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Abstract: Confusion matrices are numerical structures that deal with the distribution of errors
between different classes or categories in a classification process. From a quality perspective, it is
of interest to know if the confusion between the true class A and the class labelled as B is not the
same as the confusion between the true class B and the class labelled as A. Otherwise, a problem with
the classifier, or of identifiability between classes, may exist. In this paper two statistical methods
are considered to deal with this issue. Both of them focus on the study of the off-diagonal cells in
confusion matrices. First, McNemar-type tests to test the marginal homogeneity are considered,
which must be followed from a one versus all study for every pair of categories. Second, a Bayesian
proposal based on the Dirichlet distribution is introduced. This allows us to assess the probabilities
of misclassification in a confusion matrix. Three applications, including a set of omic data, have been
carried out by using the software R.

Keywords: bias of classification; confusion matrix; marginal homogeneity tests; Dirichlet distribution;
misclassification; posterior density; overprediction; underprediction

1. Introduction

Confusion matrices are the standard way of summarizing the performance of a classifi-
cation method. This is an issue of crucial interest in a variety of applied scientific disciplines,
such as Geostatistics, mining data, mining text, Economy, Biomedicine or Bioinformatics,
to cite only a few. A confusion matrix is obtained as a result of applying a control sampling
on a dataset to which a classifier has been applied. Provided that the qualitative response
to be predicted has r ≥ 2 categories, the confusion matrix will be a r × r matrix, where
the rows represent the actual or reference classes and the columns the predicted classes
(or vice versa). So the diagonal elements correspond to the items properly classified, and
the off-diagonal to the wrong ones. If a classifier is fair or unbiased, then the errors of
classification between two given categories A and B must happen randomly, that is, it is
expected that they occur approximately with the same relative frequency in every direction.
Quite often, this is not the case, and a kind of systematic error occurs in a direction, that is,
the observed value in a cell is considerably greater (or smaller) than its symmetric in the
confusion matrix. In this paper, by classification bias, we mean this kind of systematic error,
which happens between categories in a specific direction. As for the mechanism causing it,
we distinguish:

1. The classification bias can be due to deficiencies in the method of classification. For
instance, it is well known [1] that an inappropriate choice of k in the k-nearest neighbor
(k-nn) classifier may produce this effect. In case of being detected, the method of
selection of k must be revised;

2. On the other hand, the classification bias may be caused by the existence of a uni-
directional confusion between two or more categories, that is, the classes under
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consideration are not well separated. In case of being detected, maybe additional pre-
dictors related to distinguish between these specific classes must be incorporated in
the process of classification. Think, for instance, of a problem of classification related
to the use of land, and two given categories, such as water and rice; the probability of
confusing water with rice is not the same as that of confusing rice with water.

For all the aforementioned reasons we consider that it is of interest to pay attention
to structure of misclassifications. In this paper, first marginal homogeneity tests are pro-
posed to identify this problem in a global way. These are based on Stuart–Maxwell test [2]
and Bhapkar test [3]. In affirmative case, a One versus All methodology is proposed [4],
in which Mc-Nemar tests are proposed for every pair of classes. Since in this context,
quite often, prior information can be available, which must be incorporated in the process
of estimation [5], a Bayesian method based on the Dirichlet-Multinomial distribution is
developed to estimate the probabilities of confusion between the classes previously de-
tected. To illustrate the use of our proposal, three applications are considered. Application
1 corresponds to the field of Geostatistics [6]. There, a 4× 4 matrix is considered and
studied in detail. Classification bias is detected in two categories. Bayesian estimates of
probabilities of overprediction and underprediction in these categories are given, along
with other Bayesian summaries. Application 2 corresponds to a problem of classification
in text mining, specifically, literary genres [7]. In spite of the large number of categories,
r = 10, our strategy allowed us to detect bias of classification in several categories and to
estimate the associated probabilities [8]. Finally, in Application 3, a really difficult problem
of diagnosis for Inflammatory Bowel Disease based on omic data is considered [9]. In this
case, r = 3, as novelty, this fact allows us to visualize the posterior distributions associated
to the different classes. We highlight that a serious problem of overprediction for the Chron
Disease has been detected and estimated. As for recent works and references dealing with
this topic in confusion matrices, we highlight that most papers focus on the assessment of
the overall accuracy of the classification process, kappa coefficient, and methods to improve
these measurements, see, for instance, [6,10,11] and references therein. Areas in which
bias of classification, and its associated problems are of interest, can be seen in [1,12–15].
However, a scarce number of papers consider the study of the off-diagonal cells in a confu-
sion matrix. In this sense, the paper by Tsendbazar et al. [16] can be cited where similarity
matrices between classes are proposed to be used as weights for the computation of global
accuracy measurements. On the other hand, the problem of inference with misclassified
multinomial data from a Bayesian point of view is addressed in [17]. All these references
show that this topic is of interest for a better definition of classes, and the improvement of
the global process of classification. The statistical tools proposed can be used for a better
comprehension of information in a confusion matrix. As computational tools, we highlight
that the R Software [18] and packages [19–21] have been used.

It is of interest to highlight that the results proposed in this paper can be considered as
a new metric to be applied to multi-class classification problems in machine learning [22].
In this sense, the first technique introduced in this paper, that is, marginal homogeneity
tests, can be used to detect systematic problems of a classifier. On the other hand, the
second one, based on a Bayesian analysis of a confusion matrix, can be used as a micro
technique which allows us to compare several classifiers. As novelty, we highlight that
we propose measurements to assess the performance of a classifier along with summaries
about the variability of these measurements, which is not usual in machine learning.

2. Materials and Methods

In this section, we first propose considering a confusion matrix (or error matrix) as a
statistical tool for the analysis of paired observations.

Let Y and Z be two categorical variables with r ≥ 2 categories. Let Y be the variable
that denotes the reference (or actual) categories and Z the predicted classes. As a result of
the classification process, the confusion matrix given in Table 1 is obtained, and ni,j denotes
the number of observations in the (i, j) cell for i, j = 1, 2, . . . , r.
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Table 1. Confusion matrix.

Z
Y 1 2 · · · r− 1 r

1 n1,1 n1,2 · · · n1,r−1 n1,r
2 n2,1 n2,2 · · · n2,r−1 n2,r
...

...
...

...
...

...
r− 1 nr−1,1 nr−1,2 · · · nr−1,r−1 nr−1,r

r nr,1 nr,2 · · · nr,r−1 nr,r

The accuracy of Table 1 is

accuracy =

r

∑
i=1

ni,i

n++
,

where n++ equals to the total number of elements in the table, that is, the accuracy is
the proportion of items properly classified. Other common global measurements of the
performance of a classifier are the kappa index, sensitivity, specificity, Mathew’s correlation
coefficient, F1-score and, for the 2× 2 tables, the area under the ROC curve (AUC) [6].
All of them are global measurements, focusing mainly in proportion of items properly
classified, and do not pay attention to structure in the off-diagonal elements.

