, which was originally introduced by Benedek and Panzone [1] in 1961.

Definition 1 (see [1,2]). Let ~p = (p1, . . . , pd) ∈ [1, ∞]d. The mixed-norm Lebesgue space
L~p(Rd) (in Benedek and Panzone’s sense) is defined to be the set of all measurable functions f such
that their norms ‖ f ‖L~p(Rd) (abbreviated as ‖ f ‖L~p or ‖ f ‖~p) defined by

‖ f ‖L~p(Rd) =


∫
R
· · ·

∫
R

[∫
R

(∫
R
| f (x1, x2, . . . , xd)|p1 dx1

) p2
p1

dx2

] p3
p2

dx3 . . . dxd


1

pd

=

∥∥∥∥. . .
∥∥∥‖ f (x1, x2, . . . , xd)‖Lp1 (x1)

∥∥∥
Lp2 (x2)

. . .
∥∥∥∥

Lpd (xd)

< ∞.

Here, ~p = (p1, . . . , pd) ∈ [1, ∞]d means that 1 ≤ pi ≤ ∞ for i = 1, 2, . . . , d, and is usually
abbreviated by ~p ∈ [1, ∞]d. When pi = ∞ for i = 1, . . . , d, the Lpi -norm is replaced by L∞-norm.

In fact, the function spaces with mixed norms have practical significance and have
rapidly been developed and applied in many fields of mathematics. For instance, in PDEs
as an example, functions defined by spacial and time variables may belong to certain
mixed-norm spaces; inhomogeneous Besov spaces with mixed Lebesgue norms were
studied recently (see, e.g., [3–5]); sampling theory based on mixed-norm theories was
studied in [6]. Moreover, Triebel–Lizorkin spaces or Hardy spaces [7,8] were also studied
under mixed-norm theories. Kowalski [9] studied the sparse methods in signal regression
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with mixed norms in 2009, where the author used the Besov and Triebel–Lizorkin spaces
under mixed-norm characterization. In 2012, Kolyada [10] developed further properties
of the mixed-norm Fournier–Gagliardo spaces and Lorentz-type spaces with iterative
rearrangements, which gave a sharp constant in a Sobolev embedding problem. For more
progress about various mixed-norm Lebesgue spaces and their applications, we refer the
reader to [3–5,7,8,11,12] and references therein. A natural question is whether a mixed-norm
Lebesgue space L~p(Rd) has important results and properties, such as Hölder inequality,
stability property, etc., for shift-invariant subspaces of Lp(Rd) which were established
in [13]. It is known that L~p(Rd) is a type of Banach space (see [1]), so it inherits many
excellent properties of traditional Lp(Rd) space. However, the order of integration in the
definition of L~p(Rd) is not commutative. Therefore, research on some issues in mixed-norm
Lebesgue spaces also brings various challenges. For example, the characterization study
on the revelent mixed-norm space [7,14] is troublesome because of the noncommutative
order of the integral. In this paper, we will consider these properties for shift-invariant
subspaces of mixed-norm Lebesgue spaces L~p(Rd). To some extent, our research in this
paper promotes the existing conclusions of shift-invariant subspaces, such as [6,13] and
can be used in the study of characterization of a mixed norm space in the future.

The paper is organized as follows. In Section 2, we establish a mixed-norm Hölder
inequality, a mixed-norm Minkowski inequality and a mixed-norm convolution inequality. A
convolution-Hölder type inequality and a stability theorem to mixed-norm case in the setting
of shift-invariant subspace of mixed-norm Lebesgue space L~p(Rd) are given in Section 3.
Our new results unify and refine the relevant existing results in the literature [6,13,15,16].

2. New Mixed-Norm Inequalities and Generalizations

Let us begin with some basic definitions and notation that will be needed in this paper.
Let Z be the integer set, and define Zd = {k = (k1, k2, . . . , kd) : ki ∈ Z, i = 1, 2, . . . , d}. For
c = (ck)k∈Z, we define the discrete space lp(Z) with its finite norm

‖c‖lp =


(

∑
k∈Z
|ck|p

) 1
p
, 0 < p < ∞;

supk∈Z |ck|, p = ∞.

