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Abstract: This study investigated the stability and bifurcation of a nonlinear system model developed
by Marhl et al. based on the total Ca2+ concentration among three different Ca2+ stores. In this
study, qualitative theories of center manifold and bifurcation were used to analyze the stability of
equilibria. The bifurcation parameter drove the system to undergo two supercritical bifurcations. It
was hypothesized that the appearance and disappearance of Ca2+ oscillations are driven by them.
At the same time, saddle-node bifurcation and torus bifurcation were also found in the process of
exploring bifurcation. Finally, numerical simulation was carried out to determine the validity of the
proposed approach by drawing bifurcation diagrams, time series, phase portraits, etc.
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1. Introduction

Ca2+ is one of the vital ions for information processing in humans. It generally acts
as a biological messenger in different cell types and is an indispensable ion for various
physiological activities in the human body [1–4]. Ca2+ plays a particularly important
role in the regulation and control of body functions. It is involved in the mechanism of
heartbeat and thrombin formation, but also transmits neural signaling, modifies the enzyme
activity, and regulates the mechanisms underlying the maturation and fertilization of germ
cells. A phenomenon observed experimentally in most cell types is that intracellular Ca2+

concentration remains stable without stimulation. Some Ca2+ enter the cytosol from the
Ca2+ store when the cell is stimulated, leading to an increment in Ca2+ concentration that
triggers a series of physiological activities [5–13]. The cell adjusts itself and closes the
Ca2+ channels when the stimulation increases to a certain extent, and then Ca2+ is taken
up by Ca2+ stores. After a while, the intracellular Ca2+ concentration gains stability, and
the cell returns to a resting state. The source of intracellular Ca2+ is mainly through the
influx of extracellular Ca2+ and the release of Ca2+ stored in the endoplasmic reticulum
or sarcoplasmic reticulum. The latter is mainly based on the mechanism of Ca2+ release
from intracellular Ca2+ stores triggered by Ca2+ signaling, namely Ca2+-induced Ca2+

release [14–16].
Over the past few years, many investigations have been carried out on evoked Ca2+

dynamics. Oscillations of free Ca2+ concentrations are highly significant and ubiquitous
control mechanisms in a large number of cells. Experimental evidence has demonstrated
that Ca2+ oscillations have different characteristics such as regularity and chaos. Chaos
refers to dynamic systems that are sensitive to initial values, resulting in unpredictable
random motion. Chaotic motion has been associated with making long-term weather
predictions and the discovery of Lorentz attractors. In physiology, various arrhythmias,
atrioventricular block, and ventricular fibrillation may also be associated with chaos. A
well-known manifestation of chaos is the butterfly effect. This refers to a small change
that brings about widely varying consequences for the future as it continues to pass and
has long been applied to the weather and the stock market. In psychology, for example,
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when a person receives a small psychological stimulus in childhood, as they grow older,
this stimulus can have a large impact on them in adulthood. In addition, the approach
to chaos mainly consists of period doubling bifurcations, quasi-periodic transitions, and
intermittent chaos. The period doubling bifurcation can be seen in the bifurcation diagram.

After the discovery of oscillations by Wood et al. [17,18], Ca2+ oscillations have been
extensively studied. Ca2+ oscillations can be classified into two types: the first type is simple
Ca2+ oscillations, and the second is bursting. Simple Ca2+ oscillations have been explored
extensively. In the experiments of Borghans et al. (1997), some more complex forms of
Ca2+ oscillations have been found such as bursts and chaos. When the system enters
chaos, the Ca2+ oscillations show an extremely sensitive dependence on the initial value.
Borghans et al. and Houart et al. further proposed several possible mechanisms to explain
the complex intracellular Ca2+ oscillations and performed mathematical analysis [19,20].
Chay also proposed a model for Ca2+ oscillations in excitable cells [21], and Shen and
Larter (1995) studied complex Ca2+ oscillations and chaotic phenomena in non-excitable
cells [22,23]. In these models, it is almost certain that the burst results from changes in
IP3 yields because IP3 can stimulate Ca2+ channels and release a large number of Ca2+

into the cytosol or take up Ca2+ from the cytosol, thereby participating in Ca2+ regulation.
This is one of the most straightforward explanations for the bursting of intracellular
Ca2+. One mechanism proposed by Borghans et al. to explain complex Ca2+ oscillations
is that bursting oscillations are associated with Ca2+-releasing channel activities in the
endoplasmic reticulum. A further mechanism investigated in the same study is that there
is not just one intracellular Ca2+ store. Both IP3-sensitive and non-sensitive Ca2+ stores
have been taken into account. In all models, the endoplasmic reticulum is the primary Ca2+

store for intracellular Ca2+.
Marhl et al. suggested the significance of free Ca2+ concentrations in mitochondria for

