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Abstract: This review addresses issues of various drift–diffusion and inhomogeneous advection
problems with and without resetting on comblike structures. Both a Brownian diffusion search with
drift and an inhomogeneous advection search on the comb structures are analyzed. The analytical
results are verified by numerical simulations in terms of coupled Langevin equations for the comb
structure. The subordination approach is one of the main technical methods used here, and we
demonstrated how it can be effective in the study of various random search problems with and
without resetting.

Keywords: diffusion–advection equation; stochastic resetting; comb structure; random search; first
arrival time density; efficiency

1. Introduction

In the standard theory of Brownian motion, the probability density function (PDF)
P0(x, t) for finding a particle at position x at time t has a Gaussian form,

P0(x, t) =
1√

4πDt
e−

(x−x0)
2

4Dt ,

for the initial conditions given by the Dirac delta function P0(x, t = 0) = δ(x − x0)
and for the natural (vanishing) boundary conditions at infinity, P0(±∞, t) = 0 and
∂

∂x P(x, t)|x=±∞ = 0. Brownian motion is characterized by linear growth of the mean
squared displacement (MSD), 〈x2(t)〉 = 2Dt, which means normal diffusion. However, in
a large variety of transport phenomena in randomly inhomogeneous media, one observes
deviation from this linear growth in time such that the MSD has a power-law dependence
on time, 〈x2(t)〉 ∼ tα, which is a signature of anomalous diffusion (see, for example, [1]).
When 0 < α < 1, it corresponds to subdiffusion, while α > 1 corresponds to superdiffusion.

One of the well-known examples of anomalous diffusion is Brownian motion on a
comb, which is governed by the Fokker–Planck equation [2,3]

∂tP(x, y, t) = δ(y)Dx ∂2
xP(x, y, t) +Dy ∂2

yP(x, y, t), (1)

with the initial condition P(x, y, t = 0) = δ(x− x0)δ(y), and the boundary conditions for
P(x, y, t) and ∂

∂q P(x, y, t), q = {x, y}, are set to zero at infinity, x = ±∞, y = ±∞. Here,
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Dxδ(y) and Dy are diffusion coefficients along the x and y directions, respectively. The
δ-function in the Fokker–Planck operator

LFP = δ(y)Dx ∂2
x +Dy ∂2

y (2)

means that diffusion along the x direction (the so-called backbone) is allowed only at y = 0.
Along the y direction (the so-called fingers), the particle performs normal diffusion. The
MSD along the backbone has a power-law dependence on time 〈x2(t)〉 = Dx√

Dy

t1/2

Γ(3/2) , i.e.,

subdiffusion is observed in the system [2,3], while normal diffusion takes place along
the fingers. Different generalizations of the comb geometry have been considered. For
example, various diffusion processes have been considered in a comb with a finite fin-
ger length [4–6], diffusion on cylindrical [7,8] and circular combs [9–11], more complex
branched structures [12], random comb models [13], and a comb with ramified teeth [14],
as well as the problem of first encounters for two workers [15]. Diffusion processes in
fractal mesh and grid structures have been considered as well: In this case, anomalous
diffusion of a particle is affected by the fractal structure of the infinite numbers of back-
bones and fingers [16]. It has been shown that these models are useful for description of
anomalous transport through porous solid pellets with various porous geometries [17].
Comb models are also applicable for describing diffusion in percolation clusters [2,18,19],
anomalous transport of inert compounds in spiny dendrites [20–22], modeling electron
transport in disordered nanostructured semiconductors [23,24], dispersive transport of
charge carriers in two-layer polymers [25], percolative phonon-assisted hopping in two-
dimensional disordered systems [26,27], and anomalous diffusion of fluorescence recovery
after photobleaching in a random-comb model [13]. Another interesting realization is that
turbulent diffusion in a comb appears to be due to multiplicative noise [28,29].

Nowadays, one of the most explored problems in stochastic processes is the problem
of stochastic resetting, meaning that a particle is reset to the initial (or any other) position
from time to time. The one-dimensional Brownian motion with Markovian resetting with a
constant resetting rate r was introduced by Evans and Majumdar [30]. It was shown that
the solution for the PDF approaches a non-equilibrium steady state and, in the long-time
limit, its MSD is saturated, 〈x2(t)〉 ∼ 1/r (also see the review paper [31] for more details).
Moreover, Brownian motion in a two-dimensional comb in the presence of stochastic
(Markovian) resetting can be solved analytically [32–34]. The marginal PDFs along both the
backbone and fingers approach non-equilibrium steady states, and the MSDs are saturated
according to the resetting rate: 〈x2(t)〉 ∼ 1/

√
r and 〈y2(t)〉 ∼ 1/r [32–34]. These models

have been extended to diffusion processes with non-static resetting [34]. Stochastic resetting
is a natural mechanism in various search processes, such as foraging [35], population
dynamics [36], Michaelis–Menten enzymatic reactions [37], and human behavior of finding
resources [38], to mention but a few. Resetting may also affect the first-passage properties
and completion of the process. In particular, in the case of the one-dimensional Brownian
search, the mean arrival time at the absorbing boundary becomes finite in the presence of
resetting [30], while it is infinite in the absence of resetting [39]. The resetting dynamics of
a Brownian particle under external potentials have been analyzed in detail, as well [40–45].
This issue can also be employed to understand resetting in molecular reaction systems.

Another important topic in stochastic processes is the random search problem. Many
studies on random searches in foraging theory with incomplete information have employed
a Brownian search as a default strategy [46], while others have proposed Lévy flights as
an efficient strategy for searching for sufficiently sparse targets [47], stating that the Lévy
process is one of the most natural and optimal search strategies [48–52]. Various search
strategies have been introduced and proposed, including different combinations of search
processes [53–57].
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The corresponding Fokker–Planck equation of a Brownian random search process for
the non-normalized density function f (x, t) with a δ-sink of strength Pfa reads [53–55]

∂t f (x, t) = D∂2
x f (x, t)−Pfa(t)δ(x− X), (3)

where D is a diffusion coefficient. One assumes here that the initial position is given at
x = x0 by f (x, t = 0) = δ(x− x0). The δ-sink means that the random searcher positioned
at the beginning at x = x0 will be removed at the first arrival at x = X, i.e., f (x = X, t) = 0.
Therefore, Pfa(t) represents the first arrival time distribution (FATD) [53–55], which is
obtained from Equation (3):

Pfa(t) = −
d
dt

∫ ∞

−∞
f (x, t) dx = − d

dt
S(t), (4)

which is a negative time derivative of the survival probability S(t) =
∫ ∞
−∞ f (x, t) dx. The

FATD for the Brownian search is described by the Lévy–Smirnov density:

Pfa(t) =
|X− x0|√

4πDt3
× e−

(X−x0)
2

4Dt (5)

with the long-time asymptotics, Pfa(t) ∼ |X− x0|t−3/2. Other important characteristics of
searching are the search reliability and the efficiency. The search reliability is considered as
the cumulative arrival probability [54]:

P =
∫ ∞

0
Pfa(t) dt = Pfa(s = 0), (6)

which, for the Brownian search, is P = 1 (the searcher will find the target with the
probability of one), while the search efficiency [54],

E =

〈
1
t

〉
=
∫ ∞

0
Pfa(s) ds, (7)

represents the averaged inverse search time. Here,Pfa(s) = L[Pfa(t)](s) =
∫ ∞

0 ℘fa(t)e−st dt
is the Laplace image of Pfa(t). For a one-dimensional Brownian search, it is given by [54]:

E =
2D

(X− x0)2 . (8)

In a similar way, a Brownian random search on a comblike structure has also been con-
sidered. In this case, the initial position of the searcher is located at the backbone at
(x, y) = (x0, 0), and the target is also located at the backbone at (x, y) = (X, 0), with a
δ-sink δ(x− X)δ(y) of the strength ℘fa(t) [58]. The FATD is given in terms of the Fox H-
function with the long-time asymptotics reducing to the power law, ℘fa(t) ∼ |X− x0|t−5/4,
while the search reliability equals one, and the efficiency becomes [58]:

E =

24
(
Dx

2
√
Dy

)2

(X− x0)4 . (9)

The inhomogeneous advection on the comb, where the motion along the backbone
is interrupted by Brownian motion in the fingers, can be described by the Fokker–Planck
operator

LFP = −v δ(y) ∂x|x|+Dy ∂2
y. (10)

It results in turbulent diffusion, which is characterized by the log-normal distribution and
exponential growth of the MSD in time [29]. This behavior is analogous to one-dimensional
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geometric Brownian motion [29], which is used in the Black–Scholes model for option
pricing [59,60]. The FATD is the Lévy–Smirnov distribution, and the process is suitable
for searching for long-distance targets. Turbulent diffusion occurs due to a multiplicative
noise, in contrast to the additive noise in Brownian diffusion with a drift. The impact of the
resetting mechanism on turbulent diffusion is one of the main issues in this paper.

This paper is organized as follows. In Section 2, the one-dimensional Brownian motion
in the presence of a drift and resetting to the initial position of the particle is considered. As
the main characteristics of the process, the PDF and the MSD are obtained. The analytical
treatments of the corresponding Brownian search problem with the drift in the cases of a
single target and two targets are presented. The main features of a subordination approach—
as the analytical tool used throughout the analysis—are described as well. The analytical
results obtained for the FATD, the search reliability, and the efficiency are verified by
numerical simulations. Brownian motion with drift in the presence of stochastic resetting
on a two-dimensional comb is investigated in Section 3. Both analytical and numerical
results are presented. The problem of a Brownian search with a drift on a two-dimensional
comb in the cases of a single target and two targets is analyzed in detail. Section 4 is
devoted to inhomogeneous advection with stochastic resetting on the comb. It is shown
that three different scenarios for the MSD, depending on the resetting parameter, can be
observed. These are: (i) exponential growth of the MSD in time, (ii) linear growth of the
MSD in time, and (iii) saturation of the MSD. The results for the FATD, the search reliability,
and the efficiency are presented as well. A generalization of the inhomogeneous advection
search is also considered. A summary of the analysis is provided in Section 5.

2. One-Dimensional Brownian Motion with Drift

In this section, we consider resetting and search problems in the framework of a
one-dimensional diffusion process with a drift. We show that this “simple” addition of
a drift term in the corresponding equations leads to new physical effects, which are also
based on well-known results of the one-dimensional diffusion–advection equation.

Therefore, to set the stage for the clear presentation of the analysis, we first offer a
short overview of the results related to the one-dimensional diffusion–advection equation
without stochastic resetting, which will be used later to find the corresponding results
for more general problems. The corresponding Fokker–Planck equation with a constant
velocity V reads [1]

∂tP0(x, t) =
[
D ∂2

x −V ∂x

]
P0(x, t). (11)

The initial condition P0(x, t = 0) = δ(x− x0) and vanishing boundary conditions at infinity,
P0(±∞, t) = 0 and ∂

∂x P0(±∞, t) = 0, are imposed. In Laplace space, it reads

sP0(x, s)− δ(x− x0) =
[
D ∂2

x −V ∂x

]
P0(x, s). (12)

The solution of Equation (11) is the Galilei-shifted Gaussian (see, for example, Ref. [1]),

P0(x, t) =
1√

4πDt
e−

(x−x0−Vt)2

4Dt , (13)

and in the following, we shall need its Laplace image, which reads

P0(x, s) =
1

2D
1√

s
D + V2

4D2

e
V

2D (x−x0)−
√

s
D+

V2
4D2 |x−x0|

. (14)
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From here, we find that the PDF is normalized, since

〈x0(t)〉0 =
∫ ∞

−∞
P0(x, t) dx =

1√
4πDt

∫ ∞

−∞
e−

(x−x0−Vt)2

4Dt dx =
2√

4πDt

∫ ∞

0
e−

y2

4Dt dy = 1, (15)

and, respectively,

〈x0(s)〉0 =
∫ ∞

−∞
P0(x, s) dx =

1
s

. (16)

The MSD is given by

〈x2(s)〉0 =
∫ ∞

−∞
x2 P0(x, s) dx =

x2
0
s
+

2(D + x0V)

s2 +
2V2

s3 , (17)

〈x2(t)〉0 =
∫ ∞

−∞
x2 P0(x, t) dx = 2Dt + (x0 + Vt)2, (18)

which means that the short-time diffusive behavior (〈x2(t)〉0 ∼ t) turns into ballistic motion
in the long-time limit 〈x2(t)〉0 ∼ t2.

2.1. One-Dimensional Diffusion–Advection Equation with Stochastic Resetting

Now, we consider the diffusion–advection equation in the presence of stochastic
resetting. The Fokker–Planck equation reads

∂tPr(x, t) =
[
Dx ∂2

x −V ∂x

]
Pr(x, t)− rPr(x, t) + rδ(x− x0) (19)

with the same initial condition Pr(x, t = 0) = δ(x− x0). Here, r is the rate of resetting to the
initial position x0. The last two terms of the equation represent the loss of the probability
from position x due to the reset to the initial position and the gain of the probability at x0
due to resetting from all other positions, respectively. This equation means that between
any two consecutive resetting events, the particle undergoes diffusion with a constant drift.