The mixed-norm of l~p(Zd) is defined by

‖c‖l~p =
∥∥∥(. . . ‖c(k1, k2, . . . , kd)‖lp1(k1)

. . .
)∥∥∥

lpd(kd)
.

The Fourier transform is defined by f̂ (ξ) =
∫
Rd f (x)e−ix·ξdx for every f ∈ L1(Rd).

Other types of Fourier transform are the classical extension of this form.
Let f (x) be measurable for x = (x1, . . . , xd) ∈ Rd. Then f (x) ∈ L~p(Rd), if it satisfies

‖ f ‖L~p(Rd)

:=
∥∥∥∑kd∈Z

(
· · · ‖∑k1∈Z | f (x1 + k1, · · · , xd + kd)|‖Lp1(x1)

([0,1]) · · ·
)∥∥∥

Lpd(xd)
([0,1])

< ∞.

Notice that ‖ f ‖L~p(Rd) is usually abbreviated by

‖ f ‖L~p(Rd) =

∥∥∥∥[. . .
∥∥∥‖ f (x1, x2, . . . , xd)‖Lp1 (x1)(R)

∥∥∥
Lp2 (x2)(R)

. . .
]∥∥∥∥

Lpd (xd)(R)
.

For example, when ~p ∈ [1, ∞)d, we have

‖ f ‖L~p(Rd) =

∫
[0,1]

 ∑
kd∈Z

. . .

[∫
[0,1]

(
∑

k1∈Z
| f (x1 + k1, . . . , xd + kd)|

)p1

dx1

] 1
p1

. . .


pd

dxd


1

pd

,
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and for ~p = {∞, . . . , ∞} = −→∞ , we have

‖ f ‖L~∞(Rd) = esssupxd∈[0,1]

(
∑

kd∈Z

{
. . .

[
esssupx1∈[0,1]

(
∑

k1∈Z
| f (x1 + k1, . . . , xd + kd)|

)]
. . .

})
.

Here, the difference between L~p(Rd) and L~p(Rd) will be explained. To this end, we
assume d = 1 and p ∈ [1, ∞), then

‖ f ‖p
Lp(R) =

∫
[0,1]

∑
k∈Z
| f (x + k)|pdx

≤
∫
[0,1]

[∑
k∈Z
| f (x + k)|]pdx

= ‖ f ‖p
Lp(R).

So it follows that ‖ f ‖Lp(R) ≤ ‖ f ‖Lp(R). However, ‖ f ‖Lp(R) ≤ ‖ f ‖Lp(R) cannot be
reversed, that is, ‖ f ‖Lp(R) ≤ ‖ f ‖Lp(R) or ‖ f ‖Lp(R) ≤ C‖ f ‖Lp(R) (C is a positive constant)

cannot be correct. Then, we only have Lp(R) ⊂ Lp(R) and L~p(Rd) ⊂ L~p(Rd). In this paper,
L~p(Rd) is a fundamental space, which will be used in the estimation of the upper bound for
all kinds of inequalities, such as stability property inequality, convolution-type inequality.
It can replace the classical Lp space at any needed time to obtain some similar conclusions
in L~p space. Meanwhile, after simple calculations, we can obtain the following inclusion
relations

L−→∞ (Rd) ⊂ L~p(Rd) ⊂ L1(Rd).

In order to establish our important generalizations and results in the next section,
we should give some extensions of known results in this section. First of all, we recall a
fundamental lemma ([17], Theorem 6.18) as follows.

Lemma 1. Let 1 ≤ p ≤ ∞, c ∈ lp(Z) and h ∈ l1(Z). Then ‖∑k c(k)h(l − k)‖lp ≤ ‖c‖lp‖h‖l1 .

With the help of Lemma 1, we establish the following new inequality.

Lemma 2. Assume 1 ≤ p ≤ ∞, c ∈ lp(Z) and ϕ ∈ Lp(R). Then∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
Lp(R)

≤ ‖c‖lp‖ϕ‖Lp(R).

