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Abstract: Computational genomics aim at supporting the discovery of how the functionality of
the genome of the organism under study is affected both by its own sequence and structure, and
by the network of interaction between this genome and different biological or physical factors. In
this work, we focus on the analysis of ChIP-seq data, for which many methods have been proposed
in the recent years. However, to the best of our knowledge, those methods lack an appropriate
mathematical formalism. We have developed a method based on multivariate models for the analysis
of the set of peaks obtained from a ChIP-seq experiment. This method can be used to characterize
an individual experiment and to compare different experiments regardless of where and when they
were conducted. The method is based on a multivariate hypergeometric distribution, which fits the
complexity of the biological data and is better suited to deal with the uncertainty generated in this
type of experiments than the dichotomous models used by the state of the art methods. We have
validated this method with Arabidopsis thaliana datasets obtained from the Remap2020 database,
obtaining results in accordance with the original study of these samples. Our work shows a novel
way for analyzing ChIP-seq data.

Keywords: bioinformatics; computational genomics; ChIP-seq experiment; protein binding func-
tional regions; multivariate hypergeometric distribution

1. Introduction

Computational genomics consists of the use of a wide range of mathematical tools, im-
plemented in specific software, in order to solve challenges such as how the functionality of
the genome of the organism under study is affected both by its own sequence and structure,
and by the network of interaction between this genome and different biological or physical
factors (proteins, metabolites, molecular complexes, electromagnetic radiation, etc.).

One of the main types of experiments included in this field is the so-called chromatin
immunoprecipitation (ChIP) experiment [1], which aims to identify and localize in vivo all
the binding sites of a given DNA-binding protein throughout the genome of an organism,
tissue, or cell line subjected to a specific biological condition (e.g. “wild type” or “stress”).
Subsequent bioinformatics analysis of the results of this experiment will be carried out to
elucidate the biological implications of the binding protein on the organism under study [2].
ChIP-seq experiments [3] consist of a first ChIP phase in which the immunoprecipitated
fragments of the DNA molecule (with a length of between 150 and 1000 nucleotides) to
which the protein under study has been attached (hereafter referred to as target protein)
are enriched over the immunoprecipitated fragments corresponding to the rest of the
genome. This is followed by a phase of identification of these fragments in two steps.
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The first one is their initial segmentation into subfragments with a length between 30 and
150 nucleotides and subsequent sequencing of their nucleotide chain (seq) through next
generation sequencing (NGS) techniques, which, by means of “base calling” algorithms,
obtains the so-called “reads” (sequenced subfragments). In a second step, the reads
obtained are mapped onto the reference genome of the organism under study, i.e., the
identification of the site(s) where the read is statistically presumed to belong, including
both the regions to which the target protein binds and those of the rest of the genome. Once
the reads obtained from the experiment have been mapped, “peak calling” algorithms
apply statistical enrichment analysis to identify the binding sites of the protein in the
genome, which are called “peaks”, referring to the shape of the distribution of mapped
reads on these regions. Thus, peaks are the enriched regions of mapped reads, and they are
considered as the hosts of possible binding sites.

The following are the main challenges facing methods or algorithms used in compu-
tational genomics in general and among them those focused on ChIP-seq experiments:
(i) algorithms have to process a huge amount of data; (ii) the data have a degree of uncer-
tainty associated [4,5], which is generated and accumulated by the occurrence of technical
errors, biases in the algorithms used, the nature of the data being worked with and other
unknown and therefore uncontrollable factors; (iii) the inherent complexity of the genomic
and biochemical information represented by an extensive network of interacting nodes to
carry out complex biological processes within a cell, tissue, or organism.

One of the most important stages is elucidating the biological implications of the peaks
obtained in a ChIP-seq experiment, which has the following specific challenges: (i) the noise
accompanying each peak, where the length of the peak is on average about 20 times longer
than the actual site where the protein under study binds; (ii) obtaining peaks that do not
actually harbor any binding site for the target protein; (iii) to establish correct relationships
between the peak obtained and the functional elements of the genome. The state-of-the-art
methods use heuristic methods in some cases, statistical methods in others, and both at the
same time. Although there are two common features of all the tools developed so far, one
of them consists of modeling and treating each peak obtained [6–9] and each functional
element [10] belonging to the genome under study individually, while the other consists
of working with dichotomous models, where models are created containing regions of
different extension, with two possible values, and which in most cases lack a mathematical
formalism in the generation of the models used.

The main objective of this work consists of the design, implementation and validation
of an analysis method to overcome the two main challenges seen above. Our method
treats all the peaks of a ChIP-seq experiment as if they were the result of a random
experiment where a multivariate hypergeometric model can be defined. This method
reflects the behavior of the target protein, taking into account each and every one of the
peaks generated along the entire genome where they have been mapped, as well as all the
possible binding sites that this genome harbors.

Our method addresses the two challenges as follows: (i) The uncertainty that is
generated at each stage throughout the whole process is handled by applying statistical
techniques and applying a standardized methodology, in which each step has a precise,
complete definition and setting of the parameters; (ii) the complex nature of the biological
data to be interpreted is dealt with through the use of multivariate probabilistic or back-
ground models that accurately represent the entire sample space being analyzed; in this
way, adjusting the dimensionality of each model (statistical variables) to this complexity.
Thereby, the proposed method permits to extract precise information available from the set
of peaks obtained from a ChIP-seq experiment, as well as to compare the results obtained
from different experiments. The characteristics of this method are: (i) flexibility, allowing
the analysis of ChIP-seq experiments for any type of organism, tissue, or cell line, as long
as there is sufficient information on the configuration and structure of its genome and its
component genes; (ii) extensibility, it allows for the incorporation of new information that
is generated over time, thus improving the method; (iii) mathematical formalization, imple-
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mented both in the generation of the probabilistic models and in the statistical techniques
used on them.

Finally, we have validated the method using information from public repositories,
both to obtain the datasets of peaks from ChIP-seq experiments and the information
necessary for the modeling of the genome of the organism under study, which in this case
is Arabidopsis thaliana, a well-characterized plant widely used as an experimental model.
The results obtained show the capacity of our method to analyze these types of experiments
from a point of view that has not been considered until now.

2. Methods
2.1. General Overview

Our basic assumptions are that the results of a ChIP-seq experiment (set of peaks) are
a random vector following a multivariate hypergeometric distribution [11–13], and we can
model the genome according to the expected characteristics of this type of random experiment.

