
mathematics

Article

A New Algorithm for Computing Disjoint Orthogonal
Components in the Three-Way Tucker Model

Carlos Martin-Barreiro 1,2 , John A. Ramirez-Figueroa 1,2 , Ana B. Nieto-Librero 1,3 , Víctor Leiva 4,* ,
Ana Martin-Casado 1 and and M. Purificación Galindo-Villardón 1,3

����������
�������

Citation: Martin-Barreiro, C.;

Ramirez-Figueroa, J.A.; Nieto-Librero,

A.B.; Leiva, V.; Martin-Casado, A.;

Galindo-Villardón, M.P. A New

Algorithm for Computing Disjoint

Orthogonal Components in the

Three-Way Tucker Model.

Mathematics 2021, 9, 203. https://

doi.org/10.3390/math9030203

Received: 12 December 2020

Accepted: 18 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics, Universidad de Salamanca, 37008 Salamanca, Spain;
cmmartin@espol.edu.ec (C.M.-B.); jramirez@espol.edu.ec (J.A.R.-F.); ananieto@usal.es (A.B.N.-L.);
ammc@usal.es (A.M.-C.); pgalindo@usal.es (M.P.G.-V.)

2 Faculty of Natural Sciences and Mathematics, Universidad Politécnica ESPOL, Guayaquil 090902, Ecuador
3 Institute of Biomedical Research of Salamanca, 37008 Salamanca, Spain
4 School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
* Correspondence: victor.leiva@pucv.cl or victorleivasanchez@gmail.com

Abstract: One of the main drawbacks of the traditional methods for computing components in the
three-way Tucker model is the complex structure of the final loading matrices preventing an easy
interpretation of the obtained results. In this paper, we propose a heuristic algorithm for computing
disjoint orthogonal components facilitating the analysis of three-way data and the interpretation
of results. We observe in the computational experiments carried out that our novel algorithm
ameliorates this drawback, generating final loading matrices with a simple structure and then easier
to interpret. Illustrations with real data are provided to show potential applications of the algorithm.

Keywords: greedy algorithms; heuristic algorithms; PCA; R software; singular value decomposition;
three-way tables; Tucker3 model

1. Introduction

The multivariate methods offer a simplified and descriptive look at a set of multi-
dimensional data, where individuals and variables are numerous. These data are often
organized in a matrix or two-way table and, for their analysis, there is a wide theoretical
background. In addition, in this context, three-way (or three-mode) tables or three-order
tensors can be obtained when a new way, such as time or location, is introduced into the
two-way table; see more details in [1].

Tensor decomposition emerged during the 20th century [2] and, as mentioned in [3],
Tucker [4] was responsible for its use within a multivariate context in the sixties, whereas,
later on, in the seventies, Harshman [5] and Carroll and Chang [6] continued the use of
tensor decomposition in multivariate methods.

The analysis of three-way tables attempts to identify patterns in the space of indi-
viduals, of variables, and of times (or situations in general), searching for robust and
easy-to-interpret models in order to discover how individuals and variables are related to
entities in the third mode [7].

The three-way Tucker model (or Tucker3 from hereafter as Tucker) is a tensor decom-
position that allows for the generalization of a principal component analysis (PCA) [8,9]
to three-way tables. This multivariate method represents the original data in lower di-
mensional spaces, enabling pattern recognition. Furthermore, it is possible to quantify the
interactions between entities in three-modes.

Similar to what occurs with a PCA, each mode of a three-way table can be represented
in spaces of lower dimension than the original spaces [10]. These spaces are featured by
the principal axes (components), which maximizes the total variance and they are linear
combinations of the original entities [11]. Within the space of each mode, the interpretation

Mathematics 2021, 9, 203. https://doi.org/10.3390/math9030203 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8797-681X
https://orcid.org/0000-0002-6605-8673
https://orcid.org/0000-0001-6643-247X
https://orcid.org/0000-0003-4755-3270
https://orcid.org/0000-0003-0095-2178
https://orcid.org/0000-0001-6977-7545
https://doi.org/10.3390/math9030203
https://doi.org/10.3390/math9030203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9030203
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/3/203?type=check_update&version=3


Mathematics 2021, 9, 203 2 of 22

of these axes is done in accordance with the values of their components (loadings). There-
fore, interpretation can sometimes be difficult, leading to inaccurate characterization of
these new axes. Thus, it is desirable that each principal component or axis has few entities
that contribute to the variability of the component in a relevant manner.

There are several theoretical approaches to yield tensor decomposition that have
components with some of their loadings being equal to zero. This is useful for facilitating
the analysis, and the interpretation of the three-way tables, such as the sparse parallelizable
tensor decomposition used in scattered components works [12]. The sparse hierarchical
Tucker model focuses on factoring high order tensors [13]. In addition, the tensor truncated
power searches for a sparse decomposition by choosing variables [14]. An algorithm for
the sparse Tucker decomposition that sets an orthogonality condition for loading matrices
and sparse conditions in the core matrix was proposed by [15].

Unlike sparse methods, disjoint methods in two-way tables search for a decomposition
with a loading matrix that has a single column (latent variable) with non-zero input for
each row (original variable). Furthermore, there is at least one row with a non-zero entry
for each column of the loading matrix. Hence, it is possible to obtain loading matrices
of simple structure that facilitate the interpretation. A method that allows for disjoint
orthogonal components in a two-way table to be calculated was presented in [16]. Recently,
an algorithm that is based on particle swarm optimization was proposed by [17], which
consists of a disjoint PCA with constraints for the case of two-way tables. To the best of
our knowledge, there are no methods for computing disjoint orthogonal components in
three-way tables.

The objective of this work is to propose a heuristic algorithm that extends the existing
methods of two-way tables to three-way tables. This proposal computes disjoint orthogonal
components in loading matrices of a Tucker model. We introduce a procedure that suggests
routes in which the proposed algorithm can be used. We call this new algorithm as
DisjointTuckerALS, because this is based on the alternating least squares (ALS) method.

The remainder of the paper is organized as follows. Section 2 defines what a disjoint or-
thogonal matrix is and presents an optimization mathematical problem that must be solved
in order to calculate disjoint orthogonal components in the Tucker model. In Section 3, we
introduce the DisjointTuckerALS algorithm. Section 4 carries out the numerical applica-
tions of the present work regarding computational experiments in order to evaluate the
performance of our algorithm, as well as illustrations with real data to show its potential
applications. Finally, in Section 5, the conclusions of this study are provided, together
with some final remarks, limitations, a wide spectrum of additional applications that
are different from those presented in the illustration with real data, and ideas for future
research.

2. The Tucker Model and the Disjoint Approach

In this section, we present the structure of three-way tables and define the Tucker
model, as well as a disjoint approach for this model.

2.1. Three-Way Tables

A three-way table represents a data set with three-modes as individuals, variable, and
situations, which is a three-dimensional array or a third-order tensor. Note that tensors
have three variation modes: A-mode (with I individuals); B-mode (with J variables); and,
C-mode (with K situations).

Let X be a three-way table of order I × J × K. The generic element xijk stores the
measure of individual i ∈ {1, . . . , I} in variable j ∈ {1, . . . , J} and situation k ∈ {1, . . . , K}.
The tensor X can be converted into a two-way table while using a process of matricization.
In this work, we use three types of supermatrices: A-mode that yields a matrix XA of order
I × JK, B-mode that yields a matrix a XB of order J × IK, and C-mode that yields a matrix
XC of order K× I J. These supermatrices are defined as in [3], where XA, XB, and XC are
known as frontal, horizontal, and vertical slices matrices, respectively.