Let us introduce the notation to address the problem at hand. So, let us define the
probability of (Y, Z) occurs in the cell which corresponds to the ith row and the jth column,
πij = P[Y = i, Z = j]. {πij} is the joint probability mass function (pmf) of (Y, Z).

The marginal pmf’s of Y and Z, denoted as {πi+} and {π+j}, respectively, are
obtained as:

πi+ =
r

∑
j=1

πij, π+j =
r

∑
i=1

πij,

where
r

∑
i=1

πi+ =
r

∑
j=1

π+j =
r

∑
i=1

r

∑
j=1

πij = 1 .

{πi+} and {π+j} will be the basis on which to propose marginal homogeneity tests.

3. Marginal Homogeneity

Taking into account that cells in a confusion matrix can be seen as data for matched
pairs of classes, we propose to test if marginal homogeneity can be assumed between
the row and columns of this matrix, which is equivalent to test if the row and column
probabilities agree for all the categories, that is:

P[Y = s] = P[Z = s] ⇐⇒ πs+ = π+s ∀s = 1, 2, . . . , r . (1)

Note that (1) states that the proportion of items classified in the sth class agrees with
the proportion of actual or reference items in this class. If this agreement happens for
all the categories, then this fact suggests that there do no exist systematic problems of
classification (or classification bias) in our confusion matrix. This is the main idea on which
to build our proposal.
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3.1. 2 × 2 Table

Let us first introduce the method for a 2× 2 confusion matrix. Here, we propose to
apply the McNemar type test [3] tailored for this context. So, for i = 1, 2, let us consider:{

H0 : πi+ = π+i
H1 : πi+ 6= π+i .

(2)

Note that, in a classification problem, one of the variables refers to the actual category
and the other one to the predicted class; so, in this context, the null hypothesis H0 estab-
lishes that the probability of the class to be predicted is equal to the proportion of actual
elements in the ith class. This agreement suggests that the performance of our classifier
is good. On the other hand, the alternative hypothesis establishes that these probabilities
significantly disagree. Therefore, if the null hypothesis is rejected, it can be concluded that
there exists significant evidence of problems with this category. Nevertheless, we want to
highlight that the emphasis must be on the method, since this test allows us to focus on the
probabilities associated with the off-diagonal elements in a confusion matrix, that is, the
probabilities of the wrongly classified or misclassified elements, since (2) is equivalent to:{

H0 : π12 = π21
H1 : π12 6= π21.

(3)

To prove the equivalence between (2) and (3), it is enough to note that

π1+ = P[Y = 1] = P[Y = 1, Z = 1] + P[Y = 1, Z = 2] (4)

π+1 = P[Z = 1] = P[Y = 1, Z = 1] + P[Y = 2, Z = 1]

and therefore (2) can be reduced to (3).
Test (3) can be solved following an exact approach, based on the binomial test, or an

asymptotic one, based on chi-squared type statistics.
Binomial approach. Let us consider the number of misclassifications and a new variable

C defined as:

C =

{
1, if Y = 1 and Z = 2
0, if Y = 2 and Z = 1 .

(5)

C is a Bernoulli variable with success probability

πc = P[C = 1] = P[Y = 1, Z = 2] = π1,2.

The test given in (3) is equivalent to:{
H0 : πc = 0.5
H1 : πc 6= 0.5

(6)

Let the statistic T = n12 be the number of misclassified observations in the (1, 2)
cell. Under the null hypothesis proposed in (6), T follows a binomial distribution, T∼H0

B(n12 + n21, 0.5). Therefore, the binomial test can be applied. Recall that the p-value of test
proposed in (6) is

p-value = 2 min{PH0 [T ≤ n12], PH0 [T ≥ n12]} .

A point of practical interest is that the exact approach allows us to carry out one-sided
tests, which can also be solved in terms of the previously cited binomial test. The one-sided
tests are {

H0 : π1,2 ≤ π2,1
H1 : π1,2 > π2,1

and
{

H0 : π1,2 ≥ π2,1
H1 : π1,2 < π2,1.

(7)
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In terms of the variable C, introduced in (5), the one-sided tests proposed in (7) are
equivalent to: {

H0 : πC ≤ 0.5
H1 : πC > 0.5

and
{

H0 : πC ≥ 0.5
H1 : πC < 0.5,

(8)

respectively. The interest of these one-sided tests will be seen in the practical applications.
Asymptotic approach. Under this approach [23], the following statistic can be considered

to solve (3):

χ2 =
(n12 − n21)

2

n21 + n12
∼ χ2

1,

or the statistic with continuity correction proposed by Edwars [24]

χ2
c =

(|n12 − n21| − 1)2

n12 + n21
∼ χ2

1 .

In both cases, we have that p-value = P[χ2
1 > χ2

obs] where χ2
obs is the result of applying

χ2 (or χ2
c ) to our observed 2× 2 confusion matrix.

3.2. General Case

For a confusion matrix resulting from a multi-class classifier, r > 2, the Stuart-Maxwell
test [3], also known as Generalized McNemar test can be considered. This test is aimed at
finding evidence of significant differences between the actual and predicted probabilities
in any of the categories, specifically{

H0 : πi+ = π+i ∀i = 1, 2, . . . , r,
H1 : ∃i | πi+ 6= π+i .

(9)

This test is based on the paired differences d = (d1, . . . , dr−1), where ds = π+s − πs+.
Note that, dr is omitted since ∑r

i=1 di = 0, as result of ∑r
i=1 πi+ = ∑r

j=1 π+j = 1. Under
the null hypothesis H0 of marginal homogeneity, it was proven in [3] that E(d) = 0 and
the statistic,

χ2
0 = NdtV̂−1d = Ndt(NV̂)−1Nd ∼ χ2

r−1, (10)

is asymptotically distributed as a chi-square variable with r− 1 degrees of freedom.
In (10), N = n++ = ∑i,j ni,j and V̂ are the estimated covariance matrix of vector

√
Nd,

whose elements are given by

v̂st = −(πst − πts) s 6= t, t, s = 1, . . . , r− 1,
v̂ss = πs+ + π+s − 2πss t, s = 1, . . . , r− 1 .

A similar test was proposed by Bhapkar [3] based in the statistic,

χ2
B = NdtV̂−1d = Ndt(N2V̂)−1N2d ∼ χ2

r−1,

where the elements of V̂ are estimated by

v̂st = −(πst + πts)− (π+s − πs+)(π+t − πt+) s 6= t, t, s = 1, . . . , r− 1
v̂ss = πs+ + π+s − 2πss − (π+s − πs+)2 t, s = 1, . . . , r− 1 .

