# Enhancing Gain for UWB Antennas Using FSS: A Systematic Review

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- To the best of the authors’ knowledge, this is the first review article that looks into the ability of FSS to enhance and stabilize the gain for UWB antennas with a new direction to provide FSS miniaturization.
- Systematically reviews the development of gain enhancement techniques using FSS as a reflector for UWB applications.
- Maps associated studies into a comprehensible taxonomy, apart from highlighting the methods, theories, and enhancement analysis models used.
- The benefits and drawbacks of numerous research structures on both conventional and advanced gain improvement methods are marked with many articles’ references to provide a clear picture for interested researchers to further prod into the design of UWB planar antennas.

## 2. Systematic Literature Review Characterization and Queries

## 3. Literature Taxonomy on Gain Enhancement Techniques Using FSS

#### 3.1. FSS Single-Layer Reflectors

_{o}is the free-space wavelength, and F(θ) is the radiation pattern of the primary antenna.

#### 3.2. FSS Multi-Layer Reflectors

## 4. New Directions

- The FSS reflector size should be sufficiently large to be able to reflect all incident waves emitted from the radiator (antenna). A high reflective sheet can enhance the gain.
- The coming incident waves must be in-phase with the ongoing waves from the FSS unit cells to achieve a linearly decreasing phase.
- The gap between the radiator and FSS reflector is integral. A comfortable response with high performance can be obtained at a distance of 10 mm.
- The type of substrate is another imminent factor. This is because a high dielectric constant value is preferred for FSS reflector miniaturization.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Anwar, R.; Mao, L.-F.; Ning, H. Frequency Selective Surfaces: A Review. Appl. Sci.
**2018**, 8, 1689. [Google Scholar] [CrossRef] [Green Version] - Al-Gburi, A.J.A.; Ibrahim, I.M.; Ahmad, K.S.; Zakaria, Z.; Zeain, M.Y.; Abdulhameed, M.K.; Saeidi, T. A miniaturised UWB FSS with Stop-band Characteristics for EM Shielding Applications. Prz. Elektrotech.
**2021**, 1, 142–145. [Google Scholar] [CrossRef] - De Brito, A.C.R.; De Abreu, A.S.; D’Assunção, A.G.; Peixeiro, C. Effects of an FSS reflector on a microstrip line fed bow-tie slot antenna. J. Microw. Optoelectron. Electromagn. Appl.
**2020**, 19, 309–326. [Google Scholar] [CrossRef] - Al-Gburi, A.J.A.; Ibrahim, I.; Abdulhameed, M.K.; Zakaria, Z.; Zeain, M.Y.; Keriee, H.H.; Nayyef, N.A.; Alwareth, H.; Khaleel, A.D. A compact UWB FSS single layer with stopband properties for shielding applications. Prz. Elektrotech.
**2021**, 1, 165–168. [Google Scholar] [CrossRef] - Al-Gburi, A.J.A.; Ibrahim, I.B.M.; Zakaria, Z.; Ahmad, B.H.; Bin Shairi, N.A.; Zeain, M.Y. High Gain of UWB Planar Antenna Utilising FSS Reflector for UWB Applications. Comput. Mater. Contin.
**2022**, 70, 1419–1436. [Google Scholar] [CrossRef] - Federal Communications Commision. First Report and Order: Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems; FCC: Washington, DC, USA, 2002. [Google Scholar]
- Best, S.R. A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas. IEEE Antennas Propag. Mag.
**2003**, 45, 9–28. [Google Scholar] [CrossRef] - Best, S.R. Operating band comparison of the perturbed Sierpinski and modified Parany gasket antennas. IEEE Antennas Wirel. Propag. Lett.
**2002**, 1, 35–38. [Google Scholar] [CrossRef] - Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D′(C). In Engineering Mathematics II; Springer: Cham, Switzerland, 2016; pp. 337–353. [Google Scholar]
- Guariglia, E. Entropy and Fractal Antennas. Entropy