Ca2+ oscillations and proposed a likely explanation for Ca2+ oscillations in cells [24]. In this
study, the model focuses on Ca2+ exchange in the middle of the cytosol, endoplasmic retic-
ulum, and mitochondria. The Ca2+ considered in the model includes cytosol, endoplasmic
reticulum, and mitochondrial Ca2+ [25,26] and binds Ca2+ in the cytosol. These models
well simulate enriched Ca2+ oscillations in cells. Nevertheless, in past investigations, the
changes induced by different values of Catot have not been discussed in detail. Moreover,
most of the literature has focused on experiments, rarely analyzing the principles of Ca2+

oscillations theoretically. Therefore, this study takes Marhl et al.’s Ca2+ oscillation model
as the research object, selects Catot as a bifurcation parameter, analyzes the features of
equilibrium by the qualitative theory of differential equation, and discusses the bifurcation
of equilibrium by the bifurcation and center manifold theory [27–30]. The qualitative
theory of differential equations allows for analysis of the characteristics of the equilibrium
point of the system including stability, coordinates, and types. Specifically, the analysis was
conducted using eigenvalues and the Hurwitz criterion. In addition, when investigating
the bifurcation of higher-order nonlinear dynamic systems, the center manifold theory can
transform the study of various behaviors of n-dimensional dynamic systems approach-
ing equilibrium into the study of equations on m-dimensional (m < n) center manifolds,
simplifying the system. Finally, the model was simulated numerically using AUTO and
MATLAB in this study. The advantage is that it confirms our conclusions [31,32].

2. Description of the Model

The model established by Marhl et al. investigated the oscillation of free Ca2+ con-
centrations in the cytosol, endoplasmic reticulum, and mitochondria. A mathematical
model was established to simulate the oscillation of intracellular Ca2+ concentration, and
the specific system is as follows [24]:

dCacyt
dt = Jch + Jleak + Jout − Jpump − Jin + k−CaPr− k+CacytPr

dCaer
dt = βer

ρer
(Jpump − Jch − Jleak)

dCam
dt = βm

ρm
(Jin − Jout)

, (1)
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where Cacyt is the cytosolic Ca2+ concentration; Caer is the Ca2+ concentration in the en-
doplasmic reticulum; Cam is the Ca2+ concentration in mitochondria; and Catot is the
conservation of total extracellular Ca2+. Details of the specific meaning and value of each
parameter can be referred to in Table 1 and [24]. These parameters have the following
relationships:

Jpump = kpumpCacyt, Prtot = Pr + CaPr, Jout = (kout
Cacyt2

K2
3+Cacyt2

+ km )Cam, Jin = kin
Cacyt8

K8
2+Cacyt8

,

Jch = kch
Cacyt

2

K2
1+Cacyt2

(
Caer − Cacyt

)
, CaPr = Catot − Cacyt − ρer

βer
Caer − ρm

βm
Cam,

Jleak = kleak
(
Caer − Cacyt

)
.

Table 1. Unless otherwise specified, the parameter values are used as given in this model.

Prtot 120 µM kpump 20 s−1

ρer 0.01 kout 125 s−1

ρm 0.01 km 0.00625 s−1

βer 0.0025 k− 0.01 s−1

βm 0.0025 K1 5 µM
kch 1500 s−1 K2 0.8 µM

kleak 0.05 s−1 K3 5 µM
kin 300 µM−1 s−1 k+ 0.1 µM−1 s−1

3. Results
3.1. Analysis of Stability

Catot corresponds to the total intracellular Ca2+ concentration including free Ca2+ in
the cytosol, endoplasmic reticulum, and mitochondria. The model ignores the exchange
between extracellular and cytosolic Ca2+ and focuses on the regulation of Ca2+ concentra-
tion in the cytosol and organelles. In cells, Ca2+ generally exists in the organelles as free
or protein-bound. Ca2+ can be induced to increase or decrease either by binding to buffer
proteins or by the dissociation of binding Ca2+.

There are two principal ways in which Ca2+ is regulated: absorption and liberation
of Ca2+ by the endoplasmic reticulum and mitochondria. Therefore, during the process, a
series of experimental manipulations can be carried out to change the Ca2+ concentration
in organelles. Then, Catot will be changed in value. For example, intracellular injection of
IP3 leads to the liberation of Ca2+ in the endoplasmic reticulum, or Ca2+ pump inhibitors
are used to inhibit Ca2+ uptake from the endoplasmic reticulum, thereby increasing free
cytosolic Ca2+. Based on the above reasons, Catot is a reasonable selection as the parameter
that can be changed in the experiment. This is a practical guide for the experiment.
Therefore, Catot was chosen as the bifurcation parameter to discuss the existence, quantity,
type, and bifurcation of the equilibrium.