Proof. Let 1 ≤ p < ∞. Then, we get∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
p

Lp(R)
=
∫
R

[
|∑

k
ck ϕ(x− k)|

]p

dx

≤
∫
R

[
∑
k
|ck||ϕ(x− k)|

]p

dx

=
∫
[0,1]

∑
l∈Z

[
∑
k
|ck||ϕ(x− l − k)|

]p

dx

≤
∫
[0,1]
‖(ck)k‖

p
lp

[
∑
k
|ϕ(x− k)|

]p

dx

= ‖(ck)k‖
p
lp

∫
[0,1]

[
∑
k
|ϕ(x− k)|

]p

dx,
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where the last inequality holds by using Lemma 1. Finally, one can verify the case p = ∞
in a very similar way as above. The proof is completed.

By applying Lemma 2, we can give an extension to the mixed-norm case.

Theorem 1. Assume ~p ∈ [1, ∞]d, c ∈ l~p(Zd) and ϕ ∈ L~p(Rd). Then∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
L~p(Rd)

≤ ‖c‖l~p(Rd)‖ϕ‖L~p(Rd).

Proof. Without loss of generality, we assume d = 2, ~p = (p1, p2) and ~p ∈ [1, ∞)2. Then,
we obtain∥∥∥∥∥∑k

ck1,k2 ϕ(x1 − k1, x2 − k2)

∥∥∥∥∥
L(p1,p2)

(R2)

=

∥∥∥∥∥∥∑k1 ∑k2
ck1,k2 ϕ(x1 − k1, x2 − k2)

∥∥
Lp1 (x1)(R)

∥∥∥∥
Lp2 (x2)(R)

≤
(∫

R

{∫
R
[
∑k2 ∑k1

|ck1,k2 ||ϕ(x1 − k1, x2 − k2)|
]p1 dx1

} p2
p1 dx2

) 1
p2

≤
(∫

R

{
∑k2

(∫
R
[
∑k1
|ck1,k2 ||ϕ(x1 − k1, x2 − k2)|

]p1 dx1

) 1
p1

}p2

dx2

) 1
p2

=

(∫
R

{
∑k2

(
∑l1

∫
[0,1]

[
∑k1
|ck1,k2 ||ϕ(x1 − k1 − l1, x2 − k2)|

]p1 dx1

) 1
p1

}p2

dx2

) 1
p2

,

where the second inequality holds by using the triangle inequality on Lp1(x1). Now, with
the help of Lemma 2, we have∥∥∥∥∥∑k

ck1,k2 ϕ(x1 − k1, x2 − k2)

∥∥∥∥∥
L(p1,p2)

(R2)

≤
(∫

R

{
∑
k2

‖(ck1,k2)‖lp1 (k1)
‖ϕ(x1, x2 − k2)‖Lp1 (x1)

}p2

dx2

) 1
p2

≤
∥∥∥‖(ck1,k2)‖lp1 (k1)

∥∥∥
lp2 (k2)

∥∥∥‖ϕ(x1, x2)‖Lp1 (x1)

∥∥∥
Lp2 (x2)

= ‖c‖l~p(R2)‖ϕ‖L~p(R2).

A similar argument could be made for p1 = ∞ or p2 = ∞. The proof is completed.

In order to prove the property of Theorem 6 in Scetion 3, we need the classical Hölder
inequality. In fact, Theorem 6 is very similar to the combination of Hölder inequality and
convolution inequality (see below). Now, we give these two classical inequalities here.

Lemma 3 (Hölder inequality, [17]). Let f (x) ∈ Lp(R), g(x) ∈ Lq(R) for 1 ≤ p, q ≤ ∞ with
1
p + 1

q = 1. Then
‖ f (x)g(x)‖L1(R) ≤ ‖ f (x)‖Lp(R)‖g(x)‖Lq(R).

Lemma 4 (Convolution inequality, [11]). Let f (x) ∈ Lp(Rd), g(x) ∈ L1(Rd) for 1 ≤ p ≤ ∞.
Then

‖( f ∗ g)(x)‖Lp(Rd) ≤ ‖ f (x)‖Lp(Rd)‖g(x)‖L1(Rd).
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The convolution formula is defined by ( f ∗ g)(x) =
∫
Rd f (x− y)g(y)dy with f (x) and

g(x) are meaningful.
Moreover, in order to make a comparison in format with Theorem 6, we generalize the

classical Hölder inequality as in Lemma 3 and extend the classical convolution inequality
as in Lemma 4 to the mixed-norm cases. We give a simple proof of the mixed-norm Hölder
inequality as follows.