Both statistics are related via

χ2
B =

χ2
0

1− χ2
0/N

,

and therefore they are equivalent.
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3.3. Post-Hoc Analysis

If the null hypothesis is rejected in previous tests, we do not know which particular
differences between probabilities of categories are significant. Our proposal is to use
post hoc tests to explore which categories are significantly different while controlling the
experiment-wise error rate. To reach this end, a One versus All approach is proposed.
Specifically, for the ith category, with i = 1, . . . , r, let us consider:{

H′0,i : πi+ = π+i
H′1,i : πi+ 6= π+i .

(11)

Similarly to (4), note that:

πi+ = P[Y = i] = P[Y = i, Z = i] + P[Y = i, Z 6= i]

= P[Y = i, Z = i] + ∑
j 6=i

P[Y = i, Z = j]

π+i = P[Z = i] = P[Y = i, Z = i] + P[Y 6= i, Z = i]

= P[Y = i, Z = i] + ∑
j 6=i

P[Y = j, Z = i].

Therefore (11) is equivalent to test:{
H0,i : P[Y = i, Z 6= i] = P[Y 6= i, Z = i]
H1,i : P[Y = i, Z 6= i] 6= P[Y 6= i, Z = i].

(12)

Note that H0,i states that the proportion of elements belonging to the ith class (Y = i)
and that are classified into other ones (Z 6= i) must agree with the proportion of ele-
ments which belong to the remaining classes (Y 6= i) and have been wrongly predicted or
misclassified in the ith category (Z = i) .

To carry out the test proposed in (12), consider the confusion submatrix.
The McNemar test, given in Section 3.1, can be applied to Table 2 with the statistic

test Ti = ni+ − nii, which is distributed under the null hypothesis proposed in (12) as
Ti∼H0 B(ni+ + n+i − 2nii, 0.5). We highlight that one-sided tests can also be carried out
straightforwardly by applying the results in Section 3.1, which will allow us to draw
conclusions about the specific problems with the categories under consideration.

Table 2. Table 2 × 2.

Z = i Z 6= i

Y = i nii ni+ − nii
Y 6= i n+i − nii ∑

k 6=i
∑
j 6=i

nkj

4. Bayesian Methodology

In this section, a Bayesian approach, based on the multinomial-Dirichlet model, is
proposed to estimate the probabilities of misclassification in the confusion matrix.

Definition 1 (Multinomial distribution). Let r and n be positive integers and let θ1, . . . , θr
be numbers satisfying 0 ≤ θi ≤ 1, i = 1, . . . , r, and ∑r

i=1 θi = 1. The discrete random vector
X = (X1, . . . , Xr)t follows a multinomial distribution with n trials and cell probabilities θ =
(θ1, . . . , θr)t if the joint probability mass function (pmf) of X is:

fX(n1, . . . , nr|θ) = P[X1 = n1, . . . , Xr = nr | θ] =
n!

∏r
j=1 nj!

r

∏
j=1

θ
nj
j , (13)
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on the set of (n1, . . . , nr) such that each nj is a nonnegative integer and ∑r
j=1 nj = n. (13) is

denoted as: (X|n, θ) ∼ Multinomial(n, θ).

Recall that the multinomial distribution is used to describe an experiment consisting
of n independent trials, where each trial results in one of r mutually exclusive outcomes.
The probability of the jth outcome on every trial is θj. For j = 1, . . . , r, Xj is the count of the
number of times the jth outcome happened in the n trials. Some properties of interest for
our purposes are listed in next lemma, additional details can be seen in [25].

Lemma 1. Let (X|n, θ) ∼ Multinomial(n, θ) with θ = (θ1, . . . , θr). Then,

1. The marginal distributions are binomials, Xj ∼ B(n, θj), j = 1, . . . , r.
2. E(Xj) = nθj and Var(Xj) = nθj(1− θj), j = 1, . . . , r.
3. Cov(Xj, Xk) = −nθjθk, j 6= k.

Remark 1. In the multinomial distribution, all the coordinates in the vector (X1, . . . , Xr) are
related, since their sum must be n. This fact results in all the pairwise covariances being negative,
Cov(Xj, Xk) = −nθjθk, j 6= k. Moreover, note that the negative correlation is greater for variables
with higher success probability. This makes sense, as the sum of the variables in the vector is
constrained at n, so if one starts to get big, the others tend not to. These appreciations will be of
interest in our applications.

Next, the Dirichlet distribution is introduced. Recall that this model is conjugate prior
of the multinomial distribution [26].

Definition 2. Let θ = (θ1, . . . , θr) in the (r−1)-simplex, that is, θ ∈ {θi ≥ 0 : ∑r
j=1 θj = 1}. The

random vector θ = (θ1, . . . , θr) follows a Dirichlet distribution with parameters α = (α1, . . . , αr),
αi > 0, if the joint probability density function (pdf) of θ is

fθ(θ1, . . . , θr|α) =
Γ(∑r

j=1 αj)

∏r
j=1 Γ(αj)

r

∏
j=1

θ
αj−1
j , (14)

where Γ(·) is the gamma function. (14) is denoted as θ|α ∼ Dirichlet(α).

Lemma 2. Let θ|α ∼ Dirichlet(α). If αi > 1 ∀i, then the mode of θ|α is reached at

θi =
αi − 1

∑r
j=1 αj − r

, i = 1, . . . , r.

Lemma 3. Let θ|α ∼ Dirichlet(α). Then

1. The marginal distributions are Beta distributed,

θj ∼ Beta(αj, α0 − αj) with α0 =
r

∑
j=1

αj. (15)

2. The mean and variance marginals are

E(θj) =
αj

α0
, Var(θj) =

αj(α0 − αj)

α2
0(α0 + 1)

, j = 1, . . . , r. (16)

The Dirichlet-multinomial model can be applied in a confusion matrix as follows.
Note that, in the confusion matrix defined in Tabla 1 the number of elements in the kth
row, denoted as nk+, is fixed (since the rows are the actual or reference categories). Our
proposal is to deal with every row as a multinomial distribution with nk+ trials and r
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possible outcomes (these are to be classified in the {1, . . . , r} classes) whose probabilities
are denoted as (θ1|k, . . . , θr|k),

(Yk|nk+, θk) ∼ Multinomial(nk+, θk) where θk = (θ1|k, . . . , θr|k),

Yk = (Y1|k, . . . , Yr|k) and Yj|k counts the number of elements in the kth reference category
classified in the jth class, for j = 1, . . . , r.

Remark 2. In terms of the notation introduced in Section 2, θj|k = P[Z = j|Y = k].

As prior distribution for θk a Dirichlet distribution is proposed

(θk|αk) ∼ Dirichlet(αk) .