Let S be a finite population formed by m elements which are classified into k mutually
exclusive classes, i.e., each element belongs to one and only one of the k classes. Let Si
be the subpopulation of all the elements of the ith class, being mi its subpopulation size
(i = 1, 2, . . . , k) and m = ∑k

i=1 mi. Then, the random experiment consisting in drawing
without replacement n elements of S is represented by the random vector X = (X1, . . . , Xk),
where each Xi denotes the number of elements of the Si class in the sample. The random vec-
tor X follows a multivariate hypergeometric distribution with parameters n, (m1, . . . , mk)
and m = ∑k

i=1 mi,

X ∼ MH(n, (m1, . . . , mk), m),

whose joint probability mass function is given by

PX(x1, . . . , xk) =
1
(m

n)

k

∏
i=1

(
mi
xi

)
(1)

where 0 ≤ xi ≤ mi and ∑k
i=1 xi = n.

From (1), the ith component of X has a univariate hypergeometric distribution with
parameters (n, mi, m), Xi ∼ H(n, mi, m) for i = 1, 2, . . . , k. In reality there are only k− 1
distinct marginal random variables, since ∑k

i=1 Xi = n [14], and for j 6= i with j = 1, 2, . . . , k,
their means, variances, and covariances are

E(Xi) = n
mi
m

, Var(Xi) = n
mi
m

(
1− mi

m

)m− n
m− 1

, (2)

and

Cov(Xi, Xj) = −n
mimj

m2
m− n
m− 1

.

In our case, S is the finite population of all individual binding sites with a given length,
that the genome can house. Each individual binding site must satisfy two requirements: (i) to
belong only to one of the Si classes of k functional regions (promoters, upstream, exons, . . . )
assigned, being also named the annotated binding sites; (ii) to have the same probability of
being chosen. Finally, E is the set of n peaks obtained from a certain ChIP-seq experiment.
To convert an element of E (peak) into an element of S (annotated binding site) with
its corresponding assigned functional region Si, its length has to be adjusted to the one
given for the elements of S in a process called peak standardization that will be seen below.
The finite population S is represented by the background model, which is derived from the
genome model. Otherwise, once processed, the set E is represented by the ChIP-seq model.

The generation of the necessary models for data processing consists of two parallel
and independent tracks (Figure 1). On the one hand, the genome model (yellow) contains
the necessary information, collected from available resources regarding the structure
and organization of (i) both the genome and the genes to be considered, and (ii) the
tissue or organism associated with the experiment whose results are going to be analyzed.
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This information is transformed from a series of parameters for subsequent use in the
annotation process, generating the background model (blue). This model is composed of
the annotated binding sites, which have been assigned a class of the functional regions
that make up the genome model. On the other hand, a peak standardization process
(Appendix A) is carried out on the set of peaks obtained from a given ChIP-seq experiment
(ChIP-seq dataset). The peaks are standardized with a given length and are grouped in the
ChIP-seq model. This length must be equal to the length configured in the background
model. In the annotation process, each standardized peak is assigned a single class of
functional region according to the annotated binding site with which it overlaps, becoming
known as the annotated peaks. The set of all annotated peaks obtained from a specific
ChIP-seq model according to a specific background model is called ChIP-seq annotated.

Finally, we obtain the characteristic profile, which includes information on the fre-
quencies, expected values, standard deviations and Z-scores, for this annotated ChIP-seq.
The characteristic profile depends on the count of the annotated peaks obtained according
to the type of functional region class with which it has been annotated and the background
model used in this annotation process. Further analyses are based on this information:
(1) a goodness-of-fit test based on the multivariate hypergeometric distribution determines
whether the distribution of the annotated peaks associated with the sample can be con-
sidered to belong to the population represented by the background model used in the
annotation process; (ii) a test of homogeneity based on the multivariate hypergeomet-
ric model determines whether the distributions of two ChIP-seq annotated follow the
same model.

Figure 1. Overview of the different models created, in which the information collected from different databases is
transformed, as well as their main components and parameters.

2.2. Representation Models
2.2.1. Model Dimensionality

The dimensionality of the model is given by the number of different classes of func-
tional regions assumed to be part of the genome of the organism under study. These
functional regions will depend mainly on the biotype (e.g., protein-coding, non-coding
RNA, pseudo-gene or jumping gene) of the genes whose locus in the genome provides a
functional product, which will be included in the genome model. Although in this work
only protein-coding genes, whose functional product is a protein, have been considered,
genes of different biotypes could also be included, either simultaneously or separately, de-
pending on the objective of the research or in order to refine the genome model according
to the target protein under study. For this work, a protein-coding gene has been considered
to consist of a promoter region [15], a proximal region [16], splice regions including donor,
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and acceptor regions [17], a cleavage region [18], exons, and introns. Figure 2 shows both
the layout as well as the extension from the considered reference point of all functional
regions mentioned above. In addition to the functional regions directly related to the differ-
ent gene biotypes, there are others where their own nucleotide sequence has a characteristic
function without encoding any product. These would be the enhancers, insulators, and so
on. These types of functional regions are distributed throughout the genome and can also
be considered in the model.

exon 1 exon 2

TSS

intron

−125 +100 +5−50 +120−50+10−5300

promoterproximal exon splice intron splice exon cleavage

TES

5′

3′

intergenic

intergenic

Figure 2. Depiction of the layout and extent (base pairs) of functional regions (italic) corresponding to a protein-coding
gene (consisting of tow exons and an intron) lying in the forward strand of a DNA molecule (solid line). The reference
points are the transcription start site (TSS), the transcription end site (TES), and the start and end coordinates of the exons of
the selected transcript. Distances are in base pairs (bp).

It should be noted that protein-coding genes, in the case of eukaryotic organisms, such
as Arabidopsis thaliana, can harbor different transcripts (product of the transcription process
from the DNA molecule to the RNA) that include different exons, and therefore present
different arrangements of the respective functional regions. This method represents for
each gene a single transcript, which we call the canonical transcript, and it is usually the
most representative transcript of the gene, although a tissue- or cell line-specific transcript,
if available, could be chosen.

2.2.2. Genome Model

As mentioned above, this model accounts for all the existing knowledge of the genome
of the cell line, tissue, or organism on which the ChIP-seq experiment was performed. This
information is collected from available databases. It aims at describing the genome regions
to which the experiment reads can be mapped and how they are organized (autosomal, sex,
or mitochondrial chromosomes, plasmids, . . . ). Note that the greater the knowledge about
the entity to be modeled, the more accurate the model becomes. Therefore, the regions
without defined sequences, called gaps, are taken into account. Once the genome frag-
ments with defined sequence have been identified, the next step is to locate the different
classes of functional regions according to the genes that are considered to be part of the
genome. In the genome model, the intergenic region is the default one, and it includes
regions of the genome that have not been annotated with any kind of functional region and
represent either regions that have no functionality (at least of interest for the analysis) or
regions whose functionality is unknown. In this work, we assume a haploid genome model
regardless of the organism’s karyotype, because the state-of-the-art mapping and base call-
ing algorithms do not discriminate between the alleles of homologous chromosomes [19].
However, if peaks falling on homologous chromosomes could be distinguished, they could
be represented in this model.
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2.2.3. Background Model

An annotated binding site is a region located in the genome with a specific length. It is
defined by the chromosome to which it belongs, the start and end chromosome coordinates,
the strand where it is located, and the annotation of the functional region class assigned to
it. This annotation is the result of an exhaustive and mutually exclusive process through
which each annotated binding site is assigned to one functional region class of the genome
model under study, or the intergenic class. From the point of view of a given genome
model, the background model is the set of all the annotated binding sites that it can host,
according to a set of parameters. These parameters allow different background models
to be defined for the same genome model. From the point of view of a target protein,
a background model is the population of all annotated binding sites to which it could
randomly bind.