Theorem 2 (Mixed-norm Hölder inequality). Let f (x) ∈ L~p(Rd), g(x) ∈ L~q(Rd) for ~p,~q ∈
[1, ∞]d with 1

pi
+ 1

qi
= 1 for i = 1, 2, . . . , d. Then

‖ f (x)g(x)‖L1(Rd) ≤ ‖ f (x)‖L~p(Rd)‖g(x)‖L~q(Rd).

Proof. Without loss of generality, we assume d = 2 and then ~p = (p1, p2). So

‖ f g‖L1(R2) =
∫
R

∫
R
| f (x1, x2)g(x1, x2)|dx1dx2

≤
∫
R
‖ f (x1, x2)‖Lp1 (x1)

‖g(x1, x2)‖Lp1 (x1)
dx2

≤
∥∥∥‖ f (x1, x2)‖Lp1 (x1)

∥∥∥
Lp2 (x2)

∥∥∥‖g(x1, x2)‖Lp1 (x1)

∥∥∥
Lp2 (x2)

,

where the inequalities can be obtained by using Hölder inequality as in Lemma 3. The
proof is completed.

Next, we will generalize the classical convolution inequality as in Lemma 4 to the
mixed-norm case. To prove this mixed-norm convolution inequality, we need to generalize
the classical Minkowski inequality to the mixed-norm case in advance.

Lemma 5 (Minkowski inequality [12]). Let f (x, y) be a Borel function onR×R and 1 ≤ p ≤ ∞.
Then ∥∥∥∥∫R f (x, y)dx

∥∥∥∥
Lp(R)

≤
∫
R
‖ f (x, ·)‖Lp(R)dx.

By applying Lemma 5, we extend the traditional Minkowski inequality to the mixed-
norm case as follows.

Theorem 3 (Mixed-norm Minkowski inequality). Let f (x, y) be a Borel function on Rd ×Rd

and ~p ∈ [1, ∞]d. Then ∥∥∥∥∫Rd
f (x, y)dx

∥∥∥∥
L~p(Rd)

≤
∫
Rd
‖ f (x, ·)‖L~p(Rd)dx.

Proof. Without loss of generality, we only need to show the case d = 2. Thus~p = (p1, p2) and∥∥∥∥∫Rd
f (x, y)dx

∥∥∥∥
L~p(R2)

=

∥∥∥∥∫R2
f (x, y)dx

∥∥∥∥
L(p1,p2)

=

∥∥∥∥∥
(∥∥∥∥∫R2

f (x, y)dx
∥∥∥∥

Lp1 (y1)

)∥∥∥∥∥
Lp2 (y2)

.

By Lemma 5,∥∥∥∥∥
(∥∥∥∥∫R2

f (x, y)dx
∥∥∥∥

Lp1 (y1)

)∥∥∥∥∥
Lp2 (y2)

≤
∥∥∥∥(∫R2

‖ f (x, y1, y2)‖Lp1 (y1)
dx)
∥∥∥∥

Lp2 (y2)

≤
∫
R2

∥∥∥(‖ f (x, y1, y2)‖Lp1 (y1)
)
∥∥∥

Lp2 (y2)
dx.

This completes the proof.
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By applying Theorem 3, we establish the following new generalized convolution
inequality in mixed-norm Lebesgue spaces.

Theorem 4 (Mixed-norm convolution inequality). Let f (x) ∈ L~p(Rd), g(x) ∈ L1(Rd) for
~p ∈ [1, ∞]d. Then

‖( f ∗ g)(x)‖L~p(Rd) ≤ ‖ f (x)‖L~p(Rd)‖g(x)‖L1(Rd).

Proof. Without loss of generality, we assume d = 2. So ~p = (p1, p2) and

‖ f ∗ g‖L(p1,p2)
=

∥∥∥∥∫R
∫
R

f (x1 − y1, x2 − y2)g(y1, y2)dy1dy2

∥∥∥∥
L(p1,p2)

≤
∫
R

∫
R
‖ f (x1 − y1, x2 − y2)‖L(p1,p2)

(x1,x2)
|g(y1, y2)|dy1dy2

= ‖ f ‖L(p1,p2)
‖g‖1.