Mathematics 2021, 9, 203 3 of 22

2.2. The Tucker Model

Tucker is a multilinear model that approximates the three-way table X while using a
dimensional reduction on its three-modes. The Tucker tensor decomposition of X = (xijk)
is given by

xijk = x̂ijk + eijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, (1)

where x̂ijk = ∑P
p=1 ∑Q

q=1 ∑R
r=1
(
aipbjqckrgpqr

)
, with aip, bjq, and ckr being the corresponding

elements of the matrices A = (aip) of order I × P, B = (bjq) of order J ×Q, and C = (ckr)
of order K× R, which are called component or loading matrices. In addition, gpqr that is
defined in (1) is the pqr-th element of the tensor G = (gpqr) of order P×Q× R, which is
called core and it is considered a reduced version of the tensor X. Integers P < I, Q < J,
and R < K represent the number of components required on each mode, respectively. Thus,
for instance, the matrix A contains P columns that represent the new referential system of
the individuals. Note that E = (eijk) of order I × J × K is a tensor of model errors.

The Tucker model can be represented by matrix equations that are based on all
modes [3], which are stated as

XA = AGA(C⊗ B)> + EA, (2)

XB = BGB(C⊗ A)> + EB, (3)

XC = CGC(B⊗ A)> + EC, (4)

where ⊗ is the Kronecker product. Furthermore, GA of order P×QR, GB of order Q× PR,
and GC of order R × PQ, defined in (2), (3), and (4), are the frontal, horizontal, and
vertical slices matrices from the core G, respectively. Observe that EA, EB and EC are the
corresponding error matrices.

An algorithm that is based on the ALS method and singular value decomposition
(SVD) is used in order to compute the orthogonal components in the Tucker model, called
the TuckerALS algorithm [10]. Note that the ALS method partitions the way of computing
the three loading matrices by fixing two of them and identifying the third matrix. This is
done iteratively until the matrices do not differ significantly (for example, ||A` − A`−1|| <
10−5; ||B` − B`−1|| < 10−5; ||C` − C`−1|| < 10−5), or if a maximum number of iterations
(for example, 100) is attained, which are called TuckerALS stopping criteria.

The goodness-of-fit tells us how good an approximation between the original tensor
and the solution that was obtained by the algorithm is. This goodness-of-fit is computed
by the expression defined as

Fit =
∑I

i=1 ∑J
j=1 ∑K

k=1 x̂2
ijk

∑I
i=1 ∑J

j=1 ∑K
r=1 x2

ijk

× 100%. (5)

Algorithm 1 summarizes the TuckerALS method. The loading matrices A, B, C, and
the supermatrix GA are the output of the TuckerALS algorithm. The DisjointTuckerALS
algorithm that we propose in this paper uses an adapted version of Algorithm 1. The nota-
tion B← svd(XB, Q) means that B is a matrix whose columns are the first Q left singular
vectors of XB.

2.3. Disjoint Approach for the Tucker Model

Let X = (xij) be a matrix of order I × J. Afterwards, we say that X is disjoint if and
only if:

• For all i ∃! j, such that xij 6= 0.

• For all j ∃ i, such that xij 6= 0.



Mathematics 2021, 9, 203 4 of 22

Algorithm 1: TuckerALS

begin
Input: X, P, Q, R;
From X, compute XA, XB and XC;
B← svd(XB, Q);
C ← svd(XC, R);
repeat

1. A← svd(XA(C⊗ B), P);
2. B← svd(XB(C⊗ A), Q);
3. C ← svd(XC(B⊗ A), R);

until the TuckerALS stopping criteria are reached;
Calculate GA = A>XA(C⊗ B);
Output: A, B, C, GA, Fit.

end

If X also satisfies X>X = IJ , where IJ is the identity matrix of order J × J, we say that
X is a disjoint orthogonal matrix. The following is an example of a disjoint orthogonal matrix:

X =



1√
2

0 0
−1√

2
0 0

0 1 0
0 0 −1√

3
0 0 1√

3
0 0 −1√

3


.

The optimization mathematical problem to be solved with the DisjointTuckerALS algo-
rithm, when the three loading matrices A, B, and C are required to be disjoint orthogonal,
is stated as

min
A,B,C,GA

‖XA − AGA(C⊗ B)>︸ ︷︷ ︸
X̂A

‖2 (6)

Subject to:

A>A = IP, (7)

B>B = IQ, (8)

C>C = IR, (9)

where ‖ · ‖ is the Frobenius norm, and IP, IQ, IR are identity matrices of order P × P,
Q×Q, and R× R, respectively. Note that the number of decision variables of this model
is IP + JQ + KR + PQR. The constraints that are given in (7)–(9) are needed in order for
columns of each loading matrix to form an orthonormal set. In the previous mathematical
problem, the objective function that is defined in (6) is minimized, but, in practice, the fit is
calculated according to (5). In order to obtain a simple structure in a loading matrix for
three-way tables, there are some known techniques called: scaling, rotation, and sparse. We
propose a disjoint technique by the design and implementation of the DisjointTuckerALS
algorithm. This requires a reduction of the three-modes and can be obtained up to three
disjoint orthogonal loading matrices. Several methods for obtaining disjoint orthogonal
components for two-way tables have been derived; see [16,18,19]. If A, B, C are disjoint
matrices, the mathematical model defined in (6) can be solved while using the TuckerALS
method stated in Algorithm 1 and then the orthogonal components may be obtained for
the Tucker model.



Mathematics 2021, 9, 203 5 of 22

2.4. Illustrative Example

We show the benefit of using the DisjointTuckerALS algorithm through a computa-
tional experiment for a three-way table that was taken from [7] and adapted by [20]. This
small data set is provided in Tables 1–4, which show three-way tables with I = 6 individu-
als, J = 4 variables, and K = 4 situations, where the behavioral levels are measured.

Table 1. Matrix of situation 1: “applying for an examen” for behavioral level data.

Emotional Sensitive Caring Thorough

Anne 0.0 0.0 4.0 4.0
Bert 0.0 0.0 2.0 2.0
Claus 0.0 0.0 2.0 2.0
Dolly 0.0 0.0 4.0 4.0
Edna 0.0 0.0 2.5 2.5
Frances 0.0 0.0 4.0 4.0

Table 2. Matrix of situation 2: “giving a speech” for behavioral level data.

Emotional Sensitive Caring Thorough

Anne 0.6 0.6 2.4 2.4
Bert 0.2 0.2 1.8 1.8
Claus 0.2 0.2 1.8 1.8
Dolly 0.6 0.6 2.4 2.4
Edna 0.4 0.4 2.1 2.1
Frances 0.6 0.6 2.4 2.4

Table 3. Matrix of situation 3: “family picnic” for behavioral level data.

Emotional Sensitive Caring Thorough

Anne 4.0 4.0 0.0 0.0
Bert 1.0 1.0 1.0 1.0
Claus 1.0 1.0 1.0 1.0
Dolly 4.0 4.0 0.0 0.0
Edna 2.0 2.0 0.5 0.5
Frances 4.0 4.0 0.0 0.0

Table 4. Matrix of situation 4: “meeting a new date” for behavioral level data.

Emotional Sensitive Caring Thorough

Anne 4.6 4.6 0.9 0.9
Bert 1.2 1.2 1.8 1.8
Claus 1.2 1.2 1.8 1.8
Dolly 4.6 4.6 0.9 0.9
Edna 2.4 2.4 1.4 1.4
Frances 4.6 4.6 0.9 0.9

The four matrices of order 6× 4 that are presented in Tables 1–4 correspond to the
different scenarios or situations in which the levels of behavior are evaluated. Components
are chosen and the TuckerALS algorithm is executed to obtain orthogonal components,
with a model fit of 99.84%, as in [7], and P = Q = R = 2. When the DisjointTuckerALS
algorithm is executed, the model fit is 98.10%.