From the Laplace transform of Equation (19), one finds

sPr(x, s)− δ(x− x0) =
s

s + r

[
D ∂2

x −V ∂x

]
Pr(x, s). (20)

Then, the inverse Laplace transform yields Equation (19) in the equivalent form

∂tPr(x, t) =
d
dt

∫ t

0
η(t− t′)

[
D ∂2

x −V ∂x

]
Pr(x, t′) dt′, (21)

where η(t) = e−rt and η(s) = 1
s+r .

This equation can be solved by using a subordination approach [1,59,61–63]. Equa-
tion (21) in Laplace space reads

sPr(x, s)− δ(x− x0) = sη(s)
[
D ∂2

x −V ∂x

]
Pr(x, s). (22)

Let us present the solution of Equation (21) in the subordination form with the integral

Pr(x, t) =
∫ ∞

0
P0(x, u)h(u, t) du, (23)

where P0(x, t) is the solution in Equation (13). Here, h(u, t) is the so-called subordination
function. The latter is the PDF, which subordinates the process governed by Equation (21)
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to the process governed by Equation (13). By the Laplace transform of Equation (23), and
by using the subordination function

h(u, s) =
1

sη(s)
e−u/η(s), (24)

we find

Pr(x, s) =
∫ ∞

0
P0(x, u)h(u, s) du =

1
sη(s)

∫ ∞

0
P0(x, u)e−u/η(s) du =

1
sη(s)

P0(x, 1/η(s)). (25)

Performing the variable change s→ 1/η(s) in Equation (12), we have

1
η(s)

P0(x, 1/η(s))− δ(x− x0) =
[
D ∂2

x −V ∂x

]
P0(x, 1/η(s)). (26)

Therefore, from Equations (25) and (26), we obtain Equation (22). Eventually, from Equa-
tions (14) and (25), we obtain the PDF in the presence of resetting,

Pr(x, s) =
s + r

s
1

2D
1√

s+r
D + V2

4D2

e
V

2D (x−x0)−
√

s+r
D + V2

4D2 |x−x0|
. (27)

From here, one finds

Pr(x, t) = e−rtP0(x, t) + r
∫ t

0
e−rt′P0(x, t′) dt′, (28)

where P0(x, t) is defined by Equation (13), which is the solution of the corresponding
Fokker–Planck equation without resetting. We also note that the case without the drift
(V = 0) yields the known result for free diffusion with stochastic resetting [31].

From Equations (27) and (16), we find that the PDF Pr(x, t) is normalized (〈x0(t)〉r = 1),
since

〈x0(s)〉r =
∫ ∞

−∞
Pr(x, s) dx =

1
sη(s)

∫ ∞

−∞
P0(x, 1/η(s)) dx =

1
sη(s)

〈x0(1/η(s))〉0 =
η(s)
sη(s)

=
1
s

. (29)

From Equation (29) for the MSD, we find

〈x2(t)〉r =
∫ ∞

−∞
x2 Pr(x, s) dx =

1
sη(s)

∫ ∞

−∞
x2 P0(x, 1/η(s)) dx =

1
sη(s)

〈x2(1/η(s))〉0

=
x2

0 η(s) + 2(D + x0V) η2(s) + 2V2 η3(s)
sη(s)

=
x2

0
s
+

2(D + x0V)η(s)
s

+
2V2 η2(s)

s
, (30)

which results in

〈x2(t)〉r = L−1

[
x2

0
s
+

2(D + x0V)

s(s + r)
+

2V2

s(s + r)2

]
= x2

0 +
2(D + x0V)(1− e−rt)

r
+

2V2(1− e−rt − rte−rt)

r2 . (31)

Then, the long-time limit yields saturation of the MSD,

〈x2(t)〉r ∼ x2
0 +

2(D + x0V)

r
+

2V2

r2 ,

while the short-time limit corresponds to the result without resetting, Equation (18). In the
absence of the drift, the MSD reads 〈x2(t)〉r = x2

0 +
2D
r (1− e−rt) [31].
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Langevin Equation

We compare the analytical results against the ones obtained from direct numerical
simulation of the dynamics by considering a Langevin equation in the presence of stochastic
resetting to the initial position [44],

x(t + ∆t) =
{

x(0), with probability r∆t,
x(t) + V∆t +

√
2D∆t ζ(t), with probability (1− r∆t),

(32)

where ζ(t) is a zero-mean Gaussian noise and V, D, and r are parameters that are used
equivalently in the analytical case. Regarding the temporal evolution of the variance,
ensembles of 104 particle positions were simulated considering a time step of ∆t = 0.01
across a time span of 103 in order to observe convergence of the processes.

A graphical representation of the PDF is given in Figure 1 (left panel). The numerical
results for the MSD, represented by dots, triangles, and squares in Figure 1 (right panel),
show excellent agreement with the analytical results, represented by lines. A typical
trajectory of a particle is shown in Figure 2.

-6 -4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

P
D

F

100 101 102 103

t
10−1

100

101

102

103

104

105

106

M
SD

Figure 1. Left panel: Probability density function (PDF) (27) at t = 1; right panel: Mean squared
displacement (MSD) (30) for D = 1, x0 = 0, V = −1 and r = 0 (blue solid line), r = 1 (red dashed
line), and r = 2 (black dot-dashed line).

0 2.5 5 7.5 10
t

−5

−4

−3

−2

−1

0

1

X

Figure 2. A typical trajectory of particles in the presence of stochastic resetting to the initial position
x0 = 0, for r = 1, D = 1, and V = −1. The resetting events are represented by black dots. Dashed
regions are introduced for these resetting events to be more visible.

2.2. One-Dimensional Brownian Search with Drift

The random Brownian search with drift in one dimension is described by the Fokker–
Planck equation [54]

∂t f (x, t) =
[
D ∂2

x −V ∂x

]
f (x, t)−Pfa(t)δ(x− X), (33)
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where f (x, t) is the non-normalized density function, and the last term in the equation is
a δ-sink of strength Pfa(t), which is considered as the FATD. From the condition f (x =
X, s) = 0, one finds the FATD [39,54]

Pfa(s) = e
V

2D (X−x0)−
√

s
D+

V2
4D2 |X−x0| → Pfa(t) =

|X− x0|√
4πDt3

e−
(X−x0−Vt)2

4Dt , (34)

which is the exponentially truncated Lévy–Smirnov probability density. The search reliabil-
ity is [54,55]

P = Pfa(s = 0) = e
V(X−x0)

2D − |V(X−x0)|
2D =

{
1, for V(X− x0) > 0,

e−
V(x0−X)
D , for V(X− x0) < 0,

(35)

while the search efficiency has the form [54,55]

E =
2D + |V(X− x0)|

(X− x0)2 ×
{

1, for V(X− x0) > 0,

e−
V(x0−X)
D , for V(X− x0) < 0.