The inequality comes from Theorem 3 and the conclusion is proved.

3. New Convolution-Type Inequality and Stability Theorem in Shift-Invariant
Subspaces of L~p(Rd)

Based on the careful preparation in Section 2, some important new inequalities and
results are established in this section, which are almost based on the setting of L~p(Rd).
We expect that these inequalities will contribute to the characterization and application
of mixed-norm Besov spaces and Triebel–Lizorkin spaces, and so forth. We first give a
generalization of Theorem 1 as follows.

Theorem 5. Assume c ∈ l1(Zd) and ϕ(x) ∈ L−→∞ (Rd). Then∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
L−→∞ (Rd)

≤ ‖c‖l1‖ϕ‖L−→∞ (Rd).

Proof. Here, we also assume d = 2. Then, one has∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
L−→∞ (R2)

= esssupx2∈[0,1] ∑l2∈Z esssupx1∈[0,1] ∑l1∈Z |∑(k1,k2)
c(k1,k2)

ϕ(x1 − k1 − l1, x2 − k2 − l2)|

≤ esssupx2∈[0,1] ∑l2∈Z esssupx1∈[0,1] ∑l1∈Z ∑(k1,k2)
|c(k1,k2)

||ϕ(x1 − k1 − l1, x2 − k2 − l2)|

= esssupx2∈[0,1] ∑l2∈Z esssupx1∈[0,1] ∑(k1,k2)
|c(k1,k2)

|∑l1∈Z |ϕ(x1 − k1 − l1, x2 − k2 − l2)|.

So, it is easy to see that∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
L−→∞ (R2)

≤ esssupx2∈[0,1] ∑l2∈Z ∑(k1,k2)
|c(k1,k2)

|esssupx1∈[0,1] ∑l1∈Z |ϕ(x1 − k1 − l1, x2 − k2 − l2)|

≤ ∑(k1,k2)
|c(k1,k2)

|esssupx2∈[0,1] ∑l2∈Z esssupx1∈[0,1] ∑l1∈Z |ϕ(x1 − k1 − l1, x2 − k2 − l2)|

= ‖c‖l1‖ϕ‖L−→∞ (R2).

The proof is completed.
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It is worth noting here that

‖ f ‖L~p(Rd) ≤ ‖ f ‖L−→∞ (Rd),

so we have ∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
L~p(Rd)

≤ ‖c‖l1‖ϕ‖L−→∞ (Rd).

Next, we will establish the following new mixed-norm convolution-type inequality
based on L~p(Rd).

Theorem 6. Let f (x) ∈ L~p(Rd) and g(x) ∈ L~q(Rd) for ~p,~q ∈ [1, ∞]d. Then

‖ f ∗ g‖L−→∞ (Rd) ≤ ‖ f ‖L~p(Rd)‖g‖L~q(Rd).

Proof. Without loss of generality, we assume d = 2. First, we note that

f ∗ g(x1 + k1, x2 + k2)

=
∫
R
∫
R f (y1, y2)g(x1 + k1 − y1, x2 + k2− y2)dy1dy2.

So, we obtain

esssupx1∈[0,1] ∑
k1∈Z
| f ∗ g(x1 + k1, x2 + k2)|

≤ esssupx1∈[0,1] ∑k1∈Z
∫
R
∫
[0,1] ∑l1 | f (y1 − l1, y2)||g(x1 − l1 + k1 − y1, x2 + k2 − y2)|dy1dy2

= esssupx1∈[0,1]
∫
R
∫
[0,1] ∑l1 | f (y1 − l1, y2)|∑k1∈Z |g(x1 − l1 + k1 − y1, x2 + k2 − y2)|dy1dy2

= esssupx1∈[0,1]
∫
R
∫
[0,1]
(
∑l1 | f (y1 − l1, y2)|

)(
∑k1∈Z |g(x1 + k1 − y1, x2 + k2 − y2)|

)
dy1dy2,

which leads to

esssupx1∈[0,1] ∑
k1∈Z
| f ∗ g(x1 + k1, x2 + k2)|

≤ esssupx1∈[0,1]
∫
R(
∥∥(∑l1 | f (y1 − l1, y2)|

)∥∥
Lp1 (y1)[0,1]∥∥(∑k1∈Z |g(x1 + k1 − y1, x2 + k2− y2)|

)∥∥
Lq1 (y1)[0,1])dy2

≤
∫
R‖ f (y1, y2)‖Lp1 (y1)