Loading matrices A, B, and C that were obtained with both the TuckerALS and
DisjointTuckerALS algorithms are reported in Tables 5–10. Disjoint orthogonal components
were calculated for the loading matrices A, B, C, and reported in Tables 6, 8, and 10,



Mathematics 2021, 9, 203 6 of 22

respectively. The first component of the loading matrix A represents femininity and the
second component masculinity; see Tables 5 and 6. These tables allow us to affirm that the
DisjointTuckerALS algorithm can identify the disjoint structure that lies in the individuals.
For the loading matrix B, the first component represents the emotional state and the
second component is awareness; see Tables 7 and 8. From these tables, note that the
DisjointTuckerALS algorithm is able to identify the disjoint structure in the variables. For
the loading matrix C, the algorithm is able to group the four situations into two clusters; see
Tables 9 and 10. From Table 10, note that the first component is related to social situations
and the second component to performance situations.

Table 5. Loading matrix A with the TuckerALS algorithm for behavioral level data.

Femininity Masculinity

Anne −0.518560994 0.2282689980
Bert −0.2167812130 −0.619921659
Claus −0.2167812130 −0.619921659
Dolly −0.518560994 0.2282689980
Edna −0.315111562 −0.2739964750
Frances −0.518560994 0.2282689980

Table 6. Loading matrix A with the DisjointTuckerALS algorithm for behavioral level data.

Femininity Masculinity

Anne −0.545737149 0
Bert 0 −0.707106781
Claus 0 −0.707106781
Dolly −0.545737149 0
Edna −0.326363131 0
Frances −0.545737149 0

Table 7. Loading matrix B with the TuckerALS algorithm for behavioral level data.

Emotionality Conscientiousness

Emotional −0.588715219 −0.3916814920
Sensitive −0.588715219 −0.3916814920
Caring −0.3916814920 0.588715219
Thorough −0.3916814920 0.588715219

Table 8. Loading matrix B with the DisjointTuckerALS algorithm for behavioral level data.

Emotionality Conscientiousness

Emotional −0.707106781 0
Sensitive −0.707106781 0
Caring 0 −0.707106781
Thorough 0 −0.707106781

Table 9. Loading matrix C with the TuckerALS algorithm for behavioral level data.

Social Situations Performance Situations

Applying for an examen −0.3331986930 0.770591276
Giving a speech −0.3104255140 0.435143574
Family picnic −0.538191124 −0.3872072680
Meeting a new date −0.709200215 −0.2586690690



Mathematics 2021, 9, 203 7 of 22

Table 10. Loading matrix C with the DisjointTuckerALS algorithm for behavioral level data.

Social Situations Performance Situations

Applying for an examen 0 −0.827376571
Giving a speech 0 −0.561647585
Family picnic −0.633810357 0
Meeting a new date −0.773488482 0

Tables 11 and 12 show the core G that was obtained with both of the algorithms. When
observing both cores, it can be interpreted that women in social situations are mainly emo-
tional and less aware. Conversely, men in the same situations are less emotional and more
aware. In addition, in performance situations, women are mostly aware, while men are
more aware than emotional in the same situations. The TuckerALS and DisjointTuckerALS
algorithms yield different G cores, but they are interpreted in the same manner.

Table 11. Core G with the TuckerALS algorithm for behavioral level data.

Social Situations Performance Situations

Emotionality Conscientiousness Emotionality Conscientiousness

Femininity −17.09837769 −0.489491858 0.50606476 −12.25957342
Masculinity −0.623702797 4.106153763 0.54320104 0.72835096

Table 12. Core G with the DisjointTuckerALS algorithm for behavioral level data.

Social Situations Performance Situations

Emotionality Conscientiousness Emotionality Conscientiousness

Femininity −15.55006689 −2.25788715 −0.883942787 −12.28278827
Masculinity −3.12399307 −4.052179249 −0.224659034 −5.33143759

When a three-way table is analyzed while using the Tucker model, it is important to
point out that the loading matrices A, B and C are not always easily interpreted [7]. In many
situations, these matrices need to be rotated (where any rotation is compensated in core
G) in order to identify a simple structure that allows for interpretation. However, rotating
the matrices does not guarantee that a simple structure is achieved. Therefore, the use of a
sparse technique would be an alternative option. Nevertheless, it is worth mentioning that
we have a loss of fit when using a sparse technique, which does not happen with rotations.

It is possible to rotate only the matrix B or, alternatively, the matrices B and C can be
simultaneously rotated in order to obtain a simple structure, thus improving the interpreta-
tion,. However, in some cases, the data analyst can opt to rotate the three loading matrices
at the same time. Similarly, in the DisjointTuckerALS algorithm, disjoint orthogonal com-
ponents can be chosen in a unique matrix, for example B; in two matrices, for example B
and C; or even in the three loading matrices.

The DisjointTuckerALS algorithm was executed with the same three-way table consid-
ering all possible combinations of disjoint orthogonal components in the loading matrices
A, B, and C. Table 13 reports the results of comparing different settings. From Table 13
and using the expression defined in (5), note that we lose fit when disjoint orthogonal
components are required in the three loading matrices. It is important to consider that there
is a loss of fit when using the disjoint technique, although interpretable loading matrices
are achieved. Note that there is a tradeoff between interpretation and speed, because the
DisjointTuckerALS algorithm takes longer than the TuckerALS algorithm. For details
regarding the computational time (runtime) of the algorithms that are presented in Table 13,
see Section 4.1.



Mathematics 2021, 9, 203 8 of 22

Table 13. Comparison of fit and runtime for behavioral level data.

Disjoint Orthogonal Components Fit (in %) Runtime (in min)

None (TuckerALS) 99.84 0.0038
A (DisjointTuckerALS) 99.25 0.0831
B (DisjointTuckerALS) 99.84 0.0797
C (DisjointTuckerALS) 98.67 0.0672
A, B (DisjointTuckerALS) 99.25 0.0989
A, C (DisjointTuckerALS) 98.10 0.0866
B, C (DisjointTuckerALS) 98.67 0.0913
A, B, C (DisjointTuckerALS) 98.10 0.1012

2.5. The DisjointPCA Algorithm

The optimization mathematical model allowing for a disjoint orthogonal loading
matrix B in a two-way table X to be obtained is stated as

min
A,B
‖X − AB>︸ ︷︷ ︸̂

X

‖2 (10)

subject to B>B = IQ, with B being a disjoint matrix, where X is the data matrix of order
I × J, with I individuals and J variables, A is the scoring matrix of order I × Q, and B
is the loading matrix of order J × Q. Note that Q < J is the number that is required for
the components in the variable mode. Here, we use a greedy algorithm, known as the
DisjointPCA algorithm proposed by [16], in order to find a solution to the minimization
problem defined in (10). The DisjointPCA algorithm plays a fundamental role for the
operation of the DisjointTuckerALS algorithm.

The notation B← vs(X, Q, Tol) means that the DisjointPCA algorithm with a toler-
ance Tol is applied to the data matrix X, and then the disjoint orthogonal loading matrix B,
with Q components, is obtained as a result. Recall that the DisjointPCA algorithm was pro-
posed by Vichi and Saporta [16] reason why we use the acronym “vs" in the above notation.
Note that Tol is a tolerance parameter that represents the maximum distance allowed in the
model fit for two consecutive iterations of the DisjointPCA algorithm. The above notation
is used in order to explain how the DisjointTuckerALS algorithm works; see [16,21] for
more details on the DisjointPCA algorithm.

3. The DisjointTuckerALS Algorithm

In this section, we derive the DisjointTuckerALS algorithm in order to compute from
one to three disjoint orthogonal loading matrices for the Tucker model. Next, we explain
how the DisjointTuckerALS algorithm works.

3.1. The Stages of the Algorithm

The DisjointTuckerALS algorithm has three stages and its input parameters are:

• X: Three-way table of data;
• P, Q, R: Number of components in A-mode, B-mode, C-mode, respectively;
• ALSMaxIter: Maximum number of iterations of the ALS algorithm; and
• Tol: Maximum distance allowed in the fit of the model for two consecutive iterations

of the DisjointPCA algorithm.