(36)

For V = 0, one recovers the known result for the random Brownian search (8). The
FATD and the search efficiency are depicted in Figure 3. In Figure 4, we present the
survival probability obtained by numerical simulations (dots, triangles, and squares) in
the framework of the Langevin equation approach and the numerical inverse Laplace
transform in MATHEMATICA [64].
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Figure 3. Left panel: First arrival time distribution (FATD) (34) for D = 1, V = 0, and X − x0 = 2
(blue solid line), V = 1 and X − x0 = −2 (red dashed line), and V = 1 and X − x0 = 2 (black
dot-dashed line). Right panel: Efficiency (36) for D = 1 and V = 0 (blue solid line), v = 10 and
X > x0 (red dashed line), and v = 10 and X < x0 (black dot-dashed line).
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Figure 4. The survival probability for the one-dimensional search with drift for D = 1, V = 0, and
X − x0 = 2 (blue solid line), V = 1 and X − x0 = −2 (red dashed line), and V = 1 and X − x0 = 2
(black dot-dashed line). The numerical results are represented by dots, triangles, and squares.
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Next, we extend our analysis to the case of the Brownian search with drift in the
presence of two sinks located at x = X1 and x = X2, where X1 < X2. The problem is
governed by the Fokker–Planck equation

∂t f (x, t) =
[
D ∂2

x −V ∂x

]
f (x, t)−Pfa,1(t)δ(x− X1)−Pfa,2(t)δ(x− X2), (37)

where f (x = X1, t) = f (x = X2, t) = 0 and Pfa,1(t) + Pfa,2(t) = Pfa(t) is the FATD.
Without loss of generality, we consider V > 0. By the Fourier–Laplace transformation, we
obtain

f (k, s) =
eıkx0 −Pfa,1(s) eıkX1 −Pfa,2(s) eıkX2

s +D k2 + ı V k
. (38)

By the inverse Fourier transform, we find

f (x, s) =
1

2D
1√

s
D + V2

4D2

[
e

V
2D (x−x0)e−

√
s
D+

V2

4D2 |x−x0| −Pfa,1(s) e
V

2D (x−X1)e−
√

s
D+

V2

4D2 |x−X1|

−Pfa,2(s) e
V

2D (x−X2)e−
√

s
D+

V2

4D2 |x−X2|
]

. (39)

Three cases of the initial position of the searcher are considered. These are: (i) x0 <
X1 < X2, (ii) X1 < x0 < X2, and (iii) X1 < X2 < x0. Following the same approach as is
used in the case of one sink, we find the FATD in the Laplace space as follows:

(i) x0 < X1 < X2:

Pfa(s) = e
−
[√

s
D+

V2
4D2−

V
2D

]
(X1−x0)

, (40)

(ii) X1 < x0 < X2

Pfa(s) =

e
−
(√

s
D+

V2
4D2 +

V
2D

)
(x0−X1)

1− e
−
(√

s
D+

V2
4D2−

V
2D

)
(X2−X1)


1− e

−2
√

s
D+

V2
4D2 (X2−X1)

+

e
−
(√

s
D+

V2
4D2−

V
2D

)
(X2−x0)

1− e
−
(√

s
D+

V2
4D2 +

V
2D

)
(X2−X1)


1− e

−2
√

s
D+

V2
4D2 (X2−X1)

, (41)

(iii) X1 < X2 < x0

Pfa(s) = e
−
[√

s
D+

V2
4D2 +

V
2D

]
(x0−X2)

. (42)

Then, the search reliability reads

P = Pfa(s = 0) =


1 for x0 < X1 < X2,
1 for X1 < x0 < X2,
e−

V
D (x0−X2) for X1 < X2 < x0.

(43)

The search efficiency for the case X1 < x0 < X2 can be analyzed numerically, while
the other two cases can be calculated exactly and correspond to the single-target problem.
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3. Brownian Motion with Drift on a Comb: Stochastic Resetting and Random Search
Problem
3.1. Diffusion–Advection Equation on a Comb with Stochastic Resetting

The problem of the diffusion–advection equation on a comblike structure was intro-
duced by Arkhincheev and Baskin in Ref. [2], and was also studied in Refs. [65,66] in terms
of random walks with anisotropy that appear due to the presence of an external electrical
field. We extend the model with stochastic resetting, which results in the Fokker–Planck
equation

∂tPr(x, y, t) = δ(y)
[
Dx ∂2

x − v ∂x

]
Pr(x, y, t) +Dy ∂2

yPr(x, y, t)− rPr(x, y, t) + rδ(x− x0)δ(y) (44)

with the initial condition Pr(x, y, t = 0) = δ(x− x0)δ(y), where v is a constant velocity. For
the Laplace image, one looks for the solution in the form

Pr(x, y, s) = g(x, s) e
−
√

s+r
Dy |y|, (45)

which yields the following marginal PDF:

p1,r(x, s) =
∫ ∞

−∞
Pr(x, y, s) dy = 2

√
Dy

s + r
g(x, s). (46)

Performing the Laplace transform of Equation (44) and taking into account Equation (46),
one obtains

sp1,r(x, s)− δ(x− x0) =
s(s + r)−1/2

2
√
Dy

[
Dx ∂2

x − v ∂x

]
p1,r(x, s). (47)

By the inverse Laplace transform, we find the equation

∂t p1,r(x, t) =
1

2
√
Dy

d
dt

∫ t

0
ηr(t− t′)

[
Dx ∂2

x − v ∂x

]
p1,r(x, t′) dt′, (48)

where ηr(t) = L−1
[
(s + r)−1/2

]
= e−rt t−1/2

Γ(1/2) (for more details on tempered operators, see

Ref. [67]). Disregarding resetting, and taking into account that ηr=0(t) = t−1/2/Γ(1/2),
one obtains

∂t p1,0(x, t) =
1

2
√
Dy

∂1/2
t

[
Dx ∂2

x − v ∂x

]
p1,0(x, t), (49)

where ∂α
t f (t) = 1

Γ(1−α)
d
dt

∫ t
0 (t− t′)−α f (t′) dt′ is the Riemann–Liouville fractional derivative

of order 0 < α < 1 [68].
In the framework of the subordination approach, the Laplace image of the solution to

Equation (49) is presented as follows:

p1,r(x, s) =
1

sηr(s)
P0(x, 1/ηr(s)) =

(s + r)1/2

s
P0(x, (s + r)1/2), (50)

where P0(x, u) is the PDF (13). Then, the PDF (50) reads

p1,r(x, s) =
e

v
2Dx (x−x0)

2 Dx
2
√
Dy

1
sηr(s)

e
−
√

2
√
Dy
Dx

1
ηr(s)