The setting of a background model involves the following attributes:

• The sample space determines which portion of the genome model will be part of the
background model: the whole genome model, one or several chromosomes, or even a
portion of them;

• The peak length sets the length of the annotated binding sites. This must match the
standardized peaks of the ChIP-seq model to be analyzed through this background
model. This makes all annotated binding sites equiprobable;

• The overlap rate is the percentage that determines the minimum number of nu-
cleotides of an annotated binding site that must overlap over the extent of a given
functional region for its class to be assigned to it. The higher the value sets, the more
restrictive the background model will be;

• The priority rule resolves cases where two or more classes of different functional
regions overlap with each other, determining the class of functional region that should
be assigned to an annotated binding site. There is mutual exclusion between the
different classes;

• The strand determines the functional regions that are considered in the generation of
the background model, according to the strand in which they are located. Its value
may be forward, reverse, or both. The latter takes into account all functional regions
regardless of the strand where they are located. It represents the flexibility of the
method. The higher the value of the overlap rate attribute and the lower the value of
the peak length, the more accurate the results of the analysis will be. Nevertheless,
the settings of these parameters must be consistent with the accuracy and reliability
of the peaks obtained in the ChIP-seq experiment under analysis.

2.2.4. ChIP-seq Model

We define a ChIP-seq model as the set of all standardized peaks derived from the peaks
obtained from a certain ChIP-seq dataset through a standardization process (Appendix A).
The purpose of a standardized peak is to specify both the location and the extent of the
binding site that it depicts as accurately and reliably as possible. In order to achieve this, it
is necessary to take into account both the discrepancy between its length and that of the
real binding site, the so-called summit of a peak most likely being the coordinate of the
peak center.

The features of a standardized peak are:

• Location, whose values in the genome are chromosome, strand and start and end,
both expressed in chromosomal coordinates;

• Peak center, which is determined by the standardization process;
• Peak length, which may be either manually estimated by the researcher according to

prior information about the target protein under study or automatically computed by
motif discovery algorithms according to information gained by this analysis itself.

For each match between the set of standardized peaks of a ChIP-seq model and the
annotated binding sites of a particular background model, an annotated peak is obtained.
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An annotated peak has the additional attribute Annotation, which indicates the class of
functional region or alternatively the class “intergenic” that has been assigned to it. Note
that the value of this attribute relies on the background model used.

2.3. Analysis Models

A ChIP-seq model annotated through a certain background model can be treated
as the result of a random vector following a multivariate hypergeometric distribution,
and hence different analyses can be applied. On the one hand, each ChIP-seq model can be
characterized by the number of annotated peaks in each class, by providing a characteristic
profile of the binding sites. A goodness-of-fit test may be developed to determine the
degree of similarity between the distribution of functional regions obtained from the ChIP-
seq model (observed frequencies) and that of the background model used for its annotation
as reference (expected frequencies). Furthermore, an homogeneity test can also be applied
to analyze the similarity between the distributions of two different ChIP-seq models.

2.3.1. Characteristic Profile

The characteristic profile of a ChIP-seq model is obtained by counting how many
standardized peaks are annotated per class, according to a random vector X with a multi-
variate hypergeometric distribution (1). For each ChIP-seq model, a profile includes a set
of values, such as the absolute and relative frequencies and their confidence intervals (CI),
expected values, standard deviations (sd), and Z-scores, whose experimental results have
been summarized in Appendix B (Tables A1–A8).

In order to obtain a more accurate standardized profile of a protein-DNA binding sites
from a cell line, the ratios of bindings over the functional regions pi = mi/m are estimated
from all ChIP-seq experiments available under the same target protein and cell line by
regarding the relative frequencies Ri = Xi/n as k − 1 discrete random variables, since
∑k

i=1 Ri = 1 and from (2):

E(Ri) = pi and Var(Ri) =
1
n

pi(1− pi)
m− n
m− 1

, (3)

and hence, the method of moments yields consistent and unbiased estimators of the ratios
of bindings, p̂i = ri [20,21].

Furthermore, a non-parametric bootstrap resampling approach [22] is applied to
estimate the empirical variability of the ratio of each functional region so as to calculate the
95% CIs for the ratios of the peak counts into each region by using 10,000 bootstrapped
replicates. In particular, for each functional region Si, the percentile method was applied to
calculate the 95% CI for the relative frequency by selecting the 2.5th and 97.5th percentiles
of its 10,000 bootstrapped replications, i.e., the r(250) and r(9750) values of Ri, where r(j)
represents the jth value in increasing order. The distribution of the relative frequencies,
along with the 95% CIs (Figures A1A–A8A in Appendix B), represents the profile of the
target protein under study with respect to the sites where it is located throughout the
selected portion of the genome of the given cell line under a specific biological condition.

In addition, for the functional region Si according to a ChIP-seq annotated through a
given background model, a Zi-score can be obtained by standardising the ith component
of X from (2), or equivalently, by standardising the ith relative frequency Ri from (3),
as follows

Zi =
Xi − E(Xi)√

Var(Xi)
=

Ri − E(Ri)√
Var(Ri)

(4)

being E(Zi) = 0, Var(Zi) = 1, and the Z-scores’ covariances are given by

Cov(Zi, Zj) = −
√

pi pj

(1− pi)(1− pj)
, for j 6= i.
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The Z-scores obtained for the functional regions quantify the preferences that the
target protein has for each one of these classes in such a particular ChIP-seq model
(Figures A1B–A8B in Appendix B).

2.3.2. Goodness-of-Fit Test

Considering the multivariate hypergeometric distribution of the peak counts into the
functional regions on the genome as the reference model (background model), i.e., the
null hypothesis

H0 : (X1, . . . , Xk) ∼ MH(n, (m1, . . . , mk), m),

this test measures the fit of the observed peak counts (ChIP-seq model) to the expected
peak counts (background model), which analyzes whether their differences were by chance.