Stage 1 [Initial computation of loading matrices with an adapted TuckerALS algorithm]

In this first stage, an initial calculation of the loading matrices is made. To do this,
an adapted TuckerALS algorithm is executed, as defined in Algorithm 2. The output in Algo-
rithm 2 are the matrices YA, YB, and YC of order I ×QR, J × PR, and K× PQ, respectively.

Stage 2 [Computation of disjoint orthogonal loading matrices with the DisjointPCA algorithm]



Mathematics 2021, 9, 203 9 of 22

Algorithm 2: Adapted TuckerALS

begin
Input: X, P, Q, R;
From X, compute XA, XB and XC;
B← svd(XB, Q);
C ← svd(XC, R);
repeat

YA ← XA(C⊗ B);
A← svd(YA, P);
YB ← XB(C⊗ A);
B← svd(YB, Q);
YC ← XC(B⊗ A);
C ← svd(YC, R);

until the TuckerALS stopping criteria are reached;
YA ← XA(C⊗ B);
YB ← XB(C⊗ A);
YC ← XC(B⊗ A);
Output: YA, YB, YC, Fit.

end

This second stage is where the disjoint orthogonal loading matrices are computed. In
order to obtain P, Q, and R disjoint orthogonal components in the loading matrices A, B,
and C, the DisjointPCA algorithm is applied to the matrices Y>A , Y>B and Y>C , respectively.
If A is required to be disjoint orthogonal, then we have that: A ← vs(Y>A , P, Tol). If B is
required to be disjoint orthogonal, then we have that: B← vs(Y>B , Q, Tol). If C is required
to be disjoint orthogonal, then we have that: C ← vs(Y>C , R, Tol).

Stage 3 [Computation of non-disjoint orthogonal loading matrices and of the core]

This final stage is where the non-disjoint orthogonal loading matrices are computed.
For instance, if it is required that only the matrix B has disjoint orthogonal components (see
Figure 1), then an ALS algorithm must be applied in order to compute loading matrices
A and C (with the B matrix being fixed). The same occurs in the TuckerALS algorithm,
initializing A or C. In addition, if it is required that the matrices B and C have disjoint
orthogonal components (see Figure 2), then the loading matrix A is calculated while using
the following two steps (the matrices B and C are fixed), as in the TuckerALS algorithm:
(1) YA ← XA(C⊗ B); and (2) A ← svd(YA, P). If A, B and C are required to be disjoint
orthogonal (see Figure 3), then no calculation is necessary in the loading matrices. Therefore,
the DisjointTuckerALS algorithm must compute the core while using two steps. Thus,
by using the frontal slices equation from G, we have that: (1) YA ← XA(C⊗ B); and (2)
GA ← A>YA. The DisjointTuckerALS algorithm finishes by providing the matrices A, B
and C, the core G, and the fit of the model.

3.2. Using the DisjointTuckerALS Algorithm

We summarize our proposal in Algorithm 3 in order to explain the use of the Disjoint-
TuckerALS algorithm when performing a component analysis for three-way tables with
the Tucker model.

Computing the disjoint orthogonal components in Step 7 simultaneously in the three
loading matrices is up to the analyst. However, it is not recommendable, due to the
significant loss of fit that we have observed in the different computational experiments that
were carried out. When more disjoint orthogonal loading matrices are computed, there is
less fit in the model and more processing time is required. More than one technique can be
used by combining Step 5, Step 6, and Step 7. Subsequently, the results can be compared in
Step 8; see Figure 4.



Mathematics 2021, 9, 203 10 of 22

Begin

Input:

X, P,Q,R, ALSMaxIter, Tol

Compute XA,XB ,XC

Stage 1:

B ← svd (XB , Q), C ← svd (XC , R)

YA ←XA (C ⊗B), A← svd (YA, P )

YB ←XB (C ⊗A), B ← svd (YB , Q)

YC ←XC (B ⊗A), C ← svd (YC , R)

Do the loading matrices

A,B and C converge?

Stage 2:

B ← vs
(
Y >

B , Q, Tol
)

Stage 3:

C ← svd (XC , R)

A← svd (XA (C ⊗B) , P )

C ← svd (XC (B ⊗A) , R)

Do the loading matrices

A and C converge?

Calculate GA ← A>XA (C ⊗B), Fit

Output:

A,B,C,GA, Fit

End

Yes

Yes

No

No

Figure 1. Flowchart of the DisjointTuckerALS algorithm that computes a single disjoint orthogonal
matrix (in this case, the matrix B).



Mathematics 2021, 9, 203 11 of 22

Begin

Input:

X, P,Q,R, ALSMaxIter, Tol

Compute XA,XB ,XC

Stage 1:

B ← svd (XB , Q), C ← svd (XC , R)

YA ←XA (C ⊗B), A← svd (YA, P )

YB ←XB (C ⊗A), B ← svd (YB , Q)

YC ←XC (B ⊗A), C ← svd (YC , R)

Do the loading matrices

A,B and C converge?

Stage 2:

B ← vs
(
Y >

B , Q, Tol
)

C ← vs
(
Y >

C , R, Tol
)

Stage 3:

A← svd (XA (C ⊗B) , P )

Calculate GA ← A>XA (C ⊗B), Fit

Output:

A,B,C,GA, Fit

End

Yes

No

Figure 2. Flowchart of the DisjointTuckerALS algorithm that computes two disjoint orthogonal
matrices (in this case the matrices B and C).

Algorithm 3: Procedure for using DisjointTuckerALS

Step 1. Collect the data in a three-way table X of order I × J × K, where I is the number
of individuals, J is the number of variables, and K is the number of situations.

Step 2. Preprocess X according to the analyst’s criterion.
Step 3. Determine the number of components P, Q and R on each mode, A-mode,

B-mode and C-mode, respectively.
Step 4. Perform a usual PCA with the tensor X, that is, compute the loading matrices for

example with the TuckerALS algorithm. If the loading matrices A, B and C have
a simple structure (easy to interpret), go to Step 8.

Step 5. Apply either scaling or rotation techniques to keep the fit. If the loading matrices
have a simple structure, go to Step 8.

Step 6. Use a sparse technique. If the loading matrices are simple, go to Step 8.
Step 7. Employ a disjoint technique by computing disjoint orthogonal components using

the DisjointTuckerALS algorithm, and continue to Step 8.
Step 8. Report the results and obtain conclusions.



Mathematics 2021, 9, 203 12 of 22

Begin

Input:

X, P,Q,R, ALSMaxIter, Tol

Compute XA,XB ,XC

Stage 1:

B ← svd (XB , Q), C ← svd (XC , R)

YA ←XA (C ⊗B), A← svd (YA, P )

YB ←XB (C ⊗A), B ← svd (YB , Q)

YC ←XC (B ⊗A), C ← svd (YC , R)

Do the loading matrices

A,B and C converge?

Stage 2:

A← vs
(
Y >

A , P, Tol
)

B ← vs
(
Y >

B , Q, Tol
)

C ← vs
(
Y >

C , R, Tol
)

Stage 3:

GA ← A>XA (C ⊗B)

Output:

A,B,C,GA, Fit

End

Yes

No

Figure 3. Flowchart of the DisjointTuckerALS algorithm that computes three disjoint orthogonal
matrices: A, B, and C.

4. Numerical Results

In this section, we carry out computational experiments in order to evaluate the
performance of our algorithm. The first experiment corresponds to data that are simulated
to generate a three-way table with a disjoint structure according to the Tucker model.
The second one is an experiment using real data that correspond to a three-way table
taken from [22]. In this section, we also provide details of some computational aspects,
such as runtimes of the algorithm, characteristics of the hardware, and software used,
among others.



Mathematics 2021, 9, 203 13 of 22

Begin

Step 1:

Collect the data in a three-way table

Step 2:

Preprocess the data

Step 3:

Determine P , Q and R on each

A-mode, B-mode and C-mode

Step 4:

Perform a PCA with X.

Do the loading matrices have a simple structure?