Given a confusion matrix, whose observed rows are denoted by yobs
k = (nk,1, . . . , nk,r) =

(n1|k, . . . , nr|k), by applying Bayes Theorem, and since the Dirichlet distribution is a conju-
gated prior for the Multinomial model, the posterior distribution for θk is

π(θk|yobs
k , αk) ∝

r

∏
j=1

θ
nj|k+αj|k−1
j|k ,

where ∝ stands for proportional to.
Therefore,

θk|yobs
k , αk ∼ Dirichlet(n1|k + α1|k, . . . , nr|k + αr|k) .

5. Applications
5.1. Application 1

First a confusion matrix taken from the fields of Geostatistics and Image Processing [6]
is considered. The matrix has four categories (r = 4) and was obtained from an unsuper-
vised classification method from a Landsat Thematic Mapper image. It is given in Table 3.
The categories related to the land use are: FallenLeaf, Conifers, Agricultural and Scrub. Rows
correspond to the Actual classes and columns to the Predicted classes. The sample size is
n = 434. As for a global measurement of classification, we have that the accuracy = 0.74.
Certain asymmetry or misclassification is observed in the off-diagonal elements, which
suggests the existence of classification bias or significant differences between pairs of
categories. Let us formalize these appreciations.

Table 3. Confusion matrix: Land use.

P_FallenLeaf P_Conifiers P_Agricultural P_Scrub

A_FallenLeaf 65 6 0 4
A_Conifiers 4 81 11 7

A_Agricultural 22 5 85 3
A_Scrub 24 8 19 90

5.1.1. Marginal Homogeneity

Since we have a 4 × 4 matrix, to test the multiple marginal homogeneity Stuart-
Maxwell or Bhapkar tests must be applied. Summaries are given in Table 4. These are the
observed values of χ2 statistics, degrees of freedom (df) of their asymptotic distributions,
r− 1 = 3, and the corresponding p-values (P[χ2

3 > χ2
obs]).

In both tests, we reach the conclusion that there exists significant evidence to reject the
null hypothesis of marginal homogeneity. Next step it is to look for those categories with
serious deficiencies in the classification process. The One versus All methodology proposed



Mathematics 2021, 9, 3233 9 of 22

in Section 2 is applied for every category. The necessary auxiliary submatrices are labelled
next as Tables 5–8.

Table 4. Marginal Homogeneity (Land use).

χ2 df p-Value

Stuart-Maxwell 11.202 3 0.010680
Bhapkar 11.654 3 0.008667

Table 5. Auxiliary matrix FallenLeaf.

P_FallenLeaf P_Others

A_FallenLeaf 65 10
A_Others 50 309

Table 6. Auxiliarymatrix Conifers.

P_Conifers P_Others

A_Conifers 81 22
A_Others 19 312

Table 7. Auxiliary matrix Agricultural.

P_Agricultural P_Others

A_Agricultural 85 30
A_Others 30 289

Table 8. Auxiliary matrix Scrub.

P_Scrub P_Others

A_Scrub 90 51
A_Others 14 279

McNemar tests are applied to Tables 5–8. The results for two-sided and one-sided
tests are given in Table 9.

Table 9. McNemar test for every category.

FallenLeaf Conifiers Agricultural Scrub

Less 1× 10−7 0.7336454 0.5512891 0.9999994
Greater 1.0000 0.3776143 0.5512891 0.0000022

Two_Sided 2× 10−7 0.7552287 1.0000000 0.0000045

Remark 3. In order to properly interpret the p-values in Table 9, the problem of multiple compari-
sons must be taken into account. For a significance level α = 0.05 and by applying the Bonferroni
correction, every test should be carried out for α′ = α/r = 0.05/4 = 0.0125 significance level.
Other corrections could also be applied.

Note that, from p-values in Table 9, there exist evidence to reject the marginal homo-
geneity for the categories FallenLeaf and Scrub, which correspond to p-values 1× 10−7 and
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2.2× 10−6 in Table 9, respectively. Let us go into details and consider the following test
for FallenLeaf {

H0 : p f l ≥ 0.5
H1 : p f l < 0.5,

(17)

where p f l = P[A_FallenLea f ∩ P_Others]. The p-value of this test is p-value= 1× 10−7,
so H0 is rejected, that is, there exists significant evidence to reject that the proportion of
elements in the category Fallen Leaf and they are misclassified in others, p f l , is greater
or equal to 0.5. Therefore p f l < 0.5 may be supposed. As it was seen in Section 3.1,
McNemar test allows us to restrict our attention to cells (1, 2) and (2, 1) in Table 5. So
p f l < 0.5 is equivalent to suppose that P[A_Others ∩ P_FallenLea f ] > 0.5, that is, in this
case the dominant probability is that of actual observations in other categories and are
predicted as FallenLeaf, P[A_Others ∩ P_FallenLea f ]. So we may conclude that there exists
confusion between the rest of categories and FallenLea f , since much more observations
are assigned to FallenLeaf class than those really belong to. It could be said that there exists
an overprediction of observations in the class FallenLea f .

Analogously, for the Scrub class, the test which corresponds to p-value= 0.0000022 is:{
H0 : ps ≤ 0.5
H1 : ps > 0.5,

(18)

with ps = P[A_Scrub ∩ P_Others].
In this case, we have the opposite situation, since the null hypothesis is rejected, there

exists evidence to reject that the probability of actual being Scrub and being classified
in other categories, ps, is less than or equal to 0.5. Therefore, it can be concluded that
ps = P[A_Scrub∩ P_Others] is the dominant probability. So it can be said that an important
part of actual observations in Scrub give rise to confusion, and an important part of them are
predicted in other classes, therefore causing an underprediction misclassification problem.

Since we have detected problems in certain categories, it is of interest to estimate the as-
sociated probabilities. This issue is studied in the next section from a Bayesian perspective.

5.1.2. Bayesian Approach

In this subsection for every category, a uniform prior distribution is considered, which
corresponds to the Dirichlet distribution with αk = (1, . . . , 1). Given yobs

k as the kth row in
Table 3, the posterior distribution is:

θk|yobs
k , αk ∼ Dirichlet(α̃k), (19)

with α̃k = (n1|k + 1, . . . , nr|k + 1) for k = 1, . . . , 4.
Explicitly, for the category Fallen Leaf, yobs

1 = (65, 6, 0, 4) and by applying (19)

θ1|yobs
1 , α1 ∼ Dirichlet(66, 7, 1, 5), (20)

From (16), the mean, variance and standard deviation of the posterior marginal distribu-
tions are given in Table 10. They are denoted by θ̂jb , Var(θj|α̃1) and sd(θj|α̃1), respectively.