For population size m large relative to n, sampling without replacement is closely
approximated by sampling with replacement. Thus, the joint modeling of functional
regions will be analyzed by assuming independence among the Zi-scores (4) due to large
m, and in addition, each Zi may be approximated by a standard normal distribution [23].
Other approximations related to the hypergeometric distribution or transformations of it
have been studied in [20,24–27].

In this first approach, the statistic T defined by the sum of squares of Zi-scores can be
approximated by a chi-squared distribution with k− 1 degree of freedom:

T =
k

∑
i=1

Z2
i ≈ χ2

k−1, (5)

which is similar to the multinomial test of Pearson, by using the binomial approxi-
mation to the hypergeometric given by Sandiford [28] for each Zi-score. Some alter-
native statistics and corrections for continuity have been discussed in the literature,
e.g., see [14,23,24,26–30], although the difference is negligible for large m [24]. Moreover,
the maximum, range and rate of the extreme order statistics can also be used for detecting
outliers and extreme values [27,31].

From the result of this test (p-value), the degree of similarity between the correspond-
ing ChIP-seq model and its associated background model can be quantified. Thus, the
decision can be made on the randomness (or not) of the binding sites where the target
protein has been located, i.e., whether the distribution obtained from the classes of the anno-
tated peaks is what would be expected by chance according to the background model used,
or otherwise whether there is a specific functional region whose frequency is significantly
different from the expected.

2.3.3. Test of Homogeneity

From two ChIP-seq experiments, this test measures the difference between the ob-
served peak counts into the same set of k functional regions under an underlying multi-
variate hypergeometric distribution, i.e., the null hypothesis

H0 : Y1 ∼ MH(n1, (m11, . . . , m1k), m) ≡ Y2 ∼ MH(n2, (m21, . . . , m2k), m).

Hence, each Zji-score associated with Yji given by (4) depends on the parameters
(nj, mji, m) for j = 1, 2, which can be reduced to (nj, mi, m), since m1i = m2i under the null
hypothesis. Thereby, the mean and variance of Yji can be written as

E(Yji) = nj
mi
m

and Var(Yji) = nj
mi
m

(
1− mi

m

)m− nj

m− 1
,

where the subpopulation size mi is estimated from the observed values y1i + y2i of Y1i +
Y2i ∼ H(n1 + n2, mi, m). Thus, the maximum likelihood estimate of mi is an integer value
in the interval
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[li, ui] =

[
(m + 1)(y1i + y2i)

n1 + n2
− 1,

(m + k− 1)(y1i + y2i)

n1 + n2

]
,

i.e., m̂i is between the greatest integer less than or equal to ui and the lowest integer
greater than or equal to li, which can be found by using the algorithm of Oberhofer
and Kaufmann [32]. In particular, if m/(n1 + n2) is an integer, the maximum likelihood
estimates m̂i can be expressed as (see [20,32,33])

m̂i = (y1i + y2i)
m

n1 + n2
,

which are as the ones obtained by the method of moments [20,21].
Therefore, under the same assumptions of Section 2.3.2, the statistic T defined by the

sum of squares of Zji-scores can be approximated by a chi-squared distribution with k− 1
degree of freedom:

T =
2

∑
j=1

k

∑
i=1

Z2
ij ≈ χ2

k−1. (6)

From the result of this test (p-value), the degree of similarity between the two ChIP-seq
models annotated through the same background model can be quantified. Thus, we can
identify similar characteristic profiles and the functional region class whose frequencies
are most significantly different between both profiles, and therefore also the biological
conditions where the target protein location is differentially altered.

3. Results
3.1. The Use Case

The validation of our method was carried out using ChIP-seq experiments collected
from the ReMap2020 database (https://remap2020.univ-amu.fr, accessed on 30 November
2021) [34]. The peaks of the ReMap2020 ChIP-seq datasets were generated by applying
its own pipeline from reads generated by ChIP-seq, ChIP-exo, and DAP-seq experiments
collected from public resources such as GEO (https://www.ncbi.nlm.nih.gov/geo, ac-
cessed on 30 November 2021), ENCODE (https://www.encodeproject.org, accessed on
30 November 2021) or ENA (https://www.ebi.ac.uk/ena/browser/home, accessed on
30 November 2021). ReMap2020 contains 5798 ChIP-seq datasets performed on cell lines
belonging to Homo sapiens, and 795 performed on Arabidopsis thaliana.

In particular, four Arabidopsis thaliana ChIP-seq datasets correspond to the GSE112951
experiment carried out by Nassrallah et al. [35], which analyzed the influence of the light-
mediated development protein (DET1) on the pattern of monoubiquitination (chemical
modification where a ubiquitin molecule is added to the target molecule) of histone H2B
(H2Bub). The DET1 is a component of light signal transduction machinery, involved
in the repression of photomorphogenesis in darkness through regulation of the activity
of ubiquitin conjugating enzymes, involved in the repression of de-etiolation in devel-
oping seedling, and involved in the repression of the blue light responsive promoter in
chloroplasts (UniProt Consortium https://www.uniprot.org/uniprot/P48732, accessed
on 30 November 2021). In such a study, two replicates of a ChIP-seq experiment using
an antibody against H2Bub were performed in each condition, where each peak obtained
indicates that histone H2B is monoubiquitinated. For both, a gene had been tagged if a
peak fell within the region spanning from −1 kb from the TSS to +1 kb from the TES. The
results of Nassrallah et al. [35] revealed that DET1 is directly linked to the histone H2B
monoubiquitination pathway. They found that over 6900 genes supported a peak in all four
samples, while the number of genes decayed over 20% in the samples with the mutated
gene relative to the wild type samples, regardless of the light or dark condition. Table 1
shows the peaks obtained in the experiments performed on the Col-0-seedling cell line
for the wild type and the knockout mutant for the DET1 gene in both light and darkness
conditions for 5 days.

https://remap2020.univ-amu.fr
https://www.ncbi.nlm.nih.gov/geo
https://www.encodeproject.org
https://www.ebi.ac.uk/ena/browser/home
https://www.uniprot.org/uniprot/P48732
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These four Arabidopsis thaliana ChIP-seq datasets synthesised in Table 1 have been
chosen to illustrate the usefulness of the proposed method.

Table 1. Number of peaks obtained in the four ChiP-seq experiments carried out in the GSE112951
study on the Col-0-seedling cell line of the organism Arabidopsis thaliana, for samples with the
wild-type and knockout mutant DET1 gene subjected to light and darkness conditions for 5 days.