‖g(y1, x2 + k2 − y2)‖Lq1 (y1)
dy2,

where the first inequality holds by using the Hölder inequality as in Lemma 3. Similarly,
we have

esssupx2∈[0,1] ∑
k2∈Z

esssupx1∈[0,1] ∑
k1∈Z
| f ∗ g(x1 + k1, x2 + k2)|

≤ esssupx2∈[0,1] ∑k2∈Z
∫
R‖ f (y1, y2)‖Lp1 (y1)

‖g(y1, x2 + k2 − y2)‖Lq1 (y1)
dy2

= esssupx2∈[0,1]
∫
R‖ f (y1, y2)‖Lp1 (y1) ∑k2∈Z‖g(y1, x2 + k2 − y2)‖Lq1 (y1)

dy2

= esssupx2∈[0,1]
∫
[0,1] ∑l2∈Z

(
‖ f (y1, y2 − l2)‖Lp1 (y1) ∑k2∈Z‖g(y1, x2 + k2 − y2 − l2)‖Lq1 (y1)

)
dy2,
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which deduces that

esssupx2∈[0,1] ∑
k2∈Z

esssupx1∈[0,1] ∑
k1∈Z
| f ∗ g(x1 + k1, x2 + k2)|

≤ esssupx2∈[0,1]
∫
[0,1]

(
∑l2∈Z‖ f (y1, y2 − l2)‖Lp1 (y1)

)(
∑k2∈Z‖g(y1, x2 + k2 − y2)‖Lq1 (y1)

)
dy2

≤ esssupx2∈[0,1]

∥∥∥(∑l2∈Z‖ f (y1, y2 − l2)‖Lp1 (y1)

)∥∥∥
Lp2 (y2)([0,1])∥∥∥(∑k2∈Z‖g(y1, x2 + k2 − y2)‖Lq1 (y1)

)∥∥∥
Lq2 (y2)([0,1])

≤
∥∥∥‖ f (y1, y2)‖Lp1 (y1)

∥∥∥
Lp2 (y2)([0,1])

∥∥∥‖g(y1, y2)‖Lq1 (y1)

∥∥∥
Lp2 (y2)([0,1])

= ‖ f ‖L~p(R2)‖g‖L~q(R2).

The proof is completed.

Remark 1. It is very obvious that Theorem 6 is a unified format of the mixed-norm Hölder
inequality (i.e., Theorem 2) and the mixed-norm convolution inequality (i.e., Theorem 4).

We will end this section with an important stability theorem in mixed-norm Lebesgue
spaces. Note that this stability conclusion is based on a setting of the shift-invariant
subspace of L~p(Rd) space. Of course, the upper and lower bounds of the stability theorem
are given in the setting of L~p(Rd). The shift-invariant subspace Span(ϕ) (generated by ϕ)
is defined by

Span(ϕ) =

{
f = ∑

k
ck ϕ(x− k) : c ∈ l~p(Zd), ϕ ∈ L−→∞ (Rd)

}
.

The following known result is crucial for proving our new stability theorem.

Theorem 7 (see [13]). Let ϕ ∈ L−→∞ (Rd) and C1 and C2 be positive constants. Then

C1‖c‖l2 ≤
∥∥∥∥∥∑k

ck ϕ(x− k)

∥∥∥∥∥
L2(Rd)

≤ C2‖c‖l2

holds if and only if one of the following conditions holds:

(1) There exists a function h ∈ Span(ϕ) such that

〈ϕ(x− l), h(x)〉 = δ0,l , l ∈ Zd,

and δ0,l is defined by δ = 1 for l = 0, δ = 0 for l 6= 0;
(2) ∑l |ϕ̂(ξ + 2πl)|2 > 0 for every ξ ∈ Rd.

By applying Theorems 1 and 2, we prove the following stability theorem.