Table 10. Bayesian summaries in A_FallenLeaf.

n1+ α1 α̃1 θ̂jb Var(θj|α̃1) sd(θj|α̃1)

P_FallenLeaf 65 1 66 0.8354430 0.0017185 0.0414545
P_Conifers 6 1 7 0.0886076 0.0010095 0.0317719

P_Agricultural 0 1 1 0.0126582 0.0001562 0.0124990
P_Scrub 4 1 5 0.0632911 0.0007411 0.0272225
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The column θ̂jb in Table 10 provides the Bayes estimates of conditional probabilities to
A_FallenLeaf under quadratic loss function. We highlight the good estimate which has
been obtained in this case with

P̂[P_FallenLea f |A_FallenLea f ] = 0.83 .

Remark 4. The mode of the posterior distribution can also be given as Bayesian estimates of
conditional probabilities to A_FallenLeaf. For the distribution in (20), it would be

mode(θ1|yobs
1 , α̃1) = (0.867, 0.080 0.000, 0.053).

Similarly, the Bayesian summaries are obtained for the rest of the categories. They are
listed in Table 11 for Actual Connifers, in Table 12 for Actual Agricultural, and in Table 13
for Actual Scrub.

Table 11. Bayesian summaries in A_Conifers.

n2+ α2 α̃2 θ̂jb Var(θj|α̃2) sd(θj|α̃2)

P_FallenLeaf 4 1 5 0.0467290 0.0004125 0.0203090
P_Conifiers 81 1 82 0.7663551 0.0016579 0.0407175

P_Agricultural 11 1 12 0.1121495 0.0009220 0.0303638
P_Scrub 7 1 8 0.0747664 0.0006405 0.0253085

Table 12. Bayesian summaries in A_Agricultural.

n3+ α3 α̃3 θ̂jb Var(θj|α̃3) sd(θj|α̃3)

P_FallenLeaf 22 1 23 0.1932773 0.0012993 0.0360464
P_Conifiers 5 1 6 0.0504202 0.0003990 0.0199746

P_Agricultural 85 1 86 0.7226891 0.0016701 0.0408666
P_Scrub 3 1 4 0.0336134 0.0002707 0.0164529

Table 13. Bayesian summaries in A_Scrub.

n4+ α4 α̃4 θ̂jb Var(θj|α̃4) sd(θj|α̃4)

P_FallenLeaf 24 1 25 0.1724138 0.0009773 0.0312620
P_Conifers 8 1 9 0.0620690 0.0003987 0.0199685

P_Agricultural 19 1 20 0.1379310 0.0008144 0.0285381
P_Scrub 90 1 91 0.6275862 0.0016008 0.0400104

Conclusions

As a summary of previous tables, Table 14 is given with the Bayesian estimates of
probabilities in every conditional distribution.

Table 14. Summary Bayesian estimates of conditional probabilities in the Land use problem.

A_FallenLeaf A_Conifiers A_Agricultural A_Scrub

P_FallenLeaf 0.835 0.047 0.193 0.172
P_Conifers 0.089 0.766 0.05 0.062

P_Agricultural 0.013 0.112 0.723 0.138
P_Scrub 0.063 0.075 0.034 0.628

Let us look to these conditional distributions. First we focus on the fourth column in
Table 14, where the conditional probabilities associated with Actual_Scrub category have
been estimated. Note that

P̂[P_Scrub|A_Scrub] = 0.63
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is quite low. Moreover, we have that

P̂[P_FallenLea f |A_Scrub] = 0.17 and P̂[P_Agricultural|A_Scrub] = 0.14 .

It could be said that there exists an underprediction of the Scrub category, since
observations which are actual Scrub are often misclassified as FallenLeaf or Agricultural.
These appreciations are coherent with the result in test (18).

As for the first column, corresponding to the conditional probabilities in the class
A_FallenLea f , we highlight the good estimates obtained for P̂[P_FallenLea f |A_FallenLea f ]
= 0.83. However, note that, in the first row of Table 14, we have

P̂[P_FallenLea f |A_Agricultural] = 0.19 and P̂[P_FallenLea f |A_Scrub] = 0.17,

which are coherent with results in test (17). It could be said that those elements which
are the actual in the class FallenLeaf are properly classified, but there exists problems
of confusion of other categories to FallenLeaf, specifically actual Agricultural and Scrub
observations are often misclassified as FallenLeaf. Both facts cause an overprediction of the
FallenLeaf class.

Next, 95% credible intervals are given: equal tails, denoted as (q25%, q97.5%) and
Highest Posterior Density (HPD) intervals, denoted as (HPDl , HPDs). Both intervals are
obtained from the marginal distributions of posterior Dirichlet distribution given in (19) and
by using R software [18] and package [19]. Table 15 provides these intervals for the posterior
distributions to A_FallenLeaf, Table 16 to A_Conifers, Table 17 to A_Agricultural and
Table 18 to A_Scrub.

Table 15. 95% credible intervals: A_FallenLeaf.

q25% q97.5% HPDl HPDs

P_FallenLeaf 0.7466787 0.9081616 0.7530619 0.9129924
P_Conifiers 0.0368469 0.1599464 0.0316868 0.1517275

P_Agricultural 0.0003245 0.0461924 0.0000000 0.0376786
P_Scrub 0.0211397 0.1261276 0.0162449 0.1172020

Table 16. 95% credible intervals: A_Conifers.

q25% q97.5% HPDl HPDs

P_FallenLeaf 0.0154910 0.0938056 0.0118001 0.0869559
P_Conifiers 0.6820994 0.8411858 0.6856855 0.8442327

P_Agricultural 0.0598832 0.1780965 0.0559003 0.1725756
P_Scrub 0.0331458 0.1313375 0.0291373 0.1251047

Table 17. 95% credible intervals: A_Agricultural.

q25% q97.5% HPDl HPDs

P_FallenLeaf 0.1277553 0.2685539 0.1246560 0.2648023
P_Conifiers 0.0188861 0.0961158 0.0153899 0.0900707

P_Agricultural 0.6392494 0.7990403 0.6418989 0.8013868
P_Scrub 0.0093120 0.0725024 0.0062365 0.0660927
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Table 18. 95% credible intervals: A_Scrub.

q25% q97.5% HPDl HPDs

P_FallenLeaf 0.1156159 0.2377609 0.1129042 0.2344728
P_Conifiers 0.0289745 0.1065309 0.0258846 0.1018195

P_Agricultural 0.0869472 0.1983572 0.0840294 0.1946674
P_Scrub 0.5476286 0.7042094 0.5488392 0.7053518

The credible intervals are quite similar. Recall that the HPD intervals are more precise.

5.2. Application 2

In this application, a confusion matrix with r = 10 categories is considered, Table 19.
This matrix is obtained as a result of applying classification processes of literary genres
in n = 500 books by using text mining techniques [7]. The categories under considera-
tion are Romance (Rom), Mystery (Mystery), Horror (Hor), History (His), Fiction (Fic), Fan-
tasy (Fan), Comedy (Com), Children (Chi), Biographical (Bio) and Adventure (Adv). We have
50 actual observations in every category. The interest of this application is to illustrate
the performance of our proposal in a different field, text mining, and a bigger, r = 10,
confusion matrix.