**2016**, 18, 84. [Google Scholar] [CrossRef] - Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy
**2018**, 20, 714. [Google Scholar] [CrossRef] [Green Version] - Krzysztofik, W.J. Fractal Geometry in Electromagnetics Applications-from Antenna to Metamaterials. Microw. Rev.
**2013**, 1, 19. [Google Scholar] - Hohlfeld, R.G.; Cohen, N. Self-Similarity And The Geometric Requirements For Frequency Independence In Antennae. Fractals
**1999**, 7, 79–84. [Google Scholar] [CrossRef] - Keriee, H.H.; Rahim, M.K.A.; Nayyef, N.A.; Zakaria, Z.; Al-Gburi, A.J.A.; Al-Dhief, F.T.; Jawad, M.M. High gain antenna at 915 MHz for off grid wireless networks. Bull. Electr. Eng. Inform.
**2020**, 9, 2449–2454. [Google Scholar] [CrossRef] - Ibrahim, I.M.; Al-gburi, A.J.A.; Zakaria, Z.; Bakar, H.A. Parametric Study of Modified U-shaped Split Ring Resonator Structure Dimension at Ultra-Wide-band Monopole Antenna. J. Telecommun. Electron. Comput. Eng.
**2018**, 10, 53–57. [Google Scholar] - Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z. An Ultra-Miniaturised MCPM Antenna for Ultra-Wideband Applications. J. Nano Electron. Phys.
**2021**, 13, 5012. [Google Scholar] - Haider, A.; Rahman, M.; Ahmad, H.; NaghshvarianJahromi, M.; Niaz, M.T.; Kim, H.S. Frequency-Agile WLAN Notch UWB Antenna for URLLC Applications. Comput. Mater. Contin.
**2021**, 67, 2243–2254. [Google Scholar] [CrossRef] - Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Zeain, M.Y.; Alwareth, H.; Ibrahim, A.M.; Keriee, H.H. High Gain of UWB CPW-fed mercedes-shaped printed monopole antennas for UWB applications. Prz. Elektrotech.
**2021**, 5, 70–73. [Google Scholar] - Al-Gburi, A.J.A., I; Ibrahim, M.; Zakaria, Z. Band-notch effect of U-shaped split ring resonator structure at ultra wide-band monopole antenna. Int. J. Appl. Eng. Res.
**2017**, 12, 4782–4789. [Google Scholar] - Jan, N.A.; Kiani, S.H.; Muhammad, F.; Sehrai, D.A.; Iqbal, A.; Tufail, M.; Kim, S. V-Shaped Monopole Antenna with Chichena Itzia Inspired Defected Ground Structure for UWB Applications. Comput. Mater. Contin.
**2020**, 65, 19–32. [Google Scholar] - Narayan, S.; Jha, R.M. A novel metamaterial FSS-based structure for wideband radome applications. Comput. Mater.Contin.
**2013**, 37, 97–108. [Google Scholar] - Askari, H.; Hussain, N.; Choi, D.; Abu Sufian, M.; Abbas, A.; Kim, N. An AMC-Based Circularly Polarised Antenna for 5G sub-6 GHz Communications. Comput. Mater.Contin.
**2021**, 69, 2997–3013. [Google Scholar] [CrossRef] - Liu, C.; Bai, Y.; Jing, L.; Yang, Y.; Chen, H.; Zhou, J.; Zhao, Q.; Qiao, L. Equivalent energy level hybridisation approach for high-performance metamaterials design. Acta Mater.
**2017**, 135, 144–149. [Google Scholar] [CrossRef] - Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med.
**2009**, 151, 264–269. [Google Scholar] [CrossRef] [Green Version] - Hwang, G.-J.; Tu, Y.-F. Roles and Research Trends of Artificial Intelligence in Mathematics Education: A Bibliometric Mapping Analysis and Systematic Review. Mathematics
**2021**, 9, 584. [Google Scholar] [CrossRef] - Knobloch, K.; Yoon, U.; Vogt, P.M. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. J. Cranio-Maxillofac. Surg.
**2011**, 39, 91–92. [Google Scholar] [CrossRef] - Fernández-Martín, F.-D.; Romero-Rodríguez, J.