Study Cell Line ChIP-seq Dataset
Bio-Condition

Peaks
DET1 Light

GSE112951 Col-0-seedling

5d-L Wild type Light 12,782
5d-D Darkness 12,305

det1_5d-L Knockout mutant Light 12,165
det1_5d-D Darkness 12,173

3.1.1. The Arabidopsis thaliana Genome Model

The Arabidopsis thaliana assembly TAIR10 (https://plants.ensembl.org/Arabidopsis_
thaliana/Info/Index accessed on 30 November 2021) was used for generating the genome
model. A total of 27,420 protein-coding genes (Table A9) were collected from Ensembl Plants
release 51 [36] using the BioMart tool. The components of the BioMart query used are
specified in Table A10. We only used the 5 genomic chromosomes, with a total length of
119,146,348 bp, which were the ones used in the original experiment. The gaps were collected
from https://genome.ucsc.edu/goldenPath/help/examples/hubExamples/hubAssembly/
plantAraTha1/araTha1/gap.html (accessed on 30 November 2021), which represent 0.156%
of the total genome. Note that gaps smaller than 10 nucleotides (nt) were not considered.

We used the regions indicated in Section 2.2.1 as functional regions of this model,
and their description was shown in Figure 2, including the intergenic region. Therefore,
we used a 7-dimensional genome model. On the other hand, an 8-dimensional genome
model was created by including the enhancer as the functional region. The enhancers were
obtained from Zhu et al. [37].

3.1.2. The Arabidopsis thaliana Background Model

The values of the parameters set for this background model were the following:

• Peak length = 31 nt, which is an average length to deal with inaccuracy in the peaks;
• Overlap rate = 20%; an overlap of at least 7 nt of a standardized peak over a certain

class of functional region is necessary for that class to be assigned to that peak;
• Sample space = {1, 2, 3, 4, 5}, that is, the 5 genomic chromosomes;
• Strand = both. All functional regions belonging to the two strands of the DNA molecule,

forward and reverse, are considered;
• Prior rule = promoter > proximal > enhancer > cleavage > splice > exon > intron > intergenic.

A functional region class had higher priority than those to its right and lower priority
than those to its left. Thus, the promoter class had the highest priority over the
other classes.

Once all the above parameters were applied to the information stored in the genome
model, the two background models with 7 and 8 dimensions (dm) were generated (Table 2).
It should be noted that the highest percentage of annotated binding sites corresponds to
the intergenic class, followed by exon and splice. The comparison of both background
models reveals that 2% out of the annotated binding sites of the enhancer class in the 8 dm
are found in regions of the intergenic class in the 7 dm.

https://plants.ensembl.org/Arabidopsis_thaliana/Info/Index
https://plants.ensembl.org/Arabidopsis_thaliana/Info/Index
https://genome.ucsc.edu/goldenPath/help/examples/hubExamples/hubAssembly/plantAraTha1/araTha1/gap.html
https://genome.ucsc.edu/goldenPath/help/examples/hubExamples/hubAssembly/plantAraTha1/araTha1/gap.html
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Table 2. Percentage of annotated binding sites of each functional region class considering the
5 genomic chromosomes of Arabidopsis thaliana, both for the 8 dm background model that includes
the enhancer class, and for the 7 dm background model that does not include the enhancer class.

Functional Regions
Arabidopsis Background Model

8 dm (%) 7 dm (%)

Promoter 5.49 5.49
Proximal 6.36 6.36
Enhancer 2.04 -
Cleavage 3.02 3.22

Splice 10.42 10.43
Exon 28.89 29.07
Intron 8.21 8.24

Intergenic 35.57 37.19

Total 100 100

3.1.3. ChIP-seq Models for GSE112951

Although in the original study two replicates were performed for each of the four
biological conditions, the Remap2020 database unified the reads from both replicates
as input data to its pipeline to generate a single ChIP-seq dataset for each biological
condition. Thus the ChIP-seq datasets collected from Remap2020 consisted of 12,782
and 12,305 peaks for the wild type condition in light (5d-L) and dark (5d-D) respectively,
and 12,165 and 12,173 peaks for the mutant in light (det1_5d-L) and dark (det1_5d-D),
respectively (Table 1).

The peaks of all four ChIP-seq datasets were standardized (Appendix A). The peak cen-
ter parameter was the summit of each peak and the peak length was 31 nt. The standardized
peaks of each sample were annotated across the two background models (7 dm and 8 dm),
so two annotated ChIP-seqs were obtained for each ChIP-seq model.

3.2. Characteristic Profiles for GSE112951

The characteristic profiles of the four ChIP-seq models of the GSE112951 study an-
notated through each of the two background models, 7 dm and 8 dm, were obtained
(see Table 3). Taking into account the high percentage of annotated peaks (above 98%) that
were assigned a class of non-intergenic functional regions in each of the ChIP-seq models
for both background models, it can be stated that these background models fit well the
characteristics of the protein under study. On the other hand, the difference in the percent-
ages between both background models was in the range [0.016, 0.033]. This, along with the
high percentage value for the background model 7 dm, indicated that the incorporation
of the enhancer class in the background model 8 dm is not relevant for the protein under
study, at least considering the sample space formed by the 5 genomic chromosomes.

Table 3. Characteristic profiles and percentage of annotated peaks for the four ChIP-seq models belonging to study
GSE112951, according to both background models 7 dm and 8 dm.

ChIP-seq Background Characteristic Profile % Annotated Peaks

Model Model Table Relative freq. Z-Score Functional Regions Intergenic

5d-D
7 dm Table A1 Figure A1A Figure A1B 98.635 1.365
8 dm Table A2 Figure A2A Figure A2B 98.651 1.349

5d-L
7 dm Table A3 Figure A3A Figure A3B 98.537 1.463
8 dm Table A4 Figure A4A Figure A4B 98.560 1.440

det1_5d-D
7 dm Table A5 Figure A5A Figure A5B 98.850 1.150
8 dm Table A6 Figure A6A Figure A6B 98.883 1.117

det1_5d-L
7 dm Table A7 Figure A7A Figure A7B 98.775 1.225
8 dm Table A8 Figure A8A Figure A8B 98.792 1.208
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If we visually examine both the relative frequencies and the Z-score values obtained
in the four samples with respect to both background models (Figures A1–A8), two patterns
could be distinguished depending on the number of monoubiquitinated H2ub sites in
the observed values and the expected ones according to the background model used.
One pattern was shared between wild type samples and another between those with the
mutated DET1 gene, regardless of light or dark conditions. For the background model
7 dm, in the two wild type 5d-D and 5d-L samples, the intron class showed the greatest
difference with positive values of 72.5 and 74.3 respectively, followed by the exon class with
values of 46.3 and 47.8 respectively, and the splice with values of 44.6 and 44.3 respectively.
In the two samples with the mutated DET1 gene det1_5d-D and det1_5d-L, the intron
class showed the greatest difference with positive values of 95.2 and 96.7, respectively,
followed in this case by the splice class with values of 46.9 and 47.2 respectively and the
exon with values of 31.0 and 29.9, respectively. In all four samples the intergenic class had
the lowest observed number of monoubiquitinated H2ub sites compared to the expected
ones. These same patterns could be observed for the background model 8 dm, with very
similar Z-scores, with those corresponding to the enhancer class being found in the four
samples within the range [−16.0,−15.4], demonstrating that this class was one of the least
relevant for the study of the target protein.