Step 5:

Apply either scaling or rotation techniques.

Do the loading matrices have a simple structure?

Step 6:

Use a sparse technique.

Do the loading matrices have a simple structure?

Step 7:

Calculate the loading matrices with disjoint components

Step 8:

Analyze the results and conclusions

End

No

No

No

Yes

Yes

Yes

Figure 4. Flowchart for using the DisjointTuckerALS algorithm.

4.1. Computational Aspects

We must mention that the DisjointTuckerALS algorithm requires more computational
time (runtime) than the TuckerALS algorithm. This is explained, because, as the number of
loading matrices calculated as disjoint increases, the time that is required for their calcula-
tion also increases, consuming more computational resources of memory and processor.

The computational experiments were carried out on a computer with the following
hardware characteristics: (i) OS: Windows 10 for 64 bits; (ii) RAM: 8 Gigabytes; and (iii)
processor: Intel Core i7-4510U 2-2.60 GHZ. Regarding the software, the following tools and
programming languages were used: (i) development tool—IDE—: Microsoft Visual Studio
Express; (ii) programming language: C#.NET; and, (iii) statistical software: R.

The DisjointPCA, TuckerALS, and DisjointTuckerALS algorithms that are presented
in this paper to perform all of the numerical applications were implemented in C#.NET
as the programming language mainly for the graphical user interface (GUI) of data entry,
control of calculations, and delivery of results. Data entry and presentation of results were
carried out with Excel sheets. Communication between C#.NET and Excel was established



Mathematics 2021, 9, 203 14 of 22

through a connector known as COM+. Some parts of the codes developed were implemented
while using the R programming language for random number generation and SVD. Com-
munication between C#.NET and R was stated with R.NET as a connector, which can be
installed in Visual Studio with a package named NuGet, whereas SVD was performed
with an R package named irlba. This package quickly calculates the partial SVD, that is,
those SVD which use the first singular values, but we must specify the number of singular
values to be calculated. Therefore, the irlba package does not use nor compute the other
singular values, accelerating the calculations for big matrices, such as frontal, horizontal,
and vertical slices matrices of a three-way table.

4.2. Generator of Disjoint Structure Tensors

We design and implement a simulation algorithm to randomly build a three-way table
with a disjoint latent structure in its three-modes. Subsequently, the DisjointTuckerALS
algorithm should be able to detect that structure, since it uses a Tucker model with disjoint
orthogonal components.

Let X be a three-way table with I individuals, J variables, and K times or locations.
Assume that: (i) the first mode, which is related to the loading matrix A, has P latent
individuals (P < I); (ii) the second mode, which is related to the loading matrix B, has Q
latent variables (Q < J); and, (iii) the third mode, which is related to the loading matrix
C, has R latent locations (R < K). Suppose that sx1, . . . , sxI are the I original individuals.
In addition, sy1, . . . , syP are the P latent individuals. We consider the linear combination
that is given by

syp = a1,psx1 + · · ·+ aI,psxI , p = 1, . . . , P. (11)

If it is required that the m original consecutive individuals, sxn, sxn+1, . . . , sxn+(m−1), are
represented by the latent individual syp, then the scalars an,p, an+1,p, . . . , an+(m−1),p are de-
fined as independent random variables with discrete uniform distribution, whose support
is the closed set of integer numbers from 70 to 100. The other scalars in the same linear com-
bination are defined as independent random variables with discrete uniform distribution,
whose support is the closed set of integer numbers from one to 30. This procedure must
be performed for each p from 1 to P, since each original individual must have a strong
presence in a unique latent individual. The Gram–Schmidt orthonormalization process is
applied to the matrix of order I × P, which has the scalars from all the linear combinations.
Hence, a disjoint dimensional reduction of the loading matrix A is achieved.

Similarly with the loading matrix B, consider that vx1, . . . , vx J are the J original
variables. In addition, vy1, . . . , vyQ are the Q latent variables. We consider the linear
combination that is stated as

vyq = b1,qvx1 + · · ·+ bJ,qvxJ , q = 1, . . . , Q. (12)

If it is required that the m consecutive original variables vxn, vxn+1, . . . , vxn+(m−1)
are represented by the latent variable vyq, then the scalars bn,q, bn+1,q, . . . , bn+(m−1),q are
defined as independent random variables with discrete uniform distribution, similarly as
for the matrix A. In the same manner as before, this procedure must be performed for each
q from 1 to Q and the Gram–Schmidt orthonormalization process is again applied, as in
the case of A, and then a disjoint dimensional reduction of B is achieved.

Analogously with C, let tx1, . . . , txK be the K times or original locations and ty1, . . . , tyR
be the R latent times or latent locations. We consider the linear combination that is ex-
pressed by

tyr = c1,rtx1 + . . . + cK,rtxK, r = 1, . . . , R. (13)

If it is required that the m consecutive original locations txn, txn+1, . . . , txn+(m−1) are
represented by the latent location tyr, then the scalars cn,r, cn+1,r, . . . , cn+(m−1),r are defined
as with A and B, and the procedure is applied for each r from 1 to R. Once again, the
Gram–Schmidt orthonormalization process is applied to the matrix of order K× R that has



Mathematics 2021, 9, 203 15 of 22

the scalars from all of the linear combinations. Thus, a disjoint dimensional reduction of
the loading matrix C is achieved.

The Core G must be of order P×Q× R. With no loss of generality, suppose that the
inputs of that three-way table are independent random variables with continuous uniform
distribution in the interval [−50. 50]. In order to complete the creation of X, the matrix
equation is defined as

XA = AGA(C⊗ B)>. (14)

The matrix XA of order I × JK stated in (14) has the frontal slices of X, whereas the
matrix GA of order P×QR has the frontal slices of G. Equations (11)–(13) are used in order
to build the random loading matrices. The algorithm that builds the three-way random
table X of order I × J × K must implement an application ϕ that is expressed as

ϕ : N6 ×NP ×NQ ×NR → TI×J×K (15)(
{I,J,K,P,Q,R},{αp}P

p=1,{βq}Q
q=1,{γr}R

r=1

)
7→ ϕ

(
{I,J,K,P,Q,R},{αp}P

p=1,{βq}Q
q=1,{γr}R

r=1

)
,

which is subject to P < I, Q < J and R < K, where TI×J×K is the set of all three-way tables
with entries in the real numbers. Additionally, it must satisfy that

I =
P

∑
p=1

αp, J =
Q

∑
q=1

βq, K =
R

∑
r=1

γr, (16)

where αp is the number of original individuals in the p-th latent individual; βq is the
number of original variables in the q-th latent variable; and γr is the number of original
locations in the r-th latent location. The application ϕ that is defined in (15) must randomly
provide a three-way table X of order I× J×K that has a simple structure, which is expected
to be detected by the DisjointTuckerALS algorithm.

4.3. Applying the DisjointTuckerALS Algorithm to Simulated Data

Next, we show how the DisjointTuckerALS algorithm works by using the application
ϕ in order to generate a three-way table X of order 20× 18× 17. According to the definition
of ϕ given in (15), the values of P, Q, R are 3, 4 and 5 respectively. Furthermore, constraints
stated in (16) are satisfied. The other parameter setting is given by ALSMaxIter = 100
and Tol = 0.00001. The TuckerALS and DisjointTuckerALS algorithms were executed
while using the data ϕ(20, 18, 17, 3, 4, 5, {5, 7, 8}, {3, 4, 5, 6}, {2, 3, 3, 4, 5}), obtaining a fit of
94.73% and 92.79%, respectively; see Table 14. As expected, we have a loss of fit valued
at 1.94%. However, there is a gain in interpretation, because a simple structure in the
three loading matrices is obtained. Table 15 reports the loading matrix A. Note that the
DisjointTuckerALS algorithm is able to identify the disjoint structure in the first mode.
Observe that five original individuals are represented by the first disjoint orthogonal
component. The next seven original individuals are represented by the second disjoint
orthogonal component. In addition, the last eight original individuals are represented by
the third disjoint orthogonal component. Table 16 shows the loading matrix B. The fact that
the DisjointTuckerALS algorithm is able to identify a disjoint structure in the second mode
is highlighted. The algorithm is able to recognize the way in which the latent variables
group the original variables. Table 17 presents the loading matrix C and, once again, note
that the DisjointTuckerALS algorithm identifies the disjoint structure in the third mode.