-M.; Gómez-García, G.; Navas-Parejo, M.R. Impact of the Flipped Classroom Method in the Mathematical Area: A Systematic Review. Mathematics
**2020**, 8, 2162. [Google Scholar] [CrossRef] - Bhandari, M.; Morrow, F.; Kulkarni, A.V.; Tornetta, P., III. Meta-analyses in orthopaedic surgery: A systematic review of their methodologies. JBJS
**2001**, 83, 15. [Google Scholar] [CrossRef] - Vankúš, P. Influence of Game-Based Learning in Mathematics Education on Students’ Affective Domain: A Systematic Review. Mathematics
**2021**, 9, 986. [Google Scholar] [CrossRef] - Stewart, L.A. Cochrane Working Group On Meta-Analysis Using Individual Patient Data Practical methodology of meta-analyses (overviews) using updated individual patient data. Stat. Med.
**1995**, 14, 2057–2079. [Google Scholar] [CrossRef] - Trentini, G.V. Partially reflecting sheet arrays. IRE Trans. Antennas Propag.
**1956**, 4, 666–671. [Google Scholar] [CrossRef] - Vardaxoglou, J.C. Frequency Selective Surfaces: Analysis and Design; Research Studies Press: Boston, MA, USA, 1997. [Google Scholar]
- Costa, F.; Monorchio, A.; Manara, G. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. Appl. Comput. Electromagn. Soc. J.
**2014**, 29, 960–976. [Google Scholar] - Cox, A.J.; Dibble, D.C. Nondiffracting beam from a spatially filtered Fabry-Perot resonator. J. Opt. Soc. Am. A
**1992**, 9, 282–286. [Google Scholar] [CrossRef] - Wang, N.; Li, J.; Wei, G.; Talbi, L.; Zeng, Q.; Xu, J. Wideband Fabry–Perot Resonator Antenna With Two Layers of Dielectric Superstrates. IEEE Antennas Wirel. Propag. Lett.
**2014**, 14, 229–232. [Google Scholar] [CrossRef] - Feresidis, A.; Vardaxoglou, J. High gain planar antenna using optimised partially reflective surfaces. IEEE Proc. Microw. Antennas Propag.
**2001**, 148, 345–350. [Google Scholar] [CrossRef] - Imran, A.I.; Elwi, T.A. A cylindrical wideband slotted patch antenna loaded with Frequency Selective Surface for MRI applications. Eng. Sci. Technol. Int. J.
**2017**, 20, 990–996. [Google Scholar] [CrossRef] - Sugumaran, B.; Balasubramanian, R.; Palaniswamy, S.K. Reduced specific absorption rate compact flexible monopole antenna system for smart wearable wireless communications. Eng. Sci. Technol. Int. J.
**2021**, 20, 682–693. [Google Scholar] [CrossRef] - A Al-Gburi, A.J.A.; Ibrahim, I.; Zakaria, Z.; Khaleel, A.D. Bandwidth and Gain Enhancement of Ultra-Wideband Monopole Antenna Using MEBG Structure. J. Eng. Appl. Sci.
**2019**, 14, 3390–3393. [Google Scholar] - Trimukhe, M.A.; Hogade, B.G. Gain Enhancement of Compact UWB Antenna Using Planar Reflector. In Proceedings of the 2019 IEEE Conference on Communication and Electronics Systems, Coimbatore, India, 15–16 November 2019; pp. 1444–1446. [Google Scholar]
- Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z. Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna. J. Comput. Theor. Nanosci.
**2020**, 17, 1469–1473. [Google Scholar] [CrossRef] - Madhav, B.T.P.; Chaitanya, A.V.; Jayaprada, R.; Pavani, M. Circular Monopole Slotted Antenna with FSS For High Gain Applications. ARPN J. Eng. Appl. Sci.
**2016**, 11, 9022–9028. [Google Scholar] - Al-Gburi, A.J.A.; Ibrahim, I.; Zeain, M.Y.; Zakaria, Z. Compact Size and High Gain of CPW-Fed UWB Strawberry Artistic Shaped Printed Monopole Antennas Using FSS Single Layer Reflector. IEEE Access
**2020**, 8, 92697–92707. [Google Scholar] [CrossRef] - Turkmen-Kucuksari, O.; Kocakaya, A.; Çakır, G.; Çimen, S. Gain enhancement of co-planar waveguide fed ultra-wide bandwidth monopole antenna with enlarged ground plane and metal reflectors. AEU Int. J. Electron.Commun.
**2020**, 126, 153422. [Google Scholar] [CrossRef] - Tewary, T.; Maity, S.; Mukherjee, S.; Roy, A.; Sarkar, P.P.; Bhunia, S. Design of high gain broadband microstrip patch antenna for UWB/X/Ku band applications. AEU Int. J. Electron. Commun.