To make the calculations easier, we can make x = Cacyt, y = Caer, z = Cam, r = Catot.
Therefore, model (1) can be transformed into the following expression:

dx
dt = 0.01r + 0.01y− 20.06x− 0.04z− 0.1x(x− r + 4y + 4z + 120)

− 1500x2(x−y)
x2+25 − 300x8

x8+0.16777216 + z( 125x2

x2+25 + 0.00625)
dy
dt = 5.0125x− 0.0125y + 375x2(x−y)

x2+25
dz
dt = −0.25z( 125x2

x2+25 + 0.00625) + 75x8

x8+0.16777216

. (2)

One can immediately see that the equilibrium point of system (2) meets the following equation:
0.01r− 20.06x + 0.01y− 0.04z− 0.1x(x− r + 4y + 4z + 120)− 1500x2(x−y)

x2+25
− 300x8

x8+0.16777216 + z( 125x2

x2+25 + 0.00625) = 0

5.0125x− 0.0125y + 375x2(x−y)
x2+25 = 0

−0.25z( 125x2

x2+25 + 0.00625) + 75x8

x8+0.16777216 = 0

(3)
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First, by calculating

− 0.25z(
125x2

x2 + 25
+ 0.00625) +

75x8

x8 + 0.16777216
= 0,

we can obtain

z =
75x8

( 31.25x2

x2+25 + 0.0015625)(x8 + 0.167772)
.

Then,

5.0125x− 0.0125y +
375x2(x− y)

x2 + 25
= 0

can be calculated to obtain

y =
30401x3 + 10025x

30001x2 + 25
.

Consequently, substituting the expression for y and z obtains

0.01r− 20.06x + 0.01y− 0.04z− 0.1x(x− r + 4y + 4z + 120)− 1500x2(x−y)
x2+25

− 300x8

x8+0.16777216 + z( 125x2

x2+25 + 0.00625) = 0.

Therefore, we have the following equation:

f (x, r) = 0.01r− 20.06x− 0.1x(x− r + 4σ2
σ3

+ 300x8

σ1
+ 120)− 3x8

σ1
+ 0.01σ2

σ3

− 300x8

x8+0.16777216 −
1500x2(x− σ2

σ3
)

x2+25 +
75x8( 125x2

x2+25
+0.00625)

σ1
= 0

y = 30401x3+10025x
30001x2+25

z = 75x8

σ1

, (4)

where

σ1 = (
31.25x2

x2 + 25
+ 0.0015625)(x8 + 0.167772), σ2 = 30401x3 + 10025x, σ3 = 30001x2 + 25.

Depending on the practical implications of x, y, z, and r, whether Equation (2) has an
equilibrium point was considered to meet our special needs when r ∈ [0, 150]. Suppose
(x0, y0, z0) is equilibrium. Let x1 = x − x0, y1 = y − y0, z1 = z − z0, then we can obtain the
following representations [30]:

dx1
dt = 0.01r− 20.06(x1 + x0) + 0.01(y1 + y0)− 0.04(z1 + z0)− 0.1(x1 + x0)(4(y1

+y0) + 4(z1 + z0) + 120 + x1 + x0 − r)− 1500(x1+x0)
2(x1+x0−y1−y0)

(x1+x0)
2+25

− 300(x1+x0)
8

(x1+x0)
8+0.16777216

+ z
(

125(x1+x0)
2+0.00625((x1+x0)

2+25)
(x1+x0)

2+25

)
dy1
dt = −0.0125(y1 + y0) + 5.0125(x1 + x0) +

375(x1+x0)
2(x1+x0−y1−y0)

(x1+x0)
2+25

dz1
dt = 75(x1+x0)

8

(x1+x0)
8+0.16777216

− 0.25(z1 + z0)

(
125(x1+x0)

2

(x1+x0)
2+25

+ 0.00625
)

. (5)

Obviously, (0, 0, 0) is the equilibrium of system (5), which, according to bifurcation
theory, has the same features as that of the equilibrium of system (2) in terms of type,
stability, and bifurcation type. The Jacobian matrix of system (5) can be easily calculated
as follows:

J = (bij)3×3 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

.
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The linearized system corresponding to the equilibrium (0, 0, 0) of system (5) is
dx1
dt = b11x1 + b12y1 + b13z1

dy1
dt = b21x1 + b22y1 + b23z1

dz1
dt = b31x1 + b32y1 + b33z1

,

where

b11 = 0.1r− 0.2x0 − 0.4y0 − 0.4z0 − 32.06− 2400x0
7

x0
8+0.16777216 + 2400x0

15

(x0
8+0.16777216)2 +

z0(
250x0

x0
2+25 −

250x0
3

(x0
2+25)2 )− 1500x0

2

x0
2+25 −

3000x0(x0−y0)
x0

2+25 + 3000x0
3(x0−y0)

(x0
2+25)2 ,

b12 = −0.4x0 + 0.01 + 1500x0
2

x0
2+25 , b13 = −0.4x0 − 0.03375 + 125x0

2

x0
2+25 ,

b21 = 5.0125 + 375x0
2

x0
2+25 + 750x0(x0−y0)

x0
2+25 − 750x0

3(x0−y0)

(x0
2+25)2 , b22 = −0.0125− 375x0

2

x0
2+25 ,

b23 = 0, b31 = 600x0
7

x0
8+0.16777216 −

600x0
15

(x0
8+0.16777216)2 − 0.25z0(

250x0
x0

2+25 −
250x0

3

(x0
2+25)2 ),

b32 = 0, b33 = −0.0015625− 31.25x0
2

x0
2+25 .