Table 14. Comparison of fit and runtime for simulated data.

Algorithm Fit (in %) Runtime (in min)

TuckerALS 94.73 0.0717
DisjointTuckerALS 92.79 0.8735



Mathematics 2021, 9, 203 16 of 22

Table 15. Loading matrix A with the DisjointTuckerALS algorithm for simulated data.

sy1 sy2 sy3

sx1 0.48932151 0 0
sx2 0.44138634 0 0
sx3 0.38687825 0 0
sx4 0.40775562 0 0
sx5 0.49980310 0 0
sx6 0 0.39376793 0
sx7 0 0.36369995 0
sx8 0 0.39165864 0
sx9 0 0.37564528 0
sx10 0 0.43001693 0
sx11 0 0.31146907 0
sx12 0 0.36910128 0
sx13 0 0 −0.32559414
sx14 0 0 −0.33366963
sx15 0 0 −0.31117803
sx16 0 0 −0.36099787
sx17 0 0 −0.34156470
sx18 0 0 −0.38518722
sx19 0 0 −0.37839893
sx20 0 0 −0.38377130

Table 16. Loading matrix B with the DisjointTuckerALS algorithm for simulated data.

vy1 vy2 vy3 vy4

vx1 −0.63185677 0 0 0
vx2 −0.53495062 0 0 0
vx3 −0.56087864 0 0 0
vx4 0 −0.54058450 0 0
vx5 0 −0.51277877 0 0
vx6 0 −0.54593785 0 0
vx7 0 −0.38311642 0 0
vx8 0 0 −0.43631239 0
vx9 0 0 −0.46432965 0
vx10 0 0 −0.45681443 0
vx11 0 0 −0.45592570 0
vx12 0 0 −0.42128590 0
vx13 0 0 0 0.48405851
vx14 0 0 0 0.47246029
vx15 0 0 0 0.36140660
vx16 0 0 0 0.40851941
vx17 0 0 0 0.35273551
vx18 0 0 0 0.34719369



Mathematics 2021, 9, 203 17 of 22

Table 17. Loading matrix C with DisjointTuckerALS algorithm for simulated data.

ty1 ty2 ty3 ty4 ty5

tx1 0.56826144 0 0 0 0
tx2 0.82284806 0 0 0 0
tx3 0 0.50066252 0 0 0
tx4 0 0.57846089 0 0 0
tx5 0 0.64398760 0 0 0
tx6 0 0 0.62935973 0 0
tx7 0 0 0.65899658 0 0
tx8 0 0 0.41186143 0 0
tx9 0 0 0 0.40455206 0
tx10 0 0 0 0.52191470 0
tx11 0 0 0 0.47595483 0
tx12 0 0 0 0.58086976 0
tx13 0 0 0 0 0.50933537
tx14 0 0 0 0 0.44032157
tx15 0 0 0 0 0.34018158
tx16 0 0 0 0 0.36337834
tx17 0 0 0 0 0.54674224

The DisjointTuckerALS algorithm also recognizes the manner in which the latent
locations group the original locations and the three loading matrices are easily interpreted.
However, when running the TuckerALS algorithm, the three loading matrices do not allow
for an easy interpretation. Note that the disjoint approach can be complemented with
rotations and sparse techniques for better analysis.

4.4. Applying the DisjointTuckerALS Algorithm to Real Data

Next, the DisjointTuckerALS algorithm is executed with a three-way table X of or-
der 24× 20× 38 with real data being taken from [22]. Note that K = 38 Japanese uni-
versity students evaluate I = 24 Chopin’s preludes while using J = 20 bipolar scales.
The preprocessing of the data and the number of components in each mode have been
chosen in the same manner, as in [22]. Table 18 reports the model fit in four different
scenarios with P = 2, Q = 3, and R = 2. The full data set can be downloaded from
http://three-mode.leidenuniv.nl.

For a comparative analysis, the loading matrix that is related to Chopin’s preludes
is chosen. Table 19 reports the loading matrix A obtained while using the TuckerALS
algorithm. In [22], this matrix is not interpreted and they proceed to make rotations.

Table 20 provides the final loading matrix A used for interpretation. The first compo-
nent is named “fast+minor, slow+major” and the second component is named “fast+major,
slow+minor”. Table 21 presents the loading matrix A that was obtained with the Dis-
jointTuckerALS algorithm. Note that, with the loading matrix A of Table 21, the same
conclusions are reached as with the loading matrix A of Table 20.

Table 18. Comparison of fit and runtime for Chopin’s preludes data.

Disjoint Orthogonal Components Fit (in %) Runtime (in min)

NONE (TuckerALS) 42.63 0.0711
A (DisjointTuckerALS) 38.92 0.4171
B (DisjointTuckerALS) 40.24 0.4808
A, B (DisjointTuckerALS) 36.79 0.7136

http://three-mode.leidenuniv.nl
http://three-mode.leidenuniv.nl


Mathematics 2021, 9, 203 18 of 22

Table 19. Loading matrix A obtained with the TuckerALS algorithm for Chopin’s preludes data.

Chopin’s Preludes Comp1 Comp2

(1) C major Agitato −0.033953528 0.184842162
(2) a minor Lento −0.137757855 −0.362945929
(3) G major Vivace 0.183142589 0.335407766
(4) e minor Largo −0.046034600 −0.290603627
(5) D major Allegro 0.204062480 0.200322397
(6) b minor Lento assai −0.109263322 −0.337194080
(7) A major Andantino 0.322239475 −0.165253184
(8) f# minor Molto agitato −0.131497358 0.103731974
(9) E major Largo −0.191131130 −0.199220960
(10) c# minor Allegro molto 0.060345767 0.118857312
(11) B major Vivace 0.270309648 −0.021135215
(12) g# minor Presto −0.174159755 0.154464730
(13) F# major Lento 0.124820434 −0.196316896
(14) eb minor Allegro −0.200476583 0.134265782
(15) Db major Sostenuto 0.317539137 −0.189612402
(16) bb minor Presto con fuoco −0.13411733 0.374842648
(17) Ab major Allegretto 0.039035613 −0.099661458
(18) f minor Allegro molto −0.297127956 0.124019724
(19) Eb major Vivace 0.228844926 0.119167072
(20) c minor Largo −0.225976898 −0.225192986
(21) Bb major Cantabile 0.144306691 −0.085136044
(22) g minor Molto agitato −0.269583704 0.074670854
(23) F major Moderato 0.313700444 0.137709411
(24) d minor Allegro appasionato −0.257267184 0.109970949

Table 20. Loading matrix A obtained by rotations for Chopin’s preludes data.

Chopin’s Preludes
Fast + Minor,
Slow + Major

Fast + Major,
Slow + Minor

(1) C major Agitato 0.153 0.109
(2) a minor Lento −0.155 −0.356
(3) G major Vivace 0.103 0.368
(4) e minor Largo −0.170 −0.240
(5) D major Allegro 0.006 0.286
(6) b minor Lento assai −0.157 −0.318
(7) A major Andantino −0.346 0.107
(8) f# minor Molto agitato 0.167 0.018
(9) E major Largo −0.003 −0.276
(10) c# minor Allegro molto 0.040 0.127
(11) B major Vivace −0.208 0.174
(12) g# minor Presto 0.232 −0.011
(13) F# major Lento −0.227 −0.053
(14) eb minor Allegro 0.237 −0.044
(15) Db major Sostenuto −0.360 0.086
(16) bb minor Presto con fuoco 0.358 0.174
(17) Ab major Allegretto −0.098 −0.044
(18) f minor Allegro molto 0.299 −0.119
(19) Eb major Vivace −0.080 0.245
(20) c minor Largo −0.004 −0.319
(21) Bb major Cantabile −0.163 0.040
(22) g minor Molto agitato 0.245 −0.135
(23) F major Moderato −0.128 0.318
(24) d minor Allegro appasionato 0.261 −0.101



Mathematics 2021, 9, 203 19 of 22

Table 21. Loading matrix A obtained with the DisjointTuckerALS algorithm for Chopin’s data.