3.3. Goodness-of-Fit Test for GSE112951

The results of the goodness-of-fit test (5) for each of the four samples with respect to
both background models are shown in Table 4. The p-value was 0 for each of them, which
means that the observed H2Bub sites do not fit to the pattern of the background model,
but showed a bias towards certain classes, as described in the previous section.

Table 4. Results of the goodness-of-fit test for the four ChIP-seq models belonging to the GSE112951
study on the DET1 target protein according to the 7 dm and 8 dm background models.

ChIP-seq Model
7 dm 8 dm

Statistic df p-Value Statistic df p-Value

5d-D 17,712 6 0 17,553 7 0
5d-L 18,402 6 0 18,238 7 0

det1_5d-D 20,556 6 0 20,394 7 0
det1_5d-L 20,799 6 0 20,639 7 0

3.4. Test of Homogeneity for GSE112951

Based on the profile drawn by the four relative frequencies, two patterns could be
distinguished in Figures 3A and A9A. One pattern was exhibited by the two ChIP-seq
models with the wild type condition and the other one by the two ChIP-seq models with
the mutated DET1 gene, regardless of the light or dark condition. The results of the
homogeneity tests (6) carried out on the six pairs formed by the four ChIP-seq models
under study are shown in Table 5.
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Figure 3. (A) Multiple bar diagram of relative frequencies with their corresponding 95% confidence interval by functional
region for the four ChIP-seq models 5d-L, 5d-D, det1_5d-L, and det1_5d-D, belonging to study GSE112951 on target
protein DET1 in the cell line Col-0-seedlng, according to the 8 dm background model. (B) Depiction of the contribution
squared by functional region for each ChIP-seq model pair 5d-L:5d-D, 5d-L:det1_5d-D, 5d-L:det1_5d-L, 5d-D:det1_5d-L,
5d-D:det1_5d-D, and det1_5d-L:det1_5d-D, according to the 8 dm background model, calculated on the basis of the test of
homogeneity (6). (C) p-values result of such a test applied to each ChIP-seq model pair, according to the 8 dm background
model. The values have been transformed to a logarithmic scale in base 10 for the sake of clarity.
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Table 5. Results of the homogeneity test (6) between the six pairs formed by the four ChIP-sep
models (5d-L, 5d-D, det1_5d-L, det1_5d-D), belonging to the GSE112951 study on the DET1 target
protein, according to both 7 dm and 8 dm background models.

ChIP-seq Model
7 dm 8 dm

Statistic df p-Value Statistic df p-Value

5d-L:5d-D 3 6 0.788 4 7 0.805
5d-L:det1_5d-D 211 6 8.72 · 10−43 213 7 1.94 · 10−42

5d-L:det1_5d-L 238 6 1.45 · 10−48 238 7 8.79 · 10−48

5d-D:det1_5d-D 199 6 3.18 · 10−40 202 7 3.73 · 10−40

5d-D:det1_5d-L 226 6 4.94 · 10−46 227 7 2.32 · 10−45

det1_5d-L:det1_5d-D 2 6 0.935 3 7 0.918

According to the corresponding p-values (see Figures 3C and A9C), significant differ-
ences were found between all pairs formed by one wild type sample and one sample with
the mutated gene (p-value with magnitudes below 10−40), while p-values above 0.5 were
obtained between pairs formed by the two wild type samples or the two samples with the
mutated gene. This indicates that the pattern of monoubiquitination is more dependent on
the wild type or mutated gene condition than on the light or dark condition.

Further, Figures 3B and A9B display which functional regions contribute the most to
the differences between samples. The exon and intron classes were practically the only ones
responsible for the difference between the wild type condition and that of the mutated gene.
The results presented in this section held for both 7 dm and 8 dm background models.

4. Discussion

In this work we have presented a statistical method that allows one to generate
more accurate and reliable information from ChIP-seq experiments by modeling the peaks
through a random vector with a multivariate hypergeometric distribution. We have showed
how multidimensional models can improve the analysis of this type of experiments and
how these generated models might facilitate the comparison between different experiments,
regardless of when and where they have been carried out.

The results obtained are in line with those reported in the earlier study [35], the differ-
ence between samples mainly being due to the wild type/mutated gene conditions rather
than by the light/darkness conditions. While the earlier study was based on the number of
genes, our method was able to determine the most affected classes of functional regions by
using multivariate distribution models. Furthermore, the models can be updated, which
has been illustrated by the background models with different dimensions.

The sample space of the background models is related to the scalability of the method.
For the sake of simplicity, we have not demonstrated such scalability in this work. As future
work, we will study how the scalability is achieved by exploiting the grouping property of
the multivariate hypergeometric distribution. Both individual genes and chromosomes can
be defined as background models, thus allowing one to focus on the extent of the analysis,
but always considering the whole genome and from a biologically reasonable point of
view. Further work will also show how the use of more functional regions can also have a
positive impact on the level of detail of the study.

5. Conclusions

The design, implementation, and validation of an analytical method have been in-
troduced to deal with some challenging issues assisting in elucidating the biological
implications of the peaks obtained in a ChIP-seq experiment. The coherence of the method
has also been shown in this work, since the inclusion of an irrelevant functional region for
the behavior of the protein under study did not affect the final results.
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Appendix A. Peak Standardization

The standardization process consists of combining the peaks of selected ChIP-seq
datasets corresponding to the same target protein and cell line, regardless of the biological
condition to which the cell line is subjected.