There is also a simple way to obtain the following eigen equation of the Jacobian
matrix:

P(λ) = λ3 + C1λ2 + C2λ + C3 = 0,

where

C1 = −b11 − b22 − b33,
C2 = b11b22 + b11b33 + b22b33 − b13b31 − b12b21 − b32b23,
C3 = b31b13b22 + b12b21b33 + b32b23b11 − b11b22b33 − b12b23b31 − b13b21b32.

The following formula is obtained by calculating:

C1 = −0.1r + 0.2x0 + 0.4y0 + 0.4z0 +
2400x7

0
x8

0+0.16777216
− 2400x15

0
σ4
− z0σ5 +

1906.25x2
0

x2
0+25

+32.0740625 + 3000x0(x0−y0)

x2
0+25

− 3000x3
0(x0−y0)
σ6

,

C2 = (σ3 + 0.0125)σ7 + σ1σ7 + (σ3 + 0.0125)σ1 − (σ2 − 0.4x0 + 0.01)(σ3 +
750x0(x0−y0)

x2
0+25

−
750x3

0(x0−y0)
σ6

+ 5.0125)− (0.4x0 −
125x2

0
x2

0+25
+ 0.03375)( 600x15

0
σ4
− 600x7

0
x8

0+0.16777216
+ 0.25z0σ5),

C3 = σ1(σ3 + 0.0125)(0.2x0 − 0.1r + 0.4y0 + 0.4z0 +
2400x7

0
x8

0+0.16777216
− 2400x15

0
σ4
− z0σ5

+σ2 +
3000x0(x0−y0)

x2
0+25

− 3000x3
0(x0−y0)
σ6

+ 32.06)− (σ3 + 0.0125)(0.4x0 −
125x2

0
x2

0+25

+0.03375)
(

600x15
0

σ4
− 600x7

0
x8

0+0.16777216
+ 0.25z0σ5

)
− σ1(σ2 − 0.4x0 + 0.01)(σ3+

750x0(x0−y0)

x2
0+25

− 750x3
0(x0−y0)

σ6
+ 5.0125),

where

σ1 = 31.25x0
2

x0
2+25 + 0.0015625, σ2 = 1500x0

2

x0
2+25 , σ3 = 375x0

2

x0
2+25 ,

σ4 = (x0
8 + 0.16777216)2, σ5 = 250x0

x0
2+25 −

250x0
3

σ6
, σ6 = (x0

2 + 25)2,

σ7 = 0.2x0 − 0.1r + 0.4y0 + 0.4z0 +
2400x0

7

x0
8+0.16777216 −

2400x0
15

σ4
− z0σ5 + σ2 +

3000x0(x0−y0)
x0

2+25 −
3000x0

3(x0−y0)
σ6

+ 32.06.

The Hurwitz matrix is obtained as follows.

φ1 = (C1), φ2 =

(
C1 1
C3 C2

)
, φ3 =

 C1 1 0
C3 C2 1
0 0 C3

.
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If the determinants of the Hurwitz matrix are all positive, then it can be confirmed
that the system is stable.

det(φi) > 0, i = 1, 2, 3.

The specific expression of the Hurwitz criteria is

C1 > 0, C3 > 0, C1C2 > C3.

According to this inequality and MATLAB, the values of r can be obtained:

r1 = 58.61, r2 = 101.83.

In general, the system has a stable node when the eigenvalues are all positive. When
the eigenvalues have positive and negative values, the system has saddle. When the
eigenvalues are a pair of pure virtual roots, the equilibrium point is a non-hyperbolic
equilibrium point. The type of equilibrium points can be determined by deriving the
eigenvalues with different r.

The investigation related to differential equations provides a theoretical basis for the
conclusions drawn below:

(1) r < 58.61, system (2) is characterized by a unique equilibrium, and the equilibrium is
stable (stable node);

(2) r = 58.61, system (2) has a unique equilibrium M1 = (0.0454, 5.2741, 0), and is a
non-hyperbolic equilibrium;

(3) 58.61 < r < 101.83, system (2) is characterized by a unique equilibrium, and the
equilibrium is unstable (saddle);

(4) r = 101.83, system (2) has a unique equilibrium M2 = (0.3533, 1.2951, 0.6915), and is a
non-hyperbolic equilibrium; and

(5) r > 101.83, system (2) is characterized by a unique equilibrium, and the equilibrium is
stable (stable node).

3.2. Bifurcation of Equilibria

According to the above, when r is divided into 58.61 and 101.83, the equilibria of
system (2) are both non-hyperbolic. Therefore, in the following, we will analyze the
dynamics near these equilibrium points.