+ v2

4D2
x
|x−x0|(

2
√
Dy
Dx

1
ηr(s)

+ v2

4D2
x

)1/2 , (51)
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which is

p1,r(x, s) =
e

v
2Dx (x−x0)

2 Dx
2
√
Dy

(s + r)1/2

s
e
−
√

2
√
Dy
Dx (s+r)1/2+ v2

4D2
x
|x−x0|(

2
√
Dy
Dx

(s + r)1/2 + v2

4D2
x

)1/2 . (52)

The case without resetting (r = 0) yields the PDF

p1,0(x, s) =
e

v
2Dx (x−x0)

2 Dx
2
√
Dy

s−1/2 e
−
√

2
√
Dy
Dx s1/2+ v2

4D2
x
|x−x0|(

2
√
Dy
Dx

s1/2 + v2

4D2
x

)1/2 . (53)

Eventually, the solution to Equation (48) reads

p1,r(x, t) = e−rt p1,0(x, t) + r
∫ t

0
e−rt′ p1,0(x, t′) dt′. (54)

From Equations (50) and (16), one can easily check that the PDF is normalized, since

〈x0(s)〉r =
(s + r)1/2

s

∫ ∞

−∞
P0(x, (s + r)1/2) dx =

(s + r)1/2

s
〈x0((s + r)1/2)〉0 =

1
s

, (55)

that is, 〈x0(t)〉r = 1. For the MSD in the case of resetting, we find

〈x2(t)〉r = x2
0 +

(
Dx√
Dy

+
x0v√
Dy

)
erf(
√

rt)√
r

+
v2

2Dy

1− e−rt

r
, (56)

which, in the absence of resetting, reduces to

〈x2(t)〉0 = x2
0 + 2(D + x0V)

t1/2

Γ(3/2)
+ 2V2t = x2

0 +

(
Dx√
Dy

+
x0v√
Dy

)
t1/2

Γ(3/2)
+

v2

2Dy
t. (57)

Therefore, in the long-time limit, saturation of the MSD is due to the resetting,

〈x2(t)〉 ∼ x2
0 +

Dx√
Dy

1√
r
+

v2

2Dy

1
r

,

while in the short-time limit (when erf(x) ∼ 2z/
√

π and e−z ∼ 1− z for z� 1), we recover
the result obtained for the resetting-free case in Equation (57).

Langevin Equation

To analyze the diffusion dynamics numerically, we use a system of Langevin equations
in the presence of drift and stochastic resetting to the initial position [33,44]:

x(t + ∆t) =
{

x(0), with probability r∆t,
x(t) + A(y)

[
v∆t +

√
2D1∆t ζ1(t)

]
, with probability (1− r∆t),

(58)

y(t + ∆t) =
{

y(0), with probability r∆t,
y(t) +

√
2D2∆t ζ2(t), with probability (1− r∆t),

(59)

where A(y) is a function that mimics the Dirac δ-function. To simulate A(y), diffusion
across the x directions is permitted in a narrow strip with a width of 2ε along the y axis
such that the value of ε is of the same order of magnitude as the diffusion coefficients [69].
A graphical representation of the PDF is depicted in Figure 5 (left panel), while the MSD
is presented in Figure 5 (right panel). A good agreement between the analytical and
numerical results for the MSDs is obtained. The individual trajectory along the backbone
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in the presence of stochastic resetting is shown in Figure 6. The case without resetting is
shown in Figures 7 and 8.
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Figure 5. Left panel: PDF (51) at t = 1; right panel: MSD (56) for Dx = 1, Dy = 1, x0 = 0, v = −2,
and r = 0 (blue solid line), r = 0.5 (red dashed line), and r = 2 (black dot-dashed line).
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Figure 6. A typical trajectory of particles in the presence of stochastic resetting to the initial position
(x0, y0) = (0, 0) for r = 0.5, Dx = 1, Dy = 1, and v = −2. The resetting events are represented by
black dots. Dashed regions are introduced for these resetting events to be more visible.
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Figure 7. Left panel: PDF (53) at t = 1; right panel: MSD (57) for Dx = 1, Dy = 1, x0 = 0, and v = 0
(blue solid line), v = −2 (red dashed line), and v = −5 (black dot-dashed line).
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Figure 8. A typical trajectory of particles in the absence of stochastic resetting for Dx = 1, Dy = 1,
and v = −2.

3.2. Brownian Search with Drift on a Comb

In this section, we consider a Brownian random search process on a comblike structure
in the presence of an external drift along the backbone (constant external force). The
Fokker–Planck equation then reads

∂t f (x, y, t) = δ(y)
[
Dx ∂2

x − v ∂x

]
f (x, y, t) +Dy ∂2

y f (x, y, t)− ℘fa(t)δ(x− X)δ(y) (60)

with the initial condition f (x, y, t = 0) = δ(x − x0)δ(y). The δ-sink means that the
searcher is annihilated by reaching the point (x, y) = (X, 0). According to the defini-
tion in Equation (4), the FATD results from double integration

℘fa(t) = −
d
dt

∫ ∞

−∞

∫ ∞

−∞
f (x, y, t) dx dy = − d

dt
S(t), (61)

where S(t) =
∫ ∞
−∞

∫ ∞
−∞ f (x, y, t) dx dy is the survival probability.

By the Laplace transform of Equation (61), we find

s f (x, y, t)− δ(x− x0)δ(y) = δ(y)
[
Dx ∂2

x − v ∂x

]
f (x, y, s) +Dy ∂2

y f (x, y, s)− ℘fa(s)δ(x− X)δ(y). (62)

Again, using the substitution

f (x, y, s) = g(x, s) e
−
√

s
Dy |y| → f1(x, s) =

∫ ∞

−∞
f (x, y, s) dy = 2

√
Dy

s
g(x, s),

we find

s f1(x, s)− δ(x− x0) =
1

2
√
Dy

s× s−1/2
[
Dx ∂2

x − v ∂x

]
f1(x, s)− ℘fa(s)δ(x− X). (63)

By the Fourier transform with respect to x, we find

s f1(k, s)− eıkx0 =
1

2
√
Dy

s× s−1/2
[
−Dx k2 − ı v k

]
f1(k, s)− ℘fa(s)eıkX , (64)

and thus,

f1(k, s) =
s−1/2

s1/2 + Dx
2
√
Dy

k2 + ı v
2
√

Dy
k

[
eıkx0 − ℘fa(s) eıkX

]
, (65)
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which is the solution of the equation

∂

∂t
f1(x, t) =

1
2
√
Dy

∂1/2

∂t1/2

[
Dx ∂2

x − v ∂x

]
f1(x, t)− ℘fa(t)δ(x− X). (66)