(i) Peak selection consists of a progressive selection process of peaks from different
ChIP-seq datasets.
From the first peak selected, the peak with the start coordinate immediately above
the first one, must meet two conditions to be selected. The first condition is that it
must belong to a different ChIP-seq dataset than the raw peaks already selected for
the same standardize peak. The second one is that either the summit of each raw peak
falls within the extension of the other raw peak, or that they overlap the intervals
formed by symmetrically extending the summit of each raw peak until the value of
the peak length parameter is reached. In case of a positive selection, both raw peaks
are merged, with the start coordinate value being the smaller of the two, and the end
coordinate being the larger of the two, keeping the summits of each raw peak for
future comparisons. This new merged peak is the one to be compared with the next
raw peak. If this third party is also selected, the merged peak is updated, with its
start being the lowest of the three and its end being the highest of the three, thereby
maintaining their respective summits, and so on. If the selection is negative, the center
of the standardized peak representing each of the selected raw peaks in their respective
ChIP-seq model would be the position that determines the arithmetic mean of the
summits of each of the selected raw peaks;

(ii) Peak center determines the center of the standardized peak, which is a position
obtained as the arithmetic mean of the summits of the selected peaks from which it
is derived;

https://github.com/gines-almagro/AnalysingProtein-DNAbindingSitesArabidopsisThalianaChip-seqExperiments
https://github.com/gines-almagro/AnalysingProtein-DNAbindingSitesArabidopsisThalianaChip-seqExperiments
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(iii) Peak length is the length of the standardized peak as it extends symmetrically on
both sides of its center. The higher the value of this parameter, the more ambiguous
the standardized peak obtained. Notice that this value must match the value of the
background model with which the ChIP-seq model will be analyzed.

Appendix B. Tables and Figures
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Figure A1. Graphics of the ChIP-seq model 5d-D, belonging to study GSE112951 on target protein
DET1 in the cell line Col-0-seedling, according to the 7 dm background model. (A) Bar diagram of
relative frequencies with their 95% confidence interval for each functional region. (B) Bar chart for
the values of Zscore for each functional region.
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Table A1. Characteristic profile for the ChIP-seq model 5d-D, belonging to study GSE112951 on
target protein DET1 in the cell line Col-0-seedling, according to the 7 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 26 0.00211 (0.00138, 0.00293) 675.5 25.3 −25.7
Proximal 67 0.00545 (0.00414, 0.00675) 783.1 27.1 −26.4
Cleavage 114 0.00927 (0.00764, 0.01105) 395.8 19.6 −14.4

Splice 2794 0.22706 (0.21967, 0.23438) 1283.1 33.9 44.6
Exon 5911 0.48037 (0.47152, 0.48931) 3577.0 50.4 46.3
Intron 3225 0.26209 (0.25429, 0.26989) 1014.5 30.5 72.5

Intergenic 168 0.01365 (0.01162, 0.01577) 4576.0 53.6 −82.2

Total 12,305 1 12,305

both

pr
om

ot
er

pr
ox

im
al

en
ha

nc
er

cl
ea

va
ge

sp
lic

e

ex
on

in
tr

on

in
te

rg
en

ic

0.0

0.1

0.2

0.3

0.4

0.5

Functional Regions

R
el

at
iv

e 
F

re
qu

en
ci

es

Model 5d−D Background

A

both

pr
om

ot
er

pr
ox

im
al

en
ha

nc
er

cl
ea

va
ge

sp
lic

e

ex
on

in
tr

on

in
te

rg
en

ic

−80

−40

0

40

80

Functional Regions

Z
−s

co
re

Model 5d−D

B

Figure A2. Graphics of the ChIP-seq model 5d-D, belonging to study GSE112951 on target protein
DET1 in the cell line Col-0-seedling, according to the 8 dm background model. (A) Bar diagram of
relative frequencies with their 95% confidence interval for each functional region. (B) Bar chart for
the values of Zscore for each functional region.
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Table A2. Characteristic profile for the ChIP-seq model 5d-D, belonging to study GSE112951 on
target protein DET1 in the cell line Col-0-seedling, according to the 8 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 26 0.00211 (0.00138, 0.00293) 675.5 25.3 −25.7
Proximal 67 0.00545 (0.00414, 0.00675) 783.1 27.1 −26.4
Enhancer 3 0.00024 (0.00000, 0.00057) 251.1 15.7 −15.8
Cleavage 114 0.00927 (0.00764, 0.01105) 370.9 19.0 −13.5

Splice 2794 0.22706 (0.21967, 0.23438) 1281.9 33.9 44.6
Exon 5910 0.48029 (0.47144, 0.48923) 3555.3 50.3 46.8
Intron 3225 0.26209 (0.25429, 0.26989) 1010.6 30.5 72.7

Intergenic 166 0.01349 (0.01146, 0.01560) 4376.6 53.1 −79.3

Total 12,305 1 12,305
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Figure A3. Graphics of the ChIP-seq model 5d-L, belonging to study GSE112951 on target protein
DET1 in the cell line Col-0-seedling, according to the 7 dm background model. (A) Bar diagram of
relative frequencies with their 95% confidence interval for each functional region. (B) Bar chart for
the values of Zscore for each functional region.



Mathematics 2021, 9, 3239 19 of 26

Table A3. Characteristic profile for the ChIP-seq model 5d-L, belonging to study GSE112951 on
target protein DET1 in the cell line Col-0-seedling, according to the 7 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 27 0.00211 (0.00133, 0.00289) 701.7 25.8 −26.2
Proximal 74 0.00579 (0.00454, 0.00712) 813.4 27.6 −26.8
Cleavage 97 0.00759 (0.00618, 0.00915) 411.1 19.9 −15.7

Splice 2864 0.22407 (0.21671, 0.23150) 1332.9 34.6 44.3
Exon 6170 0.48271 (0.47403, 0.49147) 3715.7 51.3 47.8
Intron 3363 0.26310 (0.25544, 0.27085) 1053.8 31.1 74.3

Intergenic 187 0.01463 (0.01260, 0.01674) 4753.4 54.6 −83.6

Total 12,782 1 12,782
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Figure A4. Graphics of the ChIP-seq model 5d-L, belonging to study GSE112951 on target protein
DET1 in the cell line Col-0-seedling, according to the 8 dm background model. (A) Bar diagram of
relative frequencies with their 95% confidence interval for each functional region. (B) Bar chart for
the values of Zscore for each functional region.
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Table A4. Characteristic profile for the ChIP-seq model 5d-L, belonging to study GSE112951 on
target protein DET1 in the cell line Col-0-seedling, according to the 8 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 27 0.00211 (0.00133, 0.00289) 701.7 25.8 −26.2
Proximal 74 0.00579 (0.00454, 0.00712) 813.4 27.6 −26.8
Enhancer 5 0.00039 (0.00008, 0.00078) 260.8 16.0 −16.0
Cleavage 96 0.00751 (0.00603, 0.00908) 385.2 19.3 −15.0

Splice 2863 0.22399 (0.21655, 0.23150) 1331.6 34.5 44.3
Exon 6170 0.48271 (0.47395, 0.49147) 3693.2 51.2 48.3
Intron 3363 0.26310 (0.25536, 0.27077) 1049.8 31.0 74.5