When a system with parameters uses the center manifold theory to reduce dimensions,
the parameters are required as new variables of the system. After shifting the equilibriums,
it is obvious that the equilibriums of system (2) at r1 = 0 is M (x1, y1, z1) = (0, 0, 0). Taking r
as another dynamic variable and adding dr1/dt = 0 into system (5), we assume that when
r1 = r − r0 when r = r0, system (5) can be sorted out as follows [30]:

dx1
dt = 0.01(r1 + r0)− 20.06(x1 + x0) + 0.01(y1 + y0)− 0.04(z1 + z0)− 0.1(x1 + x0)(4(y1

+y0) + 4(z1 + z0) + 120 + x1 + x0 − r1 − r0)− 1500(x1+x0)
2(x1+x0−y1−y0)

(x1+x0)
2+25

− 300(x1+x0)
8

(x1+x0)
8+0.16777216

+ z
(

125(x1+x0)
2+0.00625((x1+x0)

2+25)
(x1+x0)

2+25

)
dy1
dt = −0.0125(y1 + y0) + 5.0125(x1 + x0) +

375(x1+x0)
2(x1+x0−y1−y0)

(x1+x0)
2+25

dz1
dt = 75(x1+x0)

8

(x1+x0)
8+0.16777216

− 0.25(z1 + z0)

(
125(x1+x0)

2

(x1+x0)
2+25

+ 0.00625
)

dr1
dt = 0

. (6)

System (6) has entirely the same features as the equilibriums of system (2). Next, the
specific r0 value was analyzed. For r0 = 58.61, (0, 0, 0, 0) is the corresponding equilibrium
of system (6). According to the calculation, we can easily obtain that the eigenvalue of
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the equilibrium of system (6) is η1 = −0.0041, η2 = 0.4880i, η3 = −0.4880i, η4 = 0. The
eigenvector is

−0.0065 −0.0193− 0.2287i −0.0193 + 0.2287i 0.0026
0.3411 0.9733 0.9733 −0.1258
0.9399 0 0 0

0 0 0 0.9921

.

Suppose 
x1
y1
z1
r1

 = T


u
v
w
s

,

where

T =


−0.0065 −0.0193 0.2287 0.0026
0.3411 0.9733 0 −0.1258
0.9399 0 0 0

0 0 0 0.9921

.

System (6) can vary in shape such as the following:
.
u
.
v
.

w
.
s

 =


−0.0041 0 0 0

0 0 −0.4880 0
0 0.4880 0 0
0 0 0 0




u
v
w
s

+


g1
g2
g3
g4


and 

.
x1.
y1.
z1.
r1

 = T


.
u
.
v
.

w
.
s

⇒


.
u
.
v
.

w
.
s

 = T−1


.
x1.
y1.
z1.
r1

 = T−1


f1
f2
f3
f4

,

where

f1 = 0.01q14 − 20.06q11 + 0.01q12 − 0.04q13 − 0.1q11(q11 − q14 + 4q12 + 4q13 + 120)

− 1500q11
2(q11−q12)

q11
2+25 − 300q11

8

q11
8+0.16777216 + q13(

125q11
2

q11
2+25 + 0.00625),

f2 = 5.0125q11 − 0.0125q12 +
375q11

2(q11−q12)
q11

2+25 ,

f3 = −0.25q13(
125q11

2

q11
2+25 + 0.00625) + 75q11

8

q11
8+0.16777216 , f4 = 0,

q11 = 0.0026s− 0.0065u− 0.0193v + 0.2287w + 0.0454,
q12 = 0.3411u− 0.1258s + 0.9733v + 5.2741,
q13 = 0.9399u, q14 = 0.9921s.

Furthermore,
g1
g2
g3
g4

 = T−1


f1
f2
f3
f4

−

−0.0041 0 0 0

0 0 −0.4880 0
0 0.4880 0 0
0 0 0 0




u
v
w
s

,

where

T−1 =


0 0 1.063942973 0
0 1.027432446 −0.3728664831 0.1302802154

4.372540446 0.08670505559 −0.001227344998 −0.0004647809355
0 0 0 1.007962907

.
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After the calculation, we can obtain the following equations:

g1 = 1.063942973 f3 + 0.0041u,
g2 = 1.027432446 f2 − 0.3728664831 f3 + 0.1302802154 f4 + 0.488w,
g3 = 4.372540446 f1 + 0.08670505559 f2 − 0.001227344998 f3 − 0.0004647809355 f4 − 0.488v,
g4 = 0.

Due to the center manifold theory, it can be conclusively demonstrated that system (6)
has a central manifold, which can be expressed as follows:

Wc
loc(M) =

{
(u, v, w, s) ∈ R4|u = h(v, w, s), h(0, 0, 0) = 0, Dh(0, 0, 0) = 0

}
.

Let h1(v, w, s) = a1v2 + b1w2 + c1s2 + d1vw + e1vs + f 1ws + . . . , the center manifold of
system (6) can be expressed as follows:

N(h1) = Dh1 ·

 .
v
.

w
.
s

+ 0.0041h1 − g1 ≡ 0.