**2021**, 139, 153905. [Google Scholar] [CrossRef] - Simruni, M.; Jam, S. Design of high gain, wideband microstrip resonant cavity antenna using FSS superstrate with equivalent circuit model. AEU Int. J. Electron. Commun.
**2019**, 112, 152935. [Google Scholar] [CrossRef] - Peddakrishna, S.; Khan, T.; Kanaujia, B. Resonant characteristics of aperture type FSS and its application in directivity improvement of microstrip antenna. AEU Int. J. Electron. Commun.
**2017**, 79, 199–206. [Google Scholar] [CrossRef] - Dwivedi, P.; Khan, M.Z.; Kommuri, U.K. UWB circular cross slot AMC design for radiation improvement of UWB antenna. AEU Int. J. Electron.Commun.
**2020**, 117, 153092. [Google Scholar] [CrossRef] - Joshi, A.; Singhal, R. Gain enhancement in probe-fed hexagonal ultra wideband antenna using AMC reflector. J. Electromagn. Waves Appl.
**2019**, 33, 1185–1196. [Google Scholar] [CrossRef] - Tahir, F.A. A novel single-layer frequency selective surface for gain enhancement of SWB antennas. Microw. Opt. Technol. Lett.
**2016**, 58, 2030–2035. [Google Scholar] [CrossRef] - Abdulhasan, R.A.; Alias, R.; Ramli, K.N.; Seman, F.C.; Abd-Alhameed, R.A. High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging. Int. J. RF Microw. Comput. Eng.
**2019**, 29, 1–15. [Google Scholar] [CrossRef] [Green Version] - Kundu, S. A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application. Int. J. RF Microw. Comput. Eng.
**2020**, 30, 1–13. [Google Scholar] [CrossRef] - Liu, Z.; Liu, S.; Zhao, X.; Kong, X.; Huang, Z.; Bian, B. Wideband Gain Enhancement and RCS Reduction of Fabry–Perot Antenna Using Hybrid Reflection Method. IEEE Trans. Antennas Propag.
**2020**, 68, 6497–6505. [Google Scholar] [CrossRef] - Kundu, S. Gain Augmentation of a Triple Notched Ultra-wideband Antenna using Compact Uniplanar Frequency Selective Surface for Ground Penetrating Radar. IETE J. Res.
**2020**, 11, 1–12. [Google Scholar] [CrossRef] - Yahya, R.; Nakamura, A.; Itami, M. Single-Layer UWB FSS for Enhancing the Gain of UWB Monopole Antenna. In Proceedings of the 2015 IEEE Conf. on Ubiquitous Wireless Broadband, Montreal, QC, Canada, 4–7 October 2015; pp. 1–5. [Google Scholar]
- Nassr, Z.A.; Zabri, S.; Shairi, N.A.; Zakaria, Z.; Othman, A.; Zobilah, A.M. Performance improvement of a slotted square patch antenna using FSS superstrate for wireless application. J. Phys. Conf. Ser.
**2020**, 1502, 012030. [Google Scholar] [CrossRef] - Adibi, S.; Honarvar, M.A.; Lalbakhsh, A. Gain Enhancement of Wideband Circularly Polarised UWB Antenna Using FSS. RadioScience
**2021**, 56, e2020RS007098. [Google Scholar] - Kushwaha, N.; Kumar, R. On the gain enhancement of a wideband CPW-Fed circularly polarized antenna using FSS. In Proceedings of the 2015 IEEE Conference on Microwave and RF, Hyderabad, India, 10–12 December 2015; pp. 378–380. [Google Scholar]
- Mondal, K. Bandwidth and gain enhancement of microstrip antenna by frequency selective surface for WLAN, WiMAX applications. Sadhana