Intergenic 184 0.01440 (0.01244, 0.01651) 4546.3 54.1 −80.6

Total 12,782 1 12,782
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Figure A5. Graphics of the ChIP-seq model det1_5d-D, belonging to study GSE112951 on target
protein DET1 in the cell line Col-0-seedling, according to the 7 dm background model. (A) Bar
diagram of relative frequencies with their 95% confidence interval for each functional region. (B) Bar
chart for the values of Zscore for each functional region.
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Table A5. Characteristic profile for the ChIP-seq model det1_5d-D, belonging to study GSE112951
on target protein DET1 in the cell line Col-0-seedling, according to the 7 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 27 0.00221 (0.00140, 0.00312) 668.3 25.1 −25.5
Proximal 68 0.00559 (0.00427, 0.00698) 774.7 26.9 −26.2
Cleavage 103 0.00846 (0.00690, 0.01010) 391.5 19.5 −14.8

Splice 2851 0.23421 (0.22673, 0.24176) 1269.4 33.7 46.9
Exon 5091 0.41822 (0.40943, 0.42693) 3538.6 50.1 31.0
Intron 3893 0.31981 (0.31143, 0.32819) 1003.6 30.3 95.2

Intergenic 140 0.01150 (0.00961, 0.01347) 4526.9 53.3 −82.3

Total 12,173 1 12,173
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Figure A6. Graphics of the ChIP-seq model det1_5d-D, belonging to study GSE112951 on target
protein DET1 in the cell line Col-0-seedling, according to the 8 dm background model. (A) Bar
diagram of relative frequencies with their 95% confidence interval for each functional region. (B) Bar
chart for the values of Zscore for each functional region.
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Table A6. Characteristic profile for the ChIP-seq model det1_5d-D, belonging to study GSE112951
on target protein DET1 in the cell line Col-0-seedling, according to the 8 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 27 0.00221 (0.00140, 0.00312) 668.2 25.1 −25.5
Proximal 68 0.00559 (0.00427, 0.00698) 774.7 26.9 −26.2
Enhancer 8 0.00066 (0.00025, 0.00115) 248.4 15.6 −15.4
Cleavage 102 0.00838 (0.00682, 0.01002) 366.9 18.9 −14.0

Splice 2851 0.23421 (0.22665, 0.24176) 1268.1 33.7 47.0
Exon 5088 0.41797 (0.40910, 0.42676) 3517.2 50.0 31.4
Intron 3893 0.31981 (0.31151, 0.32810) 999.8 30.3 95.5

Intergenic 136 0.01117 (0.00928, 0.01306) 4329.7 52.8 −79.4

Total 12,173 1 12,173
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Figure A7. Graphics of the ChIP-sep model det1_5d-L, belonging to study GSE112951 on target
protein DET1 in the cell line Col-0-seedling, according to the 7 dm background model. (A) Bar
diagram of relative frequencies with their 95% confidence interval for each functional region. (B) Bar
chart for the values of Zscore for each functional region.
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Table A7. Characteristic profile for the ChIP-seq model det1_5d-L, belonging to study GSE112951
on target protein DET1 in the cell line Col-0-seedling, according to the 7 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 23 0.00189 (0.00115, 0.00271) 667.8 25.1 −25.7
Proximal 63 0.00518 (0.00395, 0.00649) 774.2 26.9 −26.4
Cleavage 99 0.00814 (0.00658, 0.00978) 391.3 19.5 −15.0

Splice 2861 0.23518 (0.22778, 0.24258) 1268.6 33.7 47.2
Exon 5033 0.41373 (0.40510, 0.42252) 3536.3 50.1 29.9
Intron 3937 0.32363 (0.31517, 0.33194) 1002.9 30.3 96.7

Intergenic 149 0.01225 (0.01028, 0.01430) 4523.9 53.3 −82.1

Total 12,165 1 12,165
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Figure A8. Graphics of the ChIP-sep model det1_5d-L, belonging to study GSE112951 on target
protein DET1 in the cell line Col-0-seedling, according to the 8 dm background model. (A) Bar
diagram of relative frequencies with their 95% confidence interval for each functional region. (B) Bar
chart for the values of Zscore for each functional region.
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Figure A9. (A) Multiple bar diagram of relative frequencies with their corresponding 95% confidence
interval by functional region for the four ChIP-seq models 5d-L, 5d-D, det1_5d-L, and det1_5d-D,
belonging to study GSE112951 on target protein DET1 in the cell line Col-0-seedlng, according to the
7 dm background model. (B) Depiction of the contribution squared by functional region for each
ChIP-seq model pair 5d-L:5d-D, 5d-L:det1_5d-D, 5d-L:det1_5d-L, 5d-D:det1_5d-L, 5d-D:det1_5d-
D, and det1_5d-L:det1_5d-D, according to the 7 dm background model, calculated on the basis of
the test of homogeneity (6). (C) p-values result of such a test applied to each ChIP-seq model pair,
according to the 7 dm background model. The values have been transformed to a logarithmic scale
in base 10 for the sake of clarity.
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Table A8. Characteristic profile for the ChIP-seq model det1_5d-L, belonging to study GSE112951
on target protein DET1 in the cell line Col-0-seedling, according to the 8 dm background model.

Functional
Regions

Absolute
Frequencies

Relative
Frequencies 95% CI Expected

Values sd Z-Score

Promoter 23 0.00189 (0.00115, 0.00271) 667.8 25.1 −25.7
Proximal 63 0.00518 (0.00395, 0.00649) 774.2 26.9 −26.4
Enhancer 5 0.00041 (0.00008, 0.00082) 248.2 15.6 −15.6
Cleavage 98 0.00806 (0.00649, 0.00970) 366.6 18.9 −14.2

Splice 2860 0.23510 (0.22762, 0.24250) 1267.3 33.7 47.3
Exon 5032 0.41365 (0.40493, 0.42252) 3514.9 50.0 30.3
Intron 3937 0.32363 (0.31517, 0.33194) 999.1 30.3 97.0

Intergenic 147 0.01208 (0.01011, 0.01406) 4326.9 52.8 −79.2

Total 12,165 1 12,165

Table A9. General description of the number of genes, length of chromosomes, percentage of gap
sequence by chromosome, and number of enhancers for the genome of the Arabidopsis thaliana TAIR10.

Chr1 Chr2 Chr3 Chr4 Chr5 Total

# genes protein-coding 7149 4315 5455 4174 6327 27,420
Total length (bp) 30,427,671 19,698,289 23,459,830 18,585,056 26,975,502 119,146,348

% undefined sequence 0.539 0.013 0.025 0.016 0.038 0.156
# enhancers 1574 942 1133 882 1340 5871

Table A10. Search setting for Ensembl Plant’s Biomart tool to get a list with the genes that make up
the Arabidopsis genome model.

Dataset Filters Attributes

Arabidopsis thaliana Gene type: protein_coding Gene stable ID
Genes (TAIR10) Transcript type: protein_coding Gene name
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