Therefore, the high-order partial derivatives can be applied to obtain the values of a1
to f 1. The equation is given below:

−0.0006 0 0 0.9764 0 0
0 0.0030 0 −0.9760 0 0
0 0 0.0083 0 0.0001 0

−0.9757 0.9759 0 0.0006 0 0
0.0001 0 0 0 0.0019 0.4880

0 0 0 0 −0.4880 0.0028





a1
b1
c1
d1
e1
f1

 = 0.

From the center manifold theory, one can see that

a1 = 0.005121190007, b1 = 0.005120438342, c1 = 0.0000001949388882,
d1 = 0.000003482559566, e1 = −0.000000272409307, f1 = −0.000001352303558.

After downscaling system (6), it will be confined to a two-dimensional system as follows:( .
v
.

w

)
=

(
0 −0.4880

0.4880 0

)(
v
w

)
+

(
B1(v, w)
B2(v, w)

)
,

where

B1(v, w) = 0.01500565088s− 0.111890991v + 1.665806175w + · · · ,
B2(v, w) = 1.237979119v− 0.1889085743s− 19.9606049w + · · · .

Hence, it is easy to verify that

a = 1
16 [B

1
vvv + B1

vww + B2
vvw + B2

www]|(0,0,0) +
1

16×0.4880 [B
1
vw(B1

vv + B1
ww)− B2

vw(B2
vv + B2

ww)

−B1
vvB2

vv + B1
wwB2

ww]|(v=0,s=0,w=0)
= −25.8314 < 0,

d = dRe(η(s))
ds |(0,0,0) = 0.0500 > 0.

As a consequence of the above discussion, the following conclusion is summarized.
Conclusion 1: When r0 = 58.61, a supercritical Hopf bifurcation occurs at the equilib-

rium M1 = (0.0454, 5.2741, 0). With the increase in r, when r > r0, the equilibrium changes
from stable to unstable and loses its stability, whereas a stable periodic solution occurs near
the equilibrium point. System (2) begins to oscillate.
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For r0 = 101.83, we can easily obtain that the eigenvalue of the equilibrium of system
(6) is η1 = −0.0762, η2 = 4.1872i, η3 = −4.1872i, η4 = 0, and the eigenvector is

0.0435 −0.7846 −0.7846 0.0099
−0.0727 0.2101− 0.4697i 0.2101 + 0.4697i −0.0159
0.9964 −0.0127 + 0.3457i −0.0127− 0.3457i 0.1169

0 0 0 0.9929

.

Suppose 
x1
y1
z1
r1

 = T


u
v
w
s

,

where

T =


0.0435 −0.7846 0 0.0099
−0.0727 0.2101 0.4697 −0.0159
0.9964 −0.0127 −0.3457 0.1169

0 0 0 0.9929

.

System (6) can vary in shape such as the following:
.
u
.
v
.

w
.
s

 =


−0.0762 0 0 0

0 0 −4.1872 0
0 4.1872 0 0
0 0 0 0




u
v
w
s

+


g1
g2
g3
g4


and 

.
x1.
y1.
z1.
r1

 = T


.
u
.
v
.

w
.
s

⇒


.
u
.
v
.

w
.
s

 = T−1


.
x1.
y1.
z1.
r1

 = T−1


f1
f2
f3
f4

,

where

f1 = 0.01q14 − 20.06q11 + 0.01q12 − 0.04q13 − 0.1q11(q11 − q14 + 4q12 + 4q13 + 120)

− 1500q11
2(q11−q12)

q11
2+25 − 300q11

8

q11
8+0.16777216 + q13(

125q11
2

q11
2+25 + 0.00625),

f2 = 5.0125q11 − 0.0125q12 +
375q11

2(q11−q12)
q11

2+25 ,

f3 = −0.25q13(
125q11

2

q11
2+25 + 0.00625) + 75q11

8

q11
8+0.16777216 ,

f4 = 0,
q11 = 0.0099s− 0.0435u− 0.7846v + 0.3533,
q12 = −0.0727u + 0.2101v + 0.4697w− 0.1258s + 1.2951,
q13 = 0.9964u− 0.0127v− 0.3457w + 0.1169s + 0.6915,
q14 = 0.9929s.

Furthermore,
g1
g2
g3
g4

 = T−1


f1
f2
f3
f4

−

−0.0762 0 0 0

0 0 −4.1872 0
0 4.1872 0 0
0 0 0 0




u
v
w
s

,
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where

T−1 =


0.1902682299 0.7741178608 1.051788138 −0.1133338854
−1.263985893 0.04291884648 0.05831351516 0.006424634991
0.594839124 2.22963832 0.1367113649 0.01367789647

0 0 0 1.00715077

.