**2019**, 44, 233. [Google Scholar] [CrossRef] [Green Version] - Paul, G.S.; Mandal, K.; Lalbakhsh, A. Single-layer ultra-wide stop-band frequency selective surface using interconnected square rings. AEU Int. J. Electron. Commun.
**2021**, 132, 153630. [Google Scholar] [CrossRef] - Ranga, Y.; Matekovits, L.; Esselle, K.; Weily, A.R. Multioctave Frequency Selective Surface Reflector for Ultrawideband Antennas. IEEE Antennas Wirel. Propag. Lett.
**2011**, 10, 219–222. [Google Scholar] [CrossRef] - Chatterjee, A.; Parui, S.K. Performance Enhancement of a Dual-Band Monopole Antenna by Using a Frequency-Selective Surface-Based Corner Reflector. IEEE Trans. Antennas Propag.
**2016**, 64, 2165–2171. [Google Scholar] [CrossRef] - Wang, N.; Liu, Q.; Wu, C.; Talbi, L.; Zeng, Q.; Xu, J. Wideband Fabry-Perot Resonator Antenna With Two Complementary FSS Layers. IEEE Trans. Antennas Propag.
**2014**, 62, 2463–2471. [Google Scholar] - Yuan, Y.; Xi, X.; Zhao, Y. Compact UWB FSS reflector for antenna gain enhancement. IET Microw. Antennas Propag.
**2020**, 13, 1749–1755. [Google Scholar] [CrossRef] - Kundu, S.; Chatterjee, A.; Jana, S.K.; Parui, S.K. A Compact Umbrella-Shaped UWB Antenna with Gain Augmentation Using Frequency Selective Surface. Radioengineering
**2018**, 27, 448–454. [Google Scholar] [CrossRef] - Saleem, R.; Bilal, M.; Shabbir, T.; Shafique, M.F. An FSS-employed UWB antenna system for high-gain portable devices. Microw. Opt. Technol. Lett.
**2019**, 61, 1404–1410. [Google Scholar] [CrossRef] - Tahir, F.A.; Arshad, T.; Ullah, S.; Flint, J.A. A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum. Microw. Opt. Technol. Lett.
**2017**, 59, 2698–2704. [Google Scholar] [CrossRef] - Chatterjee, A.; Parui, S.K. A compact wideband frequency selective surface for gain enhancement of a wide-slot antenna. In Proceedings of the 2016 IEEE Conference on Symposium on Antennas and Propagation, Fajardo, PR, USA, 26 June–1 July 2016; pp. 357–358. [Google Scholar]
- Ranga, Y.; Matekovits, L.; Esselle, K.P.; Weily, A.R. Design and analysis of frequency-selective surfaces for ultrawideband applications. In Proceedings of the 2011 IEEE Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; pp. 1–4. [Google Scholar]
- Habani, A.; Nedil, M.; A Denidni, T.; Talbi, L. High gain enhancement off-body antenna for underground mining communications. In Proceedings of the 2017 IEEE Conference on Antennas and Propagation, San Diego, CA, USA, 9–14 July 2017; pp. 2167–2168. [Google Scholar]
- Chatterjee, A.; Parui, S.K. A dual-layer frequency selective surface for radiation diversity of a monopole antenna. In Proceedings of the 2017 IEEE Conference on Antenna Innovations & Modern Technologies for Ground, Bangalore, India, 24–26 November 2017; pp. 1–5. [Google Scholar]
- El Jaafari, B.; Floch, J.-M. Gain enhancement of a slot antenna using multiple metasurfaces. In Proceedings of the 2017 IEEE Conference on Antennas and Propagation, Paris, France, 19–24 March 2017; pp. 756–758. [Google Scholar]
- Segundo, F.C.G.D.S.; Campos, A.L.P.D.S.; Neto, A.G. A design proposal for ultrawide band frequency selective surface. J. Microw. Optoelectron. Electromagn. Appl.
**2013**, 12, 398–409. [Google Scholar] [CrossRef] [Green Version] - Saidi, R.; Titaouine, M.; Djouimaa, A.; Adoui, I.; Bencherif, K.; De Sousa, T.R.; Neto, A.G.; Baudrand, H. Analysis and synthesis of multiband dual polarised parallel metallic strips FSS with a ring using WCIP method. AEU Int. J. Electron.Commun.
**2018**, 96, 294–302. [Google Scholar] [CrossRef] - Vaid, S.; Mittal, A. High gain planar resonant cavity antennas based on metamaterial and frequency selective surfaces. AEU Int. J. Electron. Commun.
**2015**, 69, 1387–1392. [Google Scholar] [CrossRef] - Ranga, Y.; Matekovits, L.; Weily, A.R.; Esselle, K. A Constant Gain Ultra-Wideband Antenna with a Multi-Layer Frequency Selective Surface. Prog. Electromagn. Res. Lett.
**2013**, 38, 119–125. [Google Scholar] [CrossRef] [Green Version] - Munk, B.A. Frequency Selective Surfaces: Theory and Design; John Wiley & Sons Inc.: New York, NY, USA.