The inverse Fourier transform of Equation (65) with respect to k gives

f1(x, s) =
1

2
√
D

s−1/2(
s1/2 + V2

4D

)1/2

e
V

2D (x−x0)−
√

s1/2
D + V2

4D2 |x−x0| − ℘fa(s) e
V

2D (x−X)−
√

s1/2
D + V2

4D2 |x−X|
, (67)

where D = Dx
2
√
Dy

and V = v
2
√
Dy

. From the condition

f (x = X, y = 0, t) = g(x = X, t) =
s1/2

2
√
Dy

f1(x = X, t) = 0,

we conclude that it corresponds to f1(x = X, t) = 0, i.e., f1(x = X, s) = 0. Thus, for the
FATD in Laplace space, we have

℘fa(s) = e
v

2Dx (X−x0)−
√

2
√
Dy
Dx s1/2+ v2

4D2
x
|X−x0|

. (68)

We also note that the FATD (68) can be directly obtained from the FATD for the one-
dimensional search with drift (see Equation (34)). Then, we have ℘fa(s) = Pfa(s1/2), where
we use D = Dx

2
√
Dy

and V = v
2
√
Dy

. The search reliability becomes

P = ℘fa(s = 0) = e
v(X−x0)

2Dx − |v(X−x0)|
2Dx =

{
1, for v(X− x0) > 0,

e−
v(x0−X)
Dx , for v(X− x0) < 0,

(69)

while the efficiency is given by

E =

4
(
Dx

2
√
Dy

)
(X− x0)4 e

v(X−x0)
2Dx

− |v(X−x0)|
2Dx

[
6
Dx

2
√
Dy

(
1 +
|v(X− x0)|

2Dx

)
+

v2(X− x0)
2

2
√
Dy

]

=

4
(
Dx

2
√
Dy

)
(X− x0)4 ×


6 Dx

2
√
Dy

(
1 + v(X−x0)

2Dx

)
+ v2(X−x0)2

2
√
Dy

, for v(X− x0) > 0,

e
v(X−x0)
Dx

[
6 Dx

2
√
Dy

(
1− v(X−x0)

2Dx

)
+ v2(X−x0)2

2
√
Dy

]
, for v(X− x0) < 0.

(70)

For v = 0, we recover the known result (9). The FATD and the efficiency for the
random search with drift on the comb are depicted in Figure 9. In Figure 10, we give the
survival probability obtained by numerical simulations of the Langevin equation and the
numerical inverse Laplace transform obtained by MATHEMATICA [64].

One can also consider the Brownian search with drift on a comb in the presence of two
sinks located on the backbone at x = X1 and x = X2, where X1 < X2. The corresponding
Fokker–Planck equation is

∂t f (x, y, t) = δ(y)
[
Dx ∂2

x − v ∂x

]
f (x, y, t) +Dy ∂2

y f (x, y, t)

− [℘fa,1(t)δ(x− X1) + ℘fa,2(t)δ(x− X2)]δ(y) (71)

with the initial condition f (x, y, t = 0) = δ(x− x0)δ(y). We consider v > 0, while the case
for v < 0 can be treated in a similar way. Following the same approach suggested for the



Mathematics 2021, 9, 221 15 of 24

one-sink problem, we consider the marginal PDF f1(x, t) =
∫ ∞
−∞ f (x, y, t). Then, its Laplace

image reads

f1(k, s) =
s−1/2

s1/2 + Dx
2
√
Dy

k2 + ı v
2
√

Dy
k

[
eıkx0 − ℘fa,1(s)eıkX1 − ℘fa,2(s)eıkX2

]
. (72)

Due to the presence of two sinks, the absorbing condition is f (x = X1, y = 0, t) =
f (x = X2, y = 0, t) = 0, and correspondingly, f1(x = X1, t) = f1(x = X2, t) = 0. We
will also consider three cases of the initial positions of the searcher: (i) x0 < X1 < X2, (ii)
X1 < x0 < X2, and (iii) X1 < X2 < x0. For the FATD ℘fa(t) = ℘fa,1(t) + ℘fa,2(t), we obtain:

(i) x0 < X1 < X2:

℘fa(s) = e
−
(√

2
√
Dx
Dx s1/2+ v2

4D2
x
− v

2Dx

)
(X1−x0)

, (73)

(ii) X1 < x0 < X2

℘fa(s) =

e
−
(√

2
√
Dx
Dx

s1/2+ v2

4D2
x
+ v

2Dx

)
(x0−X1)

1− e
−
(√

2
√
Dx
Dx

s1/2+ v2

4D2
x
− v

2Dx

)
(X2−X1)


1− e

−2
√

2
√
Dx
Dx

s1/2+ v2

4D2
x
(X2−X1)

+

e
−
(√

2
√
Dx
Dx

s1/2+ v2

4D2
x
− v

2Dx

)
(X2−x0)

1− e
−
(√

2
√
Dx
Dx

s1/2+ v2

4D2
x
+ v

2Dx

)
(X2−X1)


1− e

−2
√

2
√
Dx
Dx

s1/2+ v2

4D2
x
(X2−X1)

, (74)

(iii) X1 < X2 < x0

℘fa(s) = e
−
(√

2
√
Dx
Dx s1/2+ v2

4D2
x
+ v

2Dx

)
(x0−X2)

. (75)

Therefore, the search reliability is

P =


1 for x0 < X1 < X2,
1 for X1 < x0 < X2,
e−

v
Dx (x0−X2) for X1 < X2 < x0.

(76)

The search efficiency for the case X1 < x0 < X2 can be analyzed numerically, while the
other two cases can be calculated exactly, and the results are the same as for the single-target
problem on the comb.
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Figure 9. Left panel: FATD (68) for Dx = 1, Dy = 1, v = 0, and X − x0 = 2 (blue solid line), v = 1
and X− x0 = −2 (red dashed line), and v = 1 and X− x0 = 2 (black dot-dashed line). Right panel:
Efficiency (70) for Dx = 1, Dy = 1, and v = 0 (blue solid line), v = 10 and X > x0 (red dashed line),
and v = 10 and X < x0 (black dot-dashed line).
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Figure 10. The survival probability for the random search with the drift on the comb for Dx = 1,
Dy = 1, v = 0, and X− x0 = 2 (blue solid line), v = 1 and X− x0 = −2 (red dashed line), and v = 1
and X− x0 = 2 (black dot-dashed line). The numerical results are represented by dots, triangles, and
squares.