5.2.1. Marginal Homogeneity

In Table 20, the summaries of applying Stuart–Maxwell and Bhapkar tests to the
confusion matrix proposed in Table 19 are listed. In both tests, the conclusion that there
exists significant evidence to reject the null hypothesis of multiple marginal homogeneity
is reached, and therefore the One versus All strategy based on the McNemar test is applied
to every category listed in Table 19. The most relevant summaries of one-sided tests are
given in Tables 21 and 22.

Table 19. Confusion matrix: Literary genres.

P_Rom P_Mys P_Hor P_His P_Fic P_Fan P_Com P_Chi P_Bio P_Adv

A_Rom 10 4 3 7 1 2 0 11 11 1
A_Mys 0 39 2 1 1 0 1 4 2 0
A_Hor 0 8 23 1 4 6 1 7 0 0
A_His 0 1 0 18 8 7 1 2 11 2
A_Fic 3 8 2 0 11 4 1 9 11 1
A_Fan 2 0 3 0 3 36 1 5 0 0
A_Com 2 11 7 2 5 3 4 12 3 1
A_Chi 1 4 1 3 1 3 0 36 0 1
A_Bio 2 4 3 2 4 2 1 10 22 0
A_Adv 0 9 6 2 2 8 0 9 2 12

Table 20. Marginal homogeneity (Literary Genres).

χ2 df p-value

Stuart–Maxwell 94.19 9 2.341× 10−16

Bhapkar 121.17 9 <2.2× 10−16

Table 21. Literary Genres: p-values of tests in which H1 : p < 0.5 was accepted.

Mystery Fantasy Children Biographical

Less 3.781× 10−7 0.001900827 3× 10−10 0.09090503
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Table 22. Literary Genres: p-values of tests in which H1 : p > 0.5 was accepted.

Romance History Comedy Adventure

Greater 1.19307× 10−5 0.03245432 5.2× 10−9 4.715× 10−7

From p-values in Table 21, it could be concluded that Mystery, Fantasy and Children
categories are overpredicted with problems of classification of some of the other categories
to these ones. On the other hand, from p-values in Table 22, Romance, History, Comedy and
Adventure are underpredicted, and actual observations in these categories are misassigned
to other ones.

Next, Bayesian techniques are applied, which allow us to assess these appreciations.

5.2.2. Bayesian Approach

A similarly process to the one explained in Application 1 has been followed. That is, a
noninformative prior Dirichlet distribution is considered for every category, αk = (1, . . . , 1),
with k = 1, . . . , 10. The summary of Bayesian estimates of conditional probabilities are
provided in Table 23.

Table 23. Summary of Bayesian estimates of conditional probabilities in Literary Genres.

A_Rom A_Mys A_Hor A_His A_Fic A_Fan A_Com A_Chi A_Bio A_Adv

P_Rom 0.183 0.017 0.017 0.017 0.067 0.05 0.05 0.033 0.05 0.017
P_Mys 0.083 0.667 0.15 0.033 0.15 0.017 0.2 0.083 0.083 0.167
P_Hor 0.067 0.05 0.4 0.017 0.05 0.067 0.133 0.033 0.067 0.117
P_His 0.133 0.033 0.033 0.317 0.017 0.017 0.05 0.067 0.05 0.05
P_Fic 0.033 0.033 0.083 0.15 0.2 0.067 0.1 0.033 0.083 0.05
P_Fan 0.05 0.017 0.117 0.133 0.083 0.617 0.067 0.067 0.05 0.15
P_Com 0.017 0.033 0.033 0.033 0.033 0.033 0.083 0.017 0.033 0.017
P_Chi 0.2 0.083 0.133 0.05 0.167 0.1 0.217 0.617 0.183 0.167
P_Bio 0.2 0.05 0.017 0.2 0.2 0.017 0.067 0.017 0.383 0.05
P_Adv 0.033 0.017 0.017 0.05 0.033 0.017 0.033 0.033 0.017 0.217

For those categories in which H1 : p < 0.5 was accepted an overprediction problem
is expected to happen. From Table 21, these are Mystery, Fantasy and Children. It can be
seen in Table 23, that in these categories the estimated probability of right classification
is high

P̂[P_Mystery|A_Mystery] = 0.667 (21)

P̂[P_Fantasy|A_Fantasy] = 0.617

P̂[P_Children|A_Children] = 0.617

Moreover, from the analysis by rows in these categories, we can observe that the
estimated probabilities that actual observations in other categories are classified in these
ones are high. As an illustration, consider the category Mystery , and note that:

P̂[P_Mystery|A_Hor] = 0.15 (22)

P̂[P_Mystery|A_Fic] = 0.15 (23)

P̂[P_Mystery|A_Com] = 0.20 (24)

P̂[P_Mystery|A_Adv] = 0.167 (25)

Equation (21) along with (22)–(25) explain the overprediction of Mystery genre.
A similar analysis can be carried out for Fantasy and Children.
On the other hand, for those categories in which H1 : p > 0.5 was accepted an

underprediction problem is expected to happen. These are Romance, History, Comedy and
Adventure, see Table 22. In these categories the estimated probability of right classification
are moderated, see P̂[P_Geni|A_Geni], in the diagonal of Table 23. From the analysis by
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columns in Table 23, note that actual observations in these categories are classified in other
ones also with moderate probabilities (around 0.10 or 0.20).

To conclude, take a look at Horror and Fiction. In both cases actual observations in
Horror (or Fiction) are wrongly misclassified in Mystery, Fantasy and Children, but also it
receives misclassifications of actual observations in Com or Adv, (for Fiction from History
and Comedy). There exists a balance between both opposite streams, which is not detected
by the tests in our proposal.

5.3. Application 3

In this case the confusion matrix given in Table 24 is considered. It is taken from [9]
(Figure 1, E). This matrix is obtained as result of applying an artificial intelligence clas-
sification method for the diagnosis of Inflammatory Bowel Disease (IBD) based on fecal
multiomics data. IBD’s are Crohn’s disease (CD) and Ulcerative Colitis (UC). nonIBD refers
to the control group. We chose this example because IBD’s are really difficult to diagnose
and classify, and their accurate diagnosis is really an important issue in Medicine, details
can be seen in [9].

Huang et al. proposed in [9] a method with high accuracy for the diagnosis of different
types of IBD. Specifically, the accuracy of Table 24 is accuracy = 0.6683, which in this context
is considered high. However certain asymmetry is observed in the off-diagonal elements
of Table 24,which due to the importance of the problem under consideration deserves
additional analysis.