Chopin’s Preludes
Fast + Minor,
Slow + Major

Fast + Major,
Slow + Minor

(1) C major Agitato 0.091495243 0
(2) a minor Lento 0 −0.349499568
(3) G major Vivace 0 0.380083836
(4) e minor Largo 0 −0.216381495
(5) D major Allegro 0 0.322563112
(6) b minor Lento assai 0 −0.306829783
(7) A major Andantino −0.391407119 0
(8) f# minor Molto agitato 0.170783607 0
(9) E major Largo 0 −0.308357327
(10) c# minor Allegro molto 0 0.130529712
(11) B major Vivace −0.292993592 0
(12) g# minor Presto 0.231153448 0
(13) F# major Lento −0.191308850 0
(14) eb minor Allegro 0.252789215 0
(15) Db major Sostenuto −0.393591840 0
(16) bb minor Presto con fuoco 0.254710019 0
(17) Ab major Allegretto −0.071449806 0
(18) f minor Allegro molto 0.352314932 0
(19) Eb major Vivace 0 0.300266062
(20) c minor Largo 0 −0.359417233
(21) Bb major Cantabile −0.178560495 0
(22) g minor Molto agitato 0.308258927 0
(23) F major Moderato 0 0.396120182
(24) d minor Allegro appasionato 0.305864985 0

5. Conclusions, Discussion, Limitations, and Future Research

The main techniques for dimensionality reduction, pattern extraction, and classifi-
cation in data obtained through tensorial analysis have been based on the Tucker model.
However, a big problem of the existing techniques is the interpretability of their results.
In this work, we have proposed a heuristic algorithm for computing the disjoint orthogonal
components in a three-way table with the Tucker model, which facilitates the mentioned
interpretability. The DisjointTuckerALS algorithm is based on a combination of the Tuck-
erALS and DisjointPCA algorithms. The results that were obtained in the computational
experiments have shown that the main benefit of the proposed algorithm is its easiness of
direct interpretation in the loading matrices without using rotational methods or sparse
techniques. Computational experiments have suggested that the algorithm can detect and
catch disjoint structures in a three-way table according to the Tucker model. In summary,
this paper reported the following findings:

(i) A new algorithm for computing disjoint orthogonal components in a three-way table
with the Tucker model was proposed.

(ii) A measure of goodness of fit to evaluate the algorithms presented was proposed.
(iii) A optimization mathematical model was used.
(iv) A numerical evaluation of the proposed methodology was considered by means of

Monte Carlo simulations.
(v) By using a case study with real-world data, we have illustrated the new algorithm.

Numerical experiments of the proposed algorithm with simulated and real data sets
allowed us to show its good performance and its potential applications. We obtained a new
algorithm that can be a useful knowledge addition to the multivariate tool-kit of diverse
practitioners, applied statisticians, and data scientists.

Some limitations of our study, which could be improved in future works are the following:

(i) There is no guarantee that the optimal solution is attained due to the heuristic nature
of the DisjointTuckerALS algorithm.



Mathematics 2021, 9, 203 20 of 22

(ii) In the absence of additional constraints to those inherent to the original problem,
the space of feasible solutions contains the global optimum. However, by incorporat-
ing the constraints of the DisjointTuckerALS algorithm, the space of feasible solutions
is compressed, which aims to find a solution that is as close as possible to the global
optimum within this new set of feasible solutions. For this reason, the fit correspond-
ing to the solution provided by the DisjointTuckerALS algorithm is less than the fit
achieved by the TuckerALS algorithm. Nevertheless, the incorporated constraints
allow us to put zeros in the positions of the variables with low contribution into a
component of the loading matrix, which permits us to interpret the components more
clearly.

(iii) The proposed algorithm takes longer than the TuckerALS algorithm, so that a tradeoff
between interpretation and speed exists.

In order to motivate readers and potential users, a wide spectrum of additional
applications of the new algorithm with real three-way data in diverse areas is the following:

(i) Functional magnetic resonance imaging (fMRI) has been successfully used by the
neuroscientists for diagnosis of neurological and neurodevelopmental disorders.
The fMRI has been analyzed by means of tensorial methods while using the Tucker
model [23].

(ii) Component analysis in three-way tables also has application in environmental sci-
ences. For example, in [24], through the multivariate study of a sample of blue
crabs, a hypothesis is tested that environmental stress weakens some organisms, since
the normal immune response is not able to protect them from a bacterial infection.
A Tucker model was used for this analysis.

(iii) The data of the price indexes in search of behavior patterns using the Tucker decom-
position were analyzed in [25]. The DisjointTuckerALS algorithm can be used for
detecting these patterns.

(iv) An application in economy on the specialization indexes of the electronic indus-
tries of 23 European countries of the Organisation for Economic Co-operation and
Development (OECD) based on three-way tables is presented in [1]; see also http:
//three-mode.leidenuniv.nl. Applications in stock markets and breakpoint analysis
for the COVID-19 pandemic can be also considered [26].

(v) On the website "The Three-Mode Company” (see http://three-mode.leidenuniv.nl),
data sets corresponding to three-way tables, including engineering, management,
and medicine, are related to (a) aerosol particles in Austria; (b) diseased blue crabs
in the US; (c) chromatography; (d) coping Dutch primary school children; (e) Dutch
hospitals as organizations; (f) girls’ growth curves between five and 15 years old; (g)
happiness, siblings, and schooling; (h) multiple personalities; (i) parental behavior
in Japan; (j) peer play and a new sibling; (k) Dutch children in the strange situations;
and, (l) university positions and academics.

Some open problems that arose from this study are the following:

(i) We believe that the disjoint approach can be used together with existing techniques.
(ii) A study that allows for obtaining a disjoint structure in the core of a Tucker model to

facilitate their interpretation is of interest.
(iii) A bootstrap analysis for the loading matrices can be performed.
(iv) Regression modeling, errors-in-variables, functional data analysis, and PLS regression,

based on the proposed methodology are also of interest [27–30].
(v) Other applications of the algorithm developed in the context of multivariate methods

are: discriminant analysis, correspondence analysis, and cluster analysis, as well as
the already mentioned functional data analysis and PLS.

(vi) There is also a promising field of applications in the so-called statistical learning; for
example, for image compression.

Therefore, the new methodology that was proposed in this study promotes new challenges
and opens issues to be explored from the theoretical and numerical perspectives. Future

http://three-mode.leidenuniv.nl
http://three-mode.leidenuniv.nl
http://three-mode.leidenuniv.nl


Mathematics 2021, 9, 203 21 of 22

articles reporting research on these and other issues are in progress and we hope to publish
their findings.

Author Contributions: Data curation, C.M.-B. and J.A.R.-F.; formal analysis, C.M.-B., J.A.R.-F.,
A.B.N.-L., V.L., A.M.-C., M.P.G.-V.; investigation, C.M.-B., M.P.G.-V.; methodology, C.M.-B., J.A.R.-F.,
A.B.N.-L., V.L., A.M.-C., M.P.G.-V.; writing—original draft, C.M.-B., J.A.R.-F., A.B.N.-L., A.M.-C.,
M.P.G.-V.; writing—review and editing, V.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported partially by project grant “Fondecyt 1200525” (V. Leiva) from
the National Agency for Research and Development (ANID) of the Chilean government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available in this
paper, in the links there provided or from the corresponding author upon request.