4. Inhomogeneous Advection on a Comb
4.1. Inhomogeneous Advection with Stochastic Resetting

Inhomogeneous advection on a comb in the presence of stochastic resetting is de-
scribed by the following equation:

∂tP(x, y, t) = −v δ(y) ∂x{x P(x, y, t)}+D ∂2
yP(x, y, t)− rP(x, y, t) + rδ(x− x0)δ(y) (77)

with the initial condition P(x, y, t = 0) = δ(x− x0)δ(y). The case without resetting was
considered in Ref. [29]. By the Laplace transform, we have

sP(x, y, s)− δ(x− x0)δ(y) = −v
s

s + r
δ(y) ∂x{x P(x, y, s)}+D s

s + r
∂2

yP(x, y, s). (78)

The solution can be represented in the form P(x, y, s) = g(x, s) e−
√

s+r
D |y|. Then, the

marginal PDF along the backbone is p1(x, s) =
∫ ∞
−∞ P(x, y, s) dy = 2

√
D

s+r g(x, s), and the
equation for the marginal PDF reads

sp1(x, s)− δ(x− x0) = −
v

2
√
D

s√
s + r

∂x{x p1(x, s)}. (79)

The inverse Laplace transform yields

∂t p1(x, t) = − v
2
√
D

d
dt

∫ t

0
η(t− t′)∂x{x p1(x, t′)}dt′, (80)

where η(t) = L−1
[
(s + r)−1/2

]
= e−rt t−1/2

Γ(1/2) . In order to find the solution of this equation,
we use the subordination approach. Let us consider the standard inhomogeneous advection
equation

∂tP0(x, t) = −V ∂x{x P0(x, t)}, (81)

which, in Laplace space, reads

sP0(x, s)− δ(x− x0) = −V ∂x{x P0(x, s)}. (82)

The solution of the equation for x > x0 in Laplace space is [29]

P0(x, s) =
θ(x− x0)

Vx
e−

s
V log x

x0 . (83)
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From the subordination approach, we obtain

p1(x, s) =
1

sη(s)
P0(x, 1/η(s)) =

(s + r)1/2

s
P0(x, (s + r)1/2)

=
2
√
D

v
θ(x− x0)

x
(s + r)1/2

s
e−

2
√
D

v (s+r)1/2 log x
x0

=
s + r

s
2
√
D

v
θ(x− x0)

x
(s + r)−1/2 e−

2
√
D

v (s+r)1/2 log x
x0 , (84)

where we used V → v
2
√
D

. The inverse Laplace transform yields the solution

p1(x, t) = e−rtP1(x, t) + r
∫ t

0
e−rt′P1(x, t′) dt′, (85)

where

P1(x, t) =
2
√
D

v
θ(x− x0)

x
L−1

[
s−1/2 e−

2
√
D

v s1/2 log x
x0

]
=

2 θ(x− x0)

x

√
4 π
(

v
2
√
D

)2
t
× exp

− log2 x
x0

4
(

v
2
√
D

)2
t

 (86)

is the solution of Equation (77) without resetting [29].
From Equation (84), the Laplace image of the MSD reads

〈x2(s)〉 = x2
0

s + r
s

(s + r)−1/2

(s + r)1/2 − v√
D

, (87)

and the inverse Laplace transform yields

〈x2(t)〉 = x2
0

[
e−rtE1/2

(
v√
D

t1/2
)
+ r

∫ t

0
e−rt′E1/2

(
v√
D

t′1/2
)

dt′
]

. (88)

Here, Eα(z) = ∑∞
n=0

zn

Γ(αn+1) is the one-parameter Mittag–Leffler function, and its Laplace

image is L[Eα(atα)] = sα−1

sα−a [68]. For the large argument, the Mittag–Leffler function reads

E1/2

(
v√
D

t1/2
)
∼ e

v2
D t (see Ref. [68]). Therefore, this yields the long-time limit of the MSD,

which has three different regimes: (i) exponential growth in time for r < v2/D, (ii) linear
growth with time for r = v2/D, and (iii) saturation for r > v2/D.

4.2. Langevin Equation

In the case of inhomogeneous advection on a comb, completely different results are
obtained due to the multiplicative noise. The microscopic approach to the process without
resetting is described by the Langevin equation:

ẋ(t) = vA(y)x(t), (89)

ẏ(t) =
√

2D ζ(t), (90)

where ζ(t) is a Gaussian noise. Therefore, y(t) is a random Brownian motion, so A(y)
is a function of the random variable. Without any restriction of generality, we may use
A(y) = δ(y), which corresponds to the inhomogeneous advection motion on the comb.
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To validate the analytical results, an ensemble of 106 particles was simulated based on
the system of Langevin Equations (89) and (90), which, in the presence of resetting, are

x(t + ∆t) =
{

x(0), with probability r∆t,
x(t) + v A(y)x(t)∆t, with probability (1− r∆t),

(91)

y(t + ∆t) =
{

y(0), with probability r∆t,
y(t) +

√
2D∆t ζ(t), with probability (1− r∆t),

(92)

where the time step is ∆t = 0.01. It should be admitted that for the multiplicative
noise, one cannot use the numerical approximation of the Dirac δ-function considered
in Section 3. For numerical purposes, one can use another approximation of the Dirac
δ-function (see Ref. [4]). Consequently, we use a zero-mean Gaussian function A(y) =

1√
2πσ

exp(−y2/[2σ2]) in the limit σ→ 0.
A graphical representation of the PDF is shown in Figure 11 (left panel), while the

MSD obtained analytically and by numerical simulations is shown in Figure 11 (right
panel). A typical trajectory along the backbone in the presence of stochastic resetting is
shown in Figure 12.
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Figure 11. Left panel: PDF (85) at t = 2; right panel: MSD (88) for D = 1, x0 = 1, v = 1, and r = 0.7
(blue solid line), r = 1 (red dashed line), and r = 2 (black dot-dashed line).
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Figure 12. A typical trajectory of particles in the presence of stochastic resetting to the initial position
(x0, y0) = (1, 0) for r = 1, D = 1, and v = 1. The resetting events are represented by black dots.
Dashed regions are introduced for these resetting events to be more visible.

4.3. Inhomogeneous Advection Search on a Comb

For the completeness of the analysis, we consider an inhomogeneous advection search
on the comb, or the so-called turbulent diffusion search. The corresponding Fokker–Planck
equation reads [29]

∂tF(x, y, t) = −v δ(y) ∂x{x F(x, y, t)}+D ∂2
yF(x, y, t)− ℘fa(t) δ(x− X) δ(y). (93)
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Following the standard procedure described in Section 3.2, we find the FATD in
Laplace space as follows:

℘fa(s) = e−
2
√
D

v
√

s log X
x0 . (94)

The inverse Laplace transform of Equation (94) for X > x0 gives the Lévy–Smirnov
distribution [29]:

℘fa(t) =
log X

x0√
4 π
(

v
2
√
D

)2
t3

× exp

− log2 X
x0

4
(

v
2
√
D

)2
t

. (95)

The search reliability equals one (P = 1), while the efficiency is

E =
∫ ∞

0
e−

2
√
D

v
√

s log X
x0 ds =

2
(

v
2
√
D

)2

log2 X
x0

. (96)

Therefore, the turbulent diffusion search is more efficient than the Brownian search
for long-distance targets, but the searcher should have a prior knowledge of the direction
of the target, which is not the case for the Brownian search. The FATD and the efficiency
are shown in Figure 13. The survival probability is shown in Figure 14.