Theorem 8. Let ~p ∈ [1, ∞]d, ∑l |ϕ̂(ξ + 2πl)|2 > 0 for every ξ ∈ Rd, c ∈ l~p(Zd) and ϕ ∈
L−→∞ (Rd). Then

C1‖c‖l~p ≤
∥∥∥∥∥∑k

ck ϕ(x− k)

∥∥∥∥∥
L~p(Rd)

≤ C2‖c‖l~p

holds for some positive constants C1 and C2.
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Proof. By Theorem 1, one has∥∥∥∥∥∑k
ck ϕ(x− k)

∥∥∥∥∥
L~p(Rd)

≤ ‖ϕ‖L~p(Rd)‖c‖l~p ≤ ‖ϕ‖L−→∞ (Rd)‖c‖l~p .

That means C2 = ‖ϕ‖L−→∞ (Rd). So the upper bound is arrived.
Next, we will find its lower bound. Assume g = ∑k ck ϕ(x− k), by Theorem 7, there

exists a function h ∈ Span(ϕ) such that

〈ϕ(x− l), h(x)〉 = δ0,l , l ∈ Zd.

Then,

∫
Rd

g(x)h(x− k)dx =
∫
Rd

(
∑
m

cm ϕ(x−m)

)
h(x− k)dx

= ∑
m

cm

∫
Rd

ϕ(x−m + k)h(x)dx

= ck.

Let {(c̃k)k} ∈ l~q for 1
pi
+ 1

qi
= 1 with i = 1, 2, . . . , d. So we have

|〈c, c̃〉| =
∣∣∣∣∣∑k

ck c̃k

∣∣∣∣∣
=

∣∣∣∣∣∑k
c̃k

∫
Rd

g(x)h(x− k)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd

g(x)∑
k

c̃kh(x− k)dx

∣∣∣∣∣.
Taking into account Theorems 1 and 2, we get

|〈c, c̃〉| ≤ ‖g(x)‖L~p(Rd)

∥∥∥∥∥∑k
c̃kh(x− k)

∥∥∥∥∥
L~q(Rd)

≤ ‖g(x)‖L~p(Rd)‖c̃‖l~q‖h(x)‖L~q(Rd),

which deduces

‖c‖l~p ≤ ‖g(x)‖L~p(Rd)‖h(x)‖L~q(Rd) ≤ ‖g(x)‖L~p(Rd)‖h(x)‖L−→∞ (Rd).

Then,
1

‖h(x)‖L−→∞ (Rd)

‖c‖l~p ≤ ‖g(x)‖L~p(Rd).

We now take C1 = 1
‖h(x)‖

L−→∞ (Rd)
and the lower bound is arrived.

Remark 2. As an example, we can take

ϕ(x1, x2, . . . , xd) = φ1(x1)⊗ φ2(x2)⊗ · · · ⊗ φd(xd).

Here, ⊗ means the traditional tensor product. The functions φi (i = 1, 2, . . . , d) can be taken
as the orthonormal or biothogonal scaling functions with compact support in wavelet analysis
theories. In fact, we can easily prove these scaling functions naturally satisfy the inequalities
‖ϕ‖L−→∞ (Rd) < ∞ and ∑l |ϕ̂(ξ + 2πl)|2 > 0 for every ξ ∈ Rd.
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4. Conclusions

The main goal of the current study is to give some generalizations of inequalities under
mixed-norm Lebesgue spaces L~p(Rd) with the help of L~p(Rd). We particularly establish
the convolution-Hölder-type inequality and the stability theorem of mixed-norm case. It
is obvious that the convolution-Hölder-type inequality unifies the mixed-norm Hölder
inequality and the mixed-norm convolution inequality in format. This is an interesting
result. In addition, a generalization of stability result under mixed-norm unifies and refines
the existing results. We hope that it can be used in the characterization of relevant mixed
norm spaces in the future.

Author Contributions: Writing original draft, J.Z., W.-S.D. and Y.C. All authors have read and agreed
to the published version of the manuscript.