**Figure 4.**Schematic textile antenna with FSS: (

**a**) Simulation model, (

**b**) reflection coefficient, and (

**c**) gain [37].

**Figure 5.**Metallic FSS reflector with a UWB antenna: (

**a**) Prototype, (

**b**) reflection coefficient, and (

**c**) gain [40].

**Figure 6.**The proposed FSS reflector with a UWB antenna: (

**a**) Fabricated antenna, (

**b**) reflection coefficient, and (

**c**) gain [45].

**Figure 7.**The FSS reflector along with the antenna: (

**a**) Designed FSS unit cell, (

**b**) reflection and transmission coefficient of FSS, and (

**c**) maximum gain with/without FSS [55].

**Figure 8.**Predicted and measured results of the finalized antenna: (

**a**) Fabricated antenna, (

**b**) S11, and (

**c**) peak gain along with efficiency [57].

**Figure 9.**The theoretical principle of the FSS multi-layer reflector in: (

**a**) Operational mechanism, and (

**b**) Phase of reflection [61].

**Figure 12.**Geometries of various classes of FSS element cells [77].

Digital Library | IEEE Xplore | Web of Science | Science Direct |
---|---|---|---|

Periods | Last 10 years | Last 10 years | |

Language | English | English | |

Search prototype | Journals and conferences | Journals and conferences | |

Subject domain | Meta-data | Full manuscript | |

Date of search | 2021 | 2021 |

**Table 2.**Summary of studies that assessed the gain improvement of UWB planar antennas with an FSS structure.

References | Total Antenna Dimension (mm) | Operating Frequency (GHz) | Peak Gain (dB) | Enhanced Gain (dB) | Number of Reflector Sheets | Dielectric-Layer Type |
---|---|---|---|---|---|---|