0 5 10 15 20 25

0.00

0.02

0.04

0.06

0.08

t

F
A

T
D

1 2 3 4 5

0

20

40

60

80

100

120

140

X�x0

E
ff

ic
ie

n
cy

Figure 13. Left panel: FATD (95) for D = 1, v = 1, and X/x0 = 2.5 (blue solid line), X/x0 = 5 (red
dashed line), and X/x0 = 7.5 (black dot-dashed line). Right panel: Efficiency (96) for D = 1, V = 1
(blue solid line), v = 5 (red dashed line), and v = 10 (black dot-dashed line).
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Figure 14. The survival probability for the inhomogeneous advection search on a comb for D = 1,
v = 1, and X/x0 = 2 (blue solid line), X/x0 = 5 (red dashed line), and X/x0 = 10 (black dot-dashed
line).The numerical results are represented by dots, triangles, and squares.
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Remark 1. As observed above in Equations (95) and (96), the corresponding inhomogeneous
advection search problem cannot be considered for the initial position of the searcher at the origin
(x0 = 0). To consider a random search with the initial condition at x0 = 0, we add some constant
advection v0 = v ε, where ε > 0. In this case, x0 = 0 is no longer a singular point for the space
derivative. The search equation reads

∂tF(x, y, t) = −v δ(y) ∂x{(x + ε) F(x, y, t)}+D ∂2
yF(x, y, t)− ℘fa(t) δ(x− X) δ(y). (97)

Following the same procedure for the FATD described above, we obtain

℘fa(s) = e−
2
√
D

v
√

s log X+ε
x0+ε . (98)

For x0 = 0, it reads ℘fa(s) = e−
2
√
D

v
√

s log X+ε
ε .

The reliability becomes P = 1, and the efficiency becomes

E =
2
(

v
2
√
D

)2

log2 X+ε
x0+ε

, (99)

which is also valid for x0 = 0. However, the searcher moves only in the advection direction.

Remark 2. For completeness of the analysis, we also consider a search model with inhomogeneous
advection of the form ∂x|x|λ, 0 < λ < 1 [28]. Note that for λ = 1, it corresponds to the
inhomogeneous advection search problem considered above. The search Equation (93) now reads

∂tF(x, y, t) =− v δ(y)
{

sgn(x) λ |x|λ−1 + |x|λ ∂x

}
F(x, y, t) +D ∂2

yF(x, y, t)− ℘fa(t) δ(x− X) δ(y), (100)

where

sgn(x) = ∂x|x| = 2θ(x)− 1 =


1, for x > 0,
0, for x = 0,
−1, for x < 0.

Following the same procedure for the FATD at X > x0 > 0, we obtain

℘fa(s) = e−
2
√
D

v
√

s
X1−λ−x1−λ

0
1−λ . (101)

The search reliability is P = ℘fa(s = 0) = 1. The inverse Laplace transform of Equation (101)
yields

℘fa(t) =
X1−λ − x1−λ

0√
4 π (1− λ)2

(
v

2
√
D

)2
t3

× exp

−
(

X1−λ − x1−λ
0

)2

4(1− λ)2
(

v
2
√
D

)2
t

. (102)

Therefore, the efficiency has the form

E =
2 (1− λ)2

(
v

2
√
D

)2

(
X1−λ − x1−λ

0

)2 . (103)

Remark 3. We note that in the limit λ→ 1, the FATD (101) and the efficiency (103) become

lim
λ→1

℘fa(s) = e−
2
√
D

v
√

s limλ→1
X1−λ−x1−λ

0
1−λ = e−

2
√
D

v
√

s log X
x0 , (104)
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lim
λ→1
E = lim

λ→1

2 (1− λ)2
(

v
2
√
D

)2

(
X1−λ − x1−λ

0

)2 = lim
λ→1

2 (1− λ)
(

v
2
√
D

)2(
X1−λ − x1−λ

0

)
(log X− log x0)

=
2
(

v
2
√
D

)2

log2 X
x0

, (105)

where we use L’Hôpital’s rule, and thus, we recover the corresponding results ((94) and (96)) for the
inhomogeneous advection search.

Remark 4. For λ = 0, in Equation (101), for the FATD, we obtain ℘fa(s) = e−
2
√
D

v
√

s (X−x0).
This case corresponds to homogeneous advection on the comb, and thus, the FATD can be obtained
from Equation (68) for Dx → 0. Namely, we have

lim
Dx→0

℘fa(s) = lim
Dx→0

e
v

2Dx (X−x0)−
√

2
√
Dy
Dx s1/2+ v2

4D2
x
|X−x0|

= lim
Dx→0

e
v

2Dx (X−x0)− v
2Dx

√
1+

8
√
DyDx
v2 s1/2|X−x0|

= lim
Dx→0

e
v

2Dx (X−x0)− v
2Dx

(
1+

4
√
DyDx
v2 s1/2

)
|X−x0|

= e−
2
√
D

v
√

s (X−x0) for X > x0. (106)

The efficiency reads

E =
2
(

v
2
√
D

)2

(X− x0)
2 , (107)

which has the same behavior as the efficiency for the one-dimensional Brownian search (see
Equation (8)).

5. Summary

We present an overview of various drift–diffusion and inhomogeneous advection
problems with and without resetting on comblike structures. Both the Brownian diffusion
search with drift and the inhomogeneous advection search on the comb structures were
analyzed. The analytical results were verified by numerical simulations in terms of coupled
Langevin equations for the comb structures. The subordination approach was one of the
main technical methods used here, and we demonstrated how it can be effective in the
study of various random search problems with and without resetting.

In conclusion, consideration of the comb model (or comb geometry) is an important
issue for investigation of the interplay between diffusion, drift, and geometry. For example,
further modification of the comb model, like a fractal tartan [16,70–72], can be an interesting
task for understanding of the impact of fractal geometry on the fractional transport, as well
as for the experimental implementation and the technological design and development of
sparse sensor arrays [73,74].
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Abbreviations
The following abbreviations are used in this manuscript:

PDF probability density function
MSD mean squared displacement
FATD first arrival time distribution
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