Acknowledgments: The authors would also like to thank the Editor and Reviewers for their con-
structive comments which led to improve the presentation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kroonenberg, P.M. Applied Multiway Data Analysis; Wiley: New York, NY, USA, 2008.
2. Hitchcock, F.L. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927, 6, 164–189. [CrossRef]
3. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
4. Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311. [CrossRef] [PubMed]
5. Harshman, R.A. Foundations of the parafac procedure: Models and conditions for an explanatory multimodal factor analysis.

UCLA Work. Pap. Phon. 1970, 16, 1–84.
6. Carroll, J.D.; Chang, J.J. Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-

young” decomposition. Psychometrika 1970, 35, 283–319. [CrossRef]
7. Kiers, H.A.L.; Mechelen, I.V. Three-way component analysis: Principles and illustrative application. Psychol. Methods 2001, 6,

84–110. [CrossRef]
8. Kolda, T.G. Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 2001, 23, 243–255. [CrossRef]
9. Acal, C.; Aguilera, A.M.; Escabias, M. New modeling approaches based on varimax rotation of functional principal components.

Mathematics 2020, 8, 2085. [CrossRef]
10. Kroonenberg, P.M.; de Leeuw, J. Principal component analysis of three-mode data by means of alternating least squares algorithms.

Psychometrika 1980, 45, 69–97. [CrossRef]
11. Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002.
12. Papalexakis, E.E.; Faloutsos, C.; Sidiropoulos, N.D. Parcube: Sparse parallelizable tensor decompositions. In Machine Learning

and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2012; pp. 521–536.
13. Perros, I.; Chen, R.; Vuduc, R.; Sun, J. Sparse hierarchical tucker factorization and its application to healthcare. In Proceedings of

the IEEE International Conference on Data Mining, Atlantic City, NJ, USA, 14–17 November 2015; pp. 943–948.
14. Sun, W.W.; Junwei, L.; Han, L.; Guang, C. Provable sparse tensor decomposition. J. R. Stat. Soc. B 2017, 79, 899–916. [CrossRef]
15. Yokota, T.; Cichocki, A. Multilinear tensor rank estimation via sparse tucker decomposition. In Proceedings of the 2014 Joint

7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advance
Intelligent Systems (ISIS), Kitakyushu, Japan, 3–6 December 2014.

16. Vichi, M.; Saporta, G. Clustering and disjoint principal component analysis. Comput. Stat. Data Anal. 2009, 53, 3194–3208.
[CrossRef]

17. Ramirez-Figueroa, J.A.; Martin-Barreiro, C.; Nieto-Librero, A.B.; Leiva, V.; Galindo, M.P. A new principal component analysis by
particle swarm optimization with an environmental application for data science. Stoch. Environ. Res. Risk Assess. 2021, in press.
[CrossRef]

18. Ferrara, C.; Martella, F.; Vichi, M. Dimensions of well-being and their statistical measurements. In Topics in Theoretical and Applied
Statistics; Alleva, G., Giommi, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 85–99.

19. Nieto-Librero, A.B. Inferential Version of Biplot Methods Based on Bootstrapping and its Application to Three-Way Tables. Ph.D.
Thesis, Universidad de Salamanca, Salamanca, Spain, 2015. (In Spanish)

20. Amaya, J.; Pacheco, P. Dynamic factor analysis using the Tucker3 method. Rev. Colomb. Estad. 2002, 25, 43–57.
21. Macedo, E.; Freitas, A. The alternating least-squares algorithm for CDPCA. In Optimization in the Natural Sciences; Plakhov, A.,

Tchemisova, T., Freitas, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 173–191.

http://doi.org/10.1002/sapm192761164
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1007/BF02289464
http://www.ncbi.nlm.nih.gov/pubmed/5221127
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1037/1082-989X.6.1.84
http://dx.doi.org/10.1137/S0895479800368354
http://dx.doi.org/10.3390/math8112085
http://dx.doi.org/10.1007/BF02293599
http://dx.doi.org/10.1111/rssb.12190
http://dx.doi.org/10.1016/j.csda.2008.05.028
http://dx.doi.org/10.1007/s00477-020-01961-3


Mathematics 2021, 9, 203 22 of 22

22. Murakami, T.; Kroonenberg, P.M. Three-mode models and individual differences in semantic differential data. Multivar. Behav.
Res. 2003, 38, 247–283. [CrossRef]

23. Hamdi, S.M.; Wu, Y.; Boubrahimi, S.F.; Angryk, R.; Krishnamurthy, L.C.; Morris, R. Tensor decomposition for neurodevelopmental
disorder prediction. In Brain Informatics; Wang, S., Yamamoto, V., Su, J., Yang, Y., Jones, E., Iasemidis, L., Mitchell, T., Eds.;
Springer: Cham, Switzerland, 2018; pp. 339–348.

24. Gemperline, P.J.; Miller, K.H.; West, T.L.; Weinstein, J.E.; Hamilton, J.C.; Bray, J.T. Principal component analysis, trace elements,
and blue crab shell disease. Anal. Chem. 1992, 64, 523–531. [CrossRef] [PubMed]

25. Correa, F.E.; Oliveira, M.D.; Gama, J.; Correa, P.L.P.; Rady, J. Analyzing the behavior dynamics of grain price indexes using Tucker
tensor decomposition and spatio-temporal trajectories. Comput. Electron. Agric. 2016, 120, 72–78. [CrossRef]

26. Chahuan-Jimenez, K.; Rubilar, R.; de la Fuente-Mella, H.; Leiva, V. Breakpoint analysis for the COVID-19 pandemic and its effect
on the stock markets. Entropy 2021, 23, 100. [CrossRef]

27. Huerta, M.; Leiva, V.; Liu, S.; Rodriguez, M.; Villegas, D. On a partial least squares regression model for asymmetric data with a
chemical application in mining. Chemom. Intell. Lab. Syst. 2019, 190, 55–68. [CrossRef]

28. Carrasco, J.M.F.; Figueroa-Zuniga, J.I.; Leiva, V.; Riquelme, M.; Aykroyd, R.G. An errors-in-variables model based on the
Birnbaum-Saunders and its diagnostics with an application to earthquake data. Stoch. Environ. Res. Risk Assess. 2020, 34, 369–380.
[CrossRef]

29. Giraldo, R.; Herrera, L.; Leiva, V. Cokriging prediction using as secondary variable a functional random field with application in
environmental pollution. Mathematics 2020, 8, 1305. [CrossRef]

30. Melendez, R.; Giraldo, R.; Leiva, V. Sign, Wilcoxon and Mann-Whitney tests for functional data: An approach based on random
projections. Mathematics 2021, 9, 44. [CrossRef]

http://dx.doi.org/10.1207/S15327906MBR3802_5
http://dx.doi.org/10.1021/ac00033a001
http://www.ncbi.nlm.nih.gov/pubmed/1590588
http://dx.doi.org/10.1016/j.compag.2015.11.011
http://dx.doi.org/10.3390/e23010100
http://dx.doi.org/10.1016/j.chemolab.2019.04.013
http://dx.doi.org/10.1007/s00477-020-01767-3
http://dx.doi.org/10.3390/math8081305
http://dx.doi.org/10.3390/math9010044

	Introduction
	The Tucker Model and the Disjoint Approach
	Three-Way Tables
	The Tucker Model
	Disjoint Approach for the Tucker Model
	Illustrative Example
	The DisjointPCA Algorithm

	The DisjointTuckerALS Algorithm
	The Stages of the Algorithm
	Using the DisjointTuckerALS Algorithm

	Numerical Results
	Computational Aspects
	Generator of Disjoint Structure Tensors
	Applying the DisjointTuckerALS Algorithm to Simulated Data
	Applying the DisjointTuckerALS Algorithm to Real Data

	Conclusions, Discussion, Limitations, and Future Research
	References