Funding: The first author is partially supported by the Natural Science Foundation of Tianjin City,
China (Grant No. 18JCYBJC16300). The second author is partially supported by Grant No. MOST
109-2115-M-017-002 of the Ministry of Science and Technology of the Republic of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their hearty thanks to the anonymous referees for
their valuable suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benedek, A.; Panzone, R. The space LP, with mixed norm. Duke Math. J. 1961, 28, 301–324. [CrossRef]
2. Benedek, A.; Calderón, A.P.; Panzone, R. Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA

1962, 48, 356–365. [CrossRef]
3. Georgiadis, A.G.; Nielsen, M. Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces. Math. Nachr. 2016,

289, 2019–2036. [CrossRef]
4. Johnsen, J.; Sickel, W. A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel spaces with mixed norms.

J. Funct. Spaces Appl. 2007, 5, 183–198. [CrossRef]
5. Johnsen, J.; Sickel, W. On the trace problem for Lizorkin-Triebel spaces with mixed norms. Math. Nachr. 2008, 281, 669–696.

[CrossRef]
6. Li, R.; Liu, B.; Liu, R.; Zhang, Q. Nonuniform sampling in principal shift-invariant subspaces of mixed Lebesgue spaces Lp,q(Rd+1).

J. Math. Anal. Appl. 2017, 453, 928–941. [CrossRef]
7. Cleanthous, G.; Georgiadis, A.G.; Nielsen, M. Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 2017, 27, 2758–2787.

[CrossRef]
8. Huang, L.; Liu, J.; Yang, D.; Yuan, W. Atomic and Littlewood-Paley decompositions of anisotropic mixed-norm Hardy spaces and

their applications. J. Geom. Anal. 2019, 29, 1991–2067. [CrossRef]
9. Kowalski, M. Sparse regression using mixed norms. Appl. Comput. Anal. 2009, 27, 303–324. [CrossRef]
10. Kolyada, V.I. Iterated rearrangements and Gagliardo-Sobolev type inequalities. J. Math. Anal. Appl. 2012, 387, 335–348. [CrossRef]
11. Grafakos, L. Classical Fourier Ananlysis, 2nd ed.; Volume 249 of Graduate Texts in Mathematics; Springer: New York, NY, USA,

2008.
12. Härdle, W.; Kerkyacharian, G.; Picard, D.; Tsybakov, A. Wavelets, Approximation, and Statistical Applications; Lecture Notes in

Statistics; Springer: New York, NY, USA, 1998; Volume 129.
13. Jia, R.Q.; Micchelli, C.A. Using the refinement equations for the construction of pre-wavelets II: Powers of two. In Curves and

Surfaces; Laurent, P.J., Le Mehaute, A., Schumaker, L.L., Eds.; Academic Press: New York, NY, USA, 1991; pp. 209–246.
14. Cleanthous, G.; Georgiadis, A.G.; Nielsen, M. Discrete decomposition of homogeneous mixed-norm Besov spaces. Contemp. Math.

2017, 693, 167–184.
15. Zhang, Q. Nonuniform average sampling in multiply generated shift-invariant subspaces of mixed Lebesgue spaces. Int. J.

Wavelets Multiresolut. Inf. Process. 2020, 18, 2050013. [CrossRef]
16. Zhang, Q.Y.; Sun, W.C. Invariance of shift-invariant spaces. Sci. China Math. A 2012, 55, 1395–1401. [CrossRef]
17. Folland, G.B. Real Analysis; John Wiley and Sons: New York, NY, USA, 1984.

http://doi.org/10.1215/S0012-7094-61-02828-9
http://dx.doi.org/10.1073/pnas.48.3.356
http://dx.doi.org/10.1002/mana.201500390
http://dx.doi.org/10.1155/2007/714905
http://dx.doi.org/10.1002/mana.200610634
http://dx.doi.org/10.1016/j.jmaa.2017.04.036
http://dx.doi.org/10.1007/s12220-017-9781-8
http://dx.doi.org/10.1007/s12220-018-0070-y
http://dx.doi.org/10.1016/j.acha.2009.05.006
http://dx.doi.org/10.1016/j.jmaa.2011.08.077
http://dx.doi.org/10.1142/S0219691320500137
http://dx.doi.org/10.1007/s11425-012-4399-6

	Introduction
	New Mixed-Norm Inequalities and Generalizations
	New Convolution-Type Inequality and Stability Theorem in Shift-Invariant Subspaces of L(Rd)
	Conclusions
	References