After calculation, we can obtain the following equations:

g1 = 0.1902682299 f1 + 0.7741178608 f2 + 1.051788138 f3 − 0.1133338854 f4 + 0.0762u,
g2 = −1.263985893 f1 + 0.04291884648 f2 + 0.05831351516 f3 + 0.006424634991 f4

+4.1872w,
g3 = 0.594839124 f1 + 2.22963832 f2 + 0.1367113649 f3 + 0.01367789647 f4 − 4.1872v,g4 = 0.

Let h2 (v, w, s) = a2v2 + b2w2 + c2s2 + d2vw + e2vs + f 2ws + . . . , the center manifold of
system (6) can be expressed as follows:

N(h2) = Dh2 ·

 .
v
.

w
.
s

+ 0.0762h2 − g1 ≡ 0.

Therefore, the high-order partial derivatives can be applied to obtain the values of a2
to f 2. The equation is given below:

0.1678 0 0 25.1159 0 0
0 0.1401 0 −25.1209 0 0
0 0 0.1523 0 −0.0003 0.0003

−25.1209 25.1159 0 0.0769 0 0
−0.0003 0 0 0.0001 0.0800 12.5579

0 0.0003 0 −0.0001 −12.5604 0.0731





a2
b2
c2
d2
e2
f2

 = 0.

From the center manifold theory, one can know that

a2 = 27.10743425, b2 = 27.11200115, c2 = 0.006549229838,
d2 = 0.1512035103, e2 = 0.0006281394405, f2 = −0.006719709047.

After downscaling system (5), it will be confined to a two-dimensional system as follows:( .
v
.

w

)
=

(
0 −4.1872

4.1872 0

)(
v
w

)
+

(
B1(v, w)
B2(v, w)

)
,

where

B1(v, w) = 0.2467195946s− 20.06617206v− 4.210867326w + · · · ,
B2(v, w) = 4.776376224v− 0.004015215297s− 0.002071369214w + · · · .

Hence, it is easy to verify that

a = 1
16 [B

1
vvv + B1

vww + B2
vvw + B2

www]|(0,0,0) +
1

16×4.1872 [B
1
vw(B1

vv + B1
ww)− B2

vw(B2
vv + B2

ww)

−B1
vvB2

vv + B1
wwB2

ww]|(v=0,s=0,w=0)
= −66.0608 < 0,

d = dRe(η(s))
ds |(0,0,0) = 0.0495 > 0.

4. Numerical Simulations

Variations of Catot and Cacyt were analyzed from the point of view of bifurcation dy-
namics. The system presents an equilibrium state and an oscillation state. The equilibrium
bifurcation diagram of system (2) is schematically illustrated in Figure 1. In the figure,
stable equilibrium points are denoted as the solid line, and unstable equilibrium points
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are denoted by the dashed line. Additionally, red hollow circles represent unstable limit
cycles, and red-filled circles indicate stable limit cycles. Two Hopf bifurcations, namely
HB1 and HB2, can also be found with corresponding values of r1 = 58.61 and r2 = 101.83.
When r passes through r1 = 58.61 and r2 = 101.83, two supercritical bifurcations occur in
the system.

Figure 1. Curve of dynamical bifurcation of system (2) with r in the (r, x) plane. HB1 and HB2 refer
to the Hopf bifurcations. LP refers to the saddle-node bifurcation. TR refers to the torus bifurcation.
PD refers to the period doubling bifurcation.

First, the stability of equilibria is discussed. The stability undergoes a series of vari-
ations. To be specific, from r = 0 to 58.61 and from r = 101.83 to 150, there were stable
equilibria. Between r = 58.61 and 101.83, there were unstable equilibria. This is followed by
a discussion of the stability of limit cycles. A stable limit cycle formed at r = 58.61. When r
increased to 58.62, saddle-node bifurcation (LP) of limit cycles occurred, and stable and
unstable limit cycles had a meeting at this point. Thus, stable limit cycles became unstable.
Similarly, LP of the limit cycles was at r = 65.09 and 89.96. The stability of limit cycles was
constantly changing. Limit cycles go from unstable to stable. Then, unstable limit cycles
were obtained through r = 89.96. At different values of r, for example, r = 101.8, torus
bifurcation (TR) was in the system and period doubling bifurcation (PD) could also be
found when r = 101.3. Period doubling bifurcation is a typical approach to chaos, which
can be considered as a way to enter chaos from period windows.

When the limit cycles pass through TR, the stability of the system limit cycles trans-
forms further, and unstable limit cycles of the system turn into stable limit cycles. Torus
bifurcation (TR) is a way to cause chaos in the system and is shown in the following
images. Figures 2 and 3 represent the bifurcation diagram in the (r, y) and (r, z) planes,
respectively. One can easily see that two Hopf bifurcation points appeared due to the
variation in parameter r.

Some dynamic behaviors of system (2) are schematically presented in Figures 4–10.
Figures 4a–10a represent the temporal evolution for different values of parameter r.
Figures 4b–10b correspond to different state trajectories in 3D phase space by varying
different values of r. Among these, Figures 4–6, 8 and 9 represent the regular Ca2+ oscil-
lations. Illustrations of chaos can be observed in Figures 7 and 10. These phenomena are
abundant and need further study.
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Figure 2. Curve of the dynamical bifurcation of system (2) with r in the (r, y) plane. HB1 and HB2

refer to the Hopf bifurcations.