Table 24. Confusion matrix: Inflammatory Bowel Disease (IBD).

P_nonIBD P_UC P_CD

A_nonIBD 37 1 15
A_UC 6 19 26
A_CD 15 3 77

5.3.1. Homogeneity

Similarly to previous applications, the results of applying multiple homogeneity test
are given in Table 25. The marginal homogeneity is again rejected. So the one versus all
strategy is applied, and their summaries are listed in Table 26.

Table 25. Marginal homogeneity test (IBD).

χ2 g.l. p-value

Stuart-Maxwell 21.783 2 1.861× 10−5

Bhapkar 24.461 2 4.88× 10−6

Table 26. IBD: McNemar test for every category.

nonIBD UC CD

Less 0.2556879 0.9999998864 0.001896853
Greater 0.8379957 0.0000009708 0.999226416

Two_Sided 0.5113758 0.0000019416 0.003793706

The analysis of results in Table 26 shows that:

1. For the control group, nonnIBD, there does not exist evidence to reject the null
hypothesis of marginal homogeneity. Therefore we do not detect any systematic
errors in this category;

2. For UC, the test,
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{
H0 : pUC ≤ 0.5
H1 : pUC > 0.5,

(26)

with pUC = P[A_UC ∩ P_Others]. It is obtained p-value = 9.7e−07, and therefore the
null hypothesis is rejected, which suggests underprediction of the UC category.

3. For CD, the test, {
H0 : pCD ≥ 0.5
H1 : pCD < 0.5,

(27)

with pCD = P[A_CD ∩ P_Others], p-value = 0.0012 is obtained, which suggests
overprediction of CD disease.

Since in this example we have evidence of problems of misclassification, the next step
is to assess the conditional probabilities of interest.

5.3.2. Bayesian Approach

In this case, a noninformative prior distribution is first considered. Since other possi-
bilities are also possible, later a sequential use of Bayes is illustrated.

Noninformative Prior Distributions

Let us consider a prior Dirichlet distribution with αj = 1 ∀j = 1, . . . , 3, as in previous
applications the Bayes estimates of conditional probabilities are obtained along with the
variances and standards deviations of marginal distributions. As novelty in this application,
we highlight that since we are dealing with r = 3 categories, the posterior distribution
associated to each category can be represented in the two-dimensional simplex, which
allows a visual analysis of these joint distributions. To obtain the graphical representation
in the two-dimensional simplex, 1000 values have been generated by using the R software,
a grid has been established and the corresponding contour plots have been displayed.

From results in Table 27, we highlight that

P̂[P_nonIBD|A_nonIBD] = 0.6786 and P̂[P_CD|A_nonIBD] = 0.2857 .

Although in the control group, non_IBD, there is no evidence of classification bias,
the estimated probability of being classified as CD is relatively high. As for the plot
given in Figure 1, note that the joint posterior distribution is quite concentrated and close
to non_IBD vertex. The mode of this posterior distribution can also be given as Bayes
estimates of the conditional probabilities, these are:

P̂[P_nonIBD|A_nonIBD] = 0.6981, P̂[P_UC|A_nonIBD] = 0.0189,

and P̂[P_CD|A_nonIBD] = 0.2830 . These estimates are quite close to the previous ones.

Table 27. Bayesian summaries in A_nonIBD.

n1+ α1 α̃1 θ̂jb Var(θj|α̃1) sd(θj|α̃1)

P_nonIBD 37 1 38 0.6785714 0.0038265 0.0618590
P_UC 1 1 2 0.0357143 0.0006042 0.0245803
P_CD 15 1 16 0.2857143 0.0035804 0.0598363
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Figure 1. Posterior Dirichlet in A_nonIBD.

In the A_UC category, Table 28, we found that, P̂[P_UC|A_UC] = 0.3704 is quite low,
and P̂[P_CD|A_UC] = 0.5000, that is, the estimated probability of an individual with UC
to be diagnosed as CD is surprisingly high.

Table 28. Bayesian summaries in A_UC.

n2+ α2 α̃2 θ̂jb Var(θj|α̃2) sd(θj|α̃2)

P_nonIBD 6 1 7 0.1296296 0.0020514 0.0452921
P_UC 19 1 20 0.3703704 0.0042399 0.0651147
P_CD 26 1 27 0.5000000 0.0045455 0.0674200

As for the joint posterior distribution plotted in Figure 2, we highlight that the area of
highest posterior density is closer to the CD vertex than to UC vertex. This is coherent with
the result in test (26), and confirms the underprediction of UC category in favour of CD.

The mode of this posterior distribution is:

P̂[P_nonIBD|A_UC] = 0.1176, P̂[P_UC|A_UC] = 0.3725, P̂[P_CD|A_UC] = 0.5098.

Again, these estimates are quite close to the previous ones.
Finally, let us study the CD category in Table 29.

Table 29. Bayesian summaries in A_CD.

n3+ α3 α̃3 θ̂jb Var(θj|α̃3) sd(θj|α̃3)

P_nonIBD 15 1 16 0.1632653 0.0013799 0.0371470
P_UC 3 1 4 0.0408163 0.0003955 0.0198861
P_CD 77 1 78 0.7959184 0.0016407 0.0405059

We highlight that the estimated probability of the right classification is the highest
one, P̂[P_CD|A_CD] = 0.7959 , and the area of highest posterior density is close to CD
vertex, see Figure 3. The mode of Figure 3 is (0.1579, 0.0316, 0.8106).
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Figure 2. Posterior Dirichlet in A_UC.

Figure 3. Posterior Dirichlet in A_CD.

All these facts allow us to conclude that there exists a serious problem of overpredic-
tion of CD and underprediction of UC. To asses this fact estimates of conditional probabili-
ties have been given. As for the joint posterior distributions, note that for A_nonIBD and
A_CD, they are close to the corresponding vertex as it can be seen in Figures 1 and 3 respec-
tively, which is good for a right classification. However, for A_UC is clear the confusion
with the category CD, see Figure 2.

For completeness, 95% credible intervals are given in Appendix A along with results
for a uniform discrete prior in r points.
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5.3.3. Sequential Use of Bayes Theorem

In this subsection, it is shown that if new information is available then the Bayes
theorem can be used in a sequential way to update our beliefs. Moreover our estimates
exhibit less variability as it next illustrated.
Step 1, (confusion matrix M1). Consider the Dirichlet-multinomial model for every row in
a r× r confusion matrix, denoted as M1. That is, for k = 1, . . . , r, we have a prior Dirichlet
distribution for θk,

θk|αk ∼ Dirichlet(αk) ,

and Yk = (Y1|k, . . . , Yr|k), the kth row with the counts in M1, is distributed as

Yk|n
step1
k+ , θk ∼ Multinomial(nstep1

k+ , θk).