[37] | 32 × 28 × 32 | 7.8–15 | 6.4 | 3.9 | One | Teflon |

[38] | 120 × 120 × 30 | 2.07–2.6 | 7.76 | 5.16 | One | Textile |

[39] | 32 × 32 × 1.6 | 2.7–10.84 | 5 | 3 | One | FR4 |

[40] | 20 × 20 × 35 | 3.1–10.6 | 6.4 | 2.2 | One | FR4 |

[42] | 64 × 56 × 18.2 | 3.5–14 | 5 | 4 | One | FR4 |

[43] | 61 × 61 × 10 | 3.05–11.9 | 9.6 | 6.22 | One | FR4 |

[44] | 164.24 × 120 × 71.52 | 3–11 | 14.8 | 5.6 | One | FR4 |

[45] | 52.8 × 52.8 × 18 | 5–24.6 | 8.8 | 5.9 | One | FR4 |

[48] | 40 × 40 × 13.7 | 2.4–11.2 | 8.5 | 3.5 | One | FR4 |

[49] | 100 × 100 × 12 | 2.4–11.8 | 5.5 | 3.74 | One | FR4 |

[50] | 65 × 60 × 20 | 2–20 | 7 | 4 | One | FR4 |

[51] | 21.6 × 21.6 × 29.6 | 3.8–10.6 | 7.8 | 2 | One | FR4 |

[52] | 41 × 43 × 25 | 2.82–19.94 | 6.7 | 3.5 | One | FR4 |

[54] | 35 × 30 × 25 | 2.64–9.36 | 8 | 2 | One | FR4 |

[55] | 120 × 120 × 16 | 3–12 | 9.2 | 6 | One | FR4 |

[57] | 20 × 20 × 10 | 3.7–11.1 | 9 | 4 | One | FR4 |

[59] | 45.8 × 55 × 16 | 2.9–9.3 | 8.12 | 2.9 | One | FR4 |

[61] | 110 × 110 × 12 | 3–12 | 9.8 | 3.8 | Two | FR4 |

[63] | 72 × 72 × 10 | 8.6–11.4 | 13.8 | - | Two | Rogers/5880 |

[64] | 82.5 × 82.5 × 10 | 2.5–11 | 9 | 3.7 | Two | Rogers RO4350B |

[65] | 35 × 30 × 25 | 3.05–13.4 | 8.5 | 2 | Two | FR4 |

[66] | 25 × 25 × 9.6 | 4–10 | 8.4 | 5 | Two | FR4 |

[67] | 85 × 85 × 15 | 2.8–14.2 | 8.9 | 4 | Two | FR4 |

[68] | 80 × 80 × 15 | 3–6 | 9 | 2-4 | Two | FR4 |

[69] | 150 × 150 × 12 | 2.9–18.38 | 10.9 | 5 | Two | FR4 |

[70] | 63 × 63 × 25.7 | 5.5–7 | 12.3 | 2.03 | Three | Gallium Arsenide |

[71] | 57 × 57 × 1.6 | 4.5–6.5 | 14 | 10 | Two | FR4 |

[76] | 140 × 140 × 10 | 3–15 | 9.23 | 5.3 | Four | Rogers/5880 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Abdulhameed, M.K.; Saeidi, T.
Enhancing Gain for UWB Antennas Using FSS: A Systematic Review. *Mathematics* **2021**, *9*, 3301.
https://doi.org/10.3390/math9243301

**AMA Style**

Al-Gburi AJA, Ibrahim IM, Zakaria Z, Abdulhameed MK, Saeidi T.
Enhancing Gain for UWB Antennas Using FSS: A Systematic Review. *Mathematics*. 2021; 9(24):3301.
https://doi.org/10.3390/math9243301

**Chicago/Turabian Style**

Al-Gburi, Ahmed Jamal Abdullah, Imran Mohd Ibrahim, Zahriladha Zakaria, Muhannad Kaml Abdulhameed, and Tale Saeidi.
2021. "Enhancing Gain for UWB Antennas Using FSS: A Systematic Review" *Mathematics* 9, no. 24: 3301.
https://doi.org/10.3390/math9243301