Figure 3. Curve of dynamical bifurcation of system (2) with r in the (r, z) plane. HB1 and HB2 refer
to the Hopf bifurcations.

Figure 4. (a) Temporal evolution for r = 60. (b) State trajectories in 3D phase space for r = 60.
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Figure 5. (a) Temporal evolution for r = 70. (b) State trajectories in 3D phase space for r = 70.

Figure 6. (a) Temporal evolution for r = 86. (b) State trajectories in 3D phase space for r = 86.

Figure 7. (a) Temporal evolution for r = 96. (b) State trajectories in 3D phase space for r = 96.
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Figure 8. (a) Temporal evolution for r = 100.8. (b) State trajectories in 3D phase space for r = 100.8.

Figure 9. (a) Temporal evolution for r = 101.64. (b) State trajectories in 3D phase space for r = 101.64.

Figure 10. (a) Temporal evolution for r = 101.8. (b) State trajectories in 3D phase space for r = 101.8.

Figure 11 is the return map for when r = 101.8. In the figure, the pioneer points x
were compared to the successor points x (n + 1). When the track repeatedly traverses the
same section, the points on the left of the section are very scattered. The image shows
a scatterplot. Therefore, there is chaos in the system at this point. Furthermore, when
the images drawn in Figure 11 were observed together with torus bifurcation (TR) and
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period doubling bifurcation (PD) in Figure 1 and the sequence diagram of time and phase
diagram in Figure 10, we can see that the characteristics of system (2) displayed in these
images were consistent and chaos was found in all of these diagrams, further validating
the availability of the method.

Figure 11. Return map of Cacyt with r = 101.8.

Figure 12 investigates the Lyapunov exponential spectrum of system (2). Lyapunov
exponent is a description of the stability of a dynamic system. When the Lyapunov
exponent is greater than zero, it means chaos occurs in the system. For n-dimensional
continuous dynamical systems

.
x = g (x), the system forms an n-dimensional sphere with x0

as the center and ‖δ x(x0,0) ‖ as the radius when t = 0. With the evolution of time, the sphere
deforms into an n-dimensional ellipsoid at time t. Assume that the length of the half-axis in
the direction of the ith-axis of the ellipsoid is ‖δ xi (x0, t) ‖, then the ith-Lyapunov exponent
of the system is

λi = lim
t→∞

1
t

ln
‖ δxi(x0, t) ‖
‖ δx(x0, 0) ‖ .

Figure 12. Lyapunov index of system (2) with parameter r.

Solving the formula will give the Lyapunov exponent. In Figure 12, the yellow curves
represent LE1, the green curves represent LE2, and the blue curves represent LE3. The
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Lyapunov exponent was more than 0 within a certain parameter range, indicating the
presence of chaos in system (2). For example, when r = 101.8, the corresponding Lyapunov
exponents were LE1 = 0.1378, LE2 = −0.4361, and LE3 = −27.6405, respectively. LE1 > 0,
so the system was in chaos at this point, which is consistent with Figure 1, Figure 10, and
Figure 11.

5. Summary

In this study, the stability and bifurcation phenomena of a 3D Ca2+ oscillation model
were investigated theoretically and simulated numerically. Oscillations of Ca2+ in the cy-
tosol, endoplasmic reticulum, and mitochondria were studied using the total concentration
of Ca2+ in the cytosol, mitochondria, and endoplasmic reticulum as the bifurcation parame-
ter. Two Hopf bifurcation points were obtained after varying the value of the parameter for
investigation. There was a stable periodic solution near the supercritical Hopf bifurcation
point. The Hopf bifurcation point was the source of oscillation.

After the theoretical analysis of the system, the correctness of the theoretical results
was verified by the numerical method. During the numerical simulation, there were some
interesting oscillations. In addition to the usual simple oscillations, there were also some
Ca2+ oscillations of bursting. The peak values and periods of oscillations of different
bursting were also different, which may be related to bifurcation. Such findings provided
ideas for further research. Moreover, by exploring the bifurcation diagram, the Hopf
bifurcation case calculated in this study well matched that of the image. Moreover, there
were also limit cycle LP and TR points. Where the system occurred, there was chaos at TR.
This provided further insights into the dynamic behavior between the two points where
the Hopf bifurcation occurs. In general, the total Ca2+ concentration greatly influences the
formation and characteristics of Ca2+ oscillations in cells.

Some of the special phenomena found above need to be explored in more detail.
Future works should select different models, explore different models, and conduct in-
depth research. In addition, in many intracellular dynamic models, time delay has a certain
effect on the dynamic behavior of cells. However, the model established in this study did
not consider the effect of time delay. Therefore, in future works, the study of cell models
with time delay is also worth considering.
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