Given yobs
k , the posterior distribution for θk is

θk|yobs
k , αk ∼ Dirichlet

(
nstep1

1|k + α1|k, . . . , nstep1
r|k + αr|k

)
. (28)

Step 2, (confusion matrix M2). If, in the same problem of classification, a new confusion
matrix, M2 is obtained in a set of independent observations of those considered to build
M1, then the distribution given in (28) can be considered as prior in Step 2 to get a new
posterior distribution. Specifically, let

θk|α̃k ∼ Dirichlet(α̃k) ,

and Wk = (W1|k, . . . , Wr|k) the kth row with the counts in M2, where

Wk|n
step2
k+ , θk ∼ Multinomial

(
nstep2

k+ , θk

)
Given wobs

k , the posterior distribution for θk is

θk|wobs
k , α̃k ∼ Dirichlet

(
nstep2

1|k + α̃1|k, . . . , nstep2
r|k + α̃r|k

)
. (29)

To illustrate the sequential method, let us consider M1 as the matrix given in Table 24
and M2 the matrix given in Table 30.

Table 30. M2 matrix (IBD).

P_nonIBD P_UC P_CD

A_nonIBD 42 1 10
A_UC 22 22 7
A_CD 34 10 51

The different estimates are listed in the following tables.
We highlight the increase of precision we got when the new information is incorpo-

rated in the process of estimation. Note that the standard deviations of posterior distribu-
tions listed in Tables 31–33 are less than those listed in Tables 27–29. This is the main merit
of the sequential use of Bayes’ theorem.

Table 31. Bayesian summaries Step 2 in A_nonIBD.

nstep2
1+ α̃1 α̃

step2
1 θ̂jb Var(θj|α̃

step2
1 ) sd(θj|α̃

step2
1 )

P_nonIBD 42 38 80 0.7339450 0.0017752 0.0421329
P_UC 1 2 3 0.0275229 0.0002433 0.0155988
P_CD 10 16 26 0.2385321 0.0016512 0.0406352
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Table 32. Bayesian summaries Step 2 in A_UC.

nstep2
2+ α̃2 α̃

step2
2 θ̂jb Var(θj|α̃

step2
2 ) sd(θj|α̃

step2
2 )

P_nonIBD 22 7 29 0.2761905 0.0018859 0.0434274
P_UC 22 20 42 0.4000000 0.0022642 0.0475831
P_CD 7 27 34 0.3238095 0.0020656 0.0454492

Table 33. Bayesian summaries Step 2 in A_CD.

nstep2
3+ α̃3 α̃

step2
3 θ̂jb Var(θj|α̃

step2
3 ) sd(θj|α̃

step2
3 )

P_nonIBD 34 16 50 0.2590674 0.0009894 0.0314554
P_UC 10 4 14 0.0725389 0.0003468 0.0186223
P_CD 51 78 129 0.6683938 0.0011425 0.0338008

6. Discussion

The aim of this paper is to propose methods to detect the bias of classification, as
well as overprediction and underprediction problems associated to categories in a con-
fusion matrix. The methods may be applied to confusion matrices obtained as result of
applying supervised learning algorithms, such as logistic regression, linear and quadratic
discriminant analysis, naive Bayes, k-nearest neighbors, classification trees, random forests,
boosting or support vector machines, among others. First marginal homogeneity tests are
introduced. They are based on applying techniques to matched pairs of observations tai-
lored to this context. Second, a Bayesian methodology, based on the multinomial-Dirchlet
distribution is developed, which allows us to confirm and to assess the magnitudes of these
problems by using prior information. Three applications taken from peer-reviewed and
different scientific literature have been carried out. They illustrate relevant aspects related
to the performance of our proposal, mainly varying the dimension r of the confusion matrix.
In all of them, the results obtained have been satisfactory. We consider that these new
methods are of interest for a better definition of classes, to improve the performance of
classification methods, and to assess the global process of classification. As for related
work, we highlight the results given in [22], where an excellent review of metrics to deal
with multi-class classification tasks is given. There, usual indicators such as accuracy, recall,
F1-Score, and kappa coefficients, among others along with their properties can be found.
In this sense, we highlight that the Bayesian results given in Section 4 can be used as a
micro method, with the additional merit of providing measurements about the variability
of summaries proposed. In this sense, the standard deviation of posterior distributions
can be used. To carry out a comparison of the results in our paper to existing metrics can
be of interest in future works. Additionally, we intend to depply study the structure of
confusions, for instance, to analyze if certain classes have a common confusion structure or
not, their relationships, the effect of the sample size, or dealing with unbalanced classes.

Author Contributions: Conceptualization, methodology and writing, I.B.-C.; validation and soft-
ware, R.M.C.-G. All authors have read and agreed to the published version of the manuscript.

Funding: The research of Rosa M. Carrillo-García has been funded by Grant PI3 “Programa IMUS de
Iniciación a la Investigación”, IMUS, Seville, 2021.

Data Availability Statement: References have been given where the confusion matrices used in the
applications can be found.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Application 3

In this Appendix, for completeness, 95% credible intervals are given for the setting
studied in Section 5.3, that is Application 3. Also results for another prior distribution, the
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Perks prior or discrete uniform prior distribution in r points are included. Similar results
to those for the continuous case are obtained.

Table A1. 95% credible intervals: A_nonIBD.

q25% q97.5% HPDl HPDs

P_nonIBD 0.5518703 0.7931919 0.5564379 0.7971693
P_UC 0.0044345 0.0971910 0.0008478 0.0837975
P_CD 0.1762997 0.4096195 0.1716235 0.4040643

Table A2. 95% credible intervals: A_UC.

q25% q97.5% HPDl HPDs

P_nonIBD 0.0547901 0.2302899 0.0477798 0.2195273
P_UC 0.2478722 0.5019668 0.2448073 0.4985839
P_CD 0.3683954 0.6316046 0.3683954 0.6316046

Table A3. 95% credible intervals: A_CD.

q25% q97.5% HPDl HPDs

P_nonIBD 0.0973247 0.2421973 0.0933429 0.2370862
P_UC 0.0113483 0.0877318 0.0076403 0.0800716
P_CD 0.7111385 0.8692713 0.7155517 0.8728854

These credible intervals are useful to asses the possible values of interest in the problem
under consideration.

Remark A1 (Perks prior or discrete prior distribution in r points). A similar study to the one
conducted in Section 5.3 was carried out by using a discrete prior distribution in r points, that is
αj = 1/r, j = 1, . . . , r . Similar results were obtained, which are listed in Table A4.

Table A4. Summaries IBD (A discrete uniform prior).

A_nonIBD A_UC A_CD

P_nonIBD 0.691 0.122 0.16
P_UC 0.025 0.372 0.035
P_CD 0.284 0.506 0.806
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