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Abstract: The process of Levy random walks is considered in view of the constant velocity of a
particle. A kinetic equation is obtained that describes the process of walks, and fractional differential
equations are obtained that describe the asymptotic behavior of the process. It is shown that, in
the case of finite and infinite mathematical expectation of paths, these equations have a completely
different form. To solve the obtained equations, the method of local estimation of the Monte Carlo
method is described. The solution algorithm is described and the advantages and disadvantages of
the considered method are indicated.
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1. Introduction

At present, the theory of anomalous diffusion is rarely used to describe the combustion
processes of a substance, although there are all the prerequisites for this. For example,
when a substance is burning, various kinds of turbulence are developing. As a result, the
diffusion packet width ∆(t) stops obeying the law ∆(t) ∝ tγ with an exponent γ = 1/2
and starts growing with time by the law with an exponent γ 6= 1/2, which testifies to
the appearance of anomalous diffusion. Signs of the appearance of anomalous diffusion
at thermal transport in a low-dimensional system are indicated in the papers [1,2]. This
assumption is also supported by experimental data. For example, in the work [3], the
thermal radiation in the combustion chamber during the combustion of natural gas and
acetylene was studied, depending on the level of fuel enrichment with oxygen. Time series
analysis showed that the combustion process at any oxygen concentration is subdiffusive
in nature.

The assumption about the formation of anomalous diffusion during the combustion
of a substance allows us to introduce into consideration the fractional differential equations
of anomalous diffusion. An effective coefficient of heat conductivity for the Levy–Fokker–
Plank equation was obtained in the papers [4,5]. In the papers [6–8], to describe the
combustion process, it is proposed to use the fractional differential equation of anomalous
diffusion:

0Dβ
t u = ∂xxu + f (u), t > 0, 0 < x < L, (1)

where 0Dβ
t is the fractional Riemann–Liouville derivative [9] of the order 0 < β < 1 by

time and ∂xx is the classical particular derivative of the second order by coordinate. In
the paper [10], a two-dimensional combustion model with a fractional time derivative
was studied. To solve the obtained equation of diffusion, the authors develop an adaptive
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finite-difference discontinuous Galerkin method. A modification of the Equation (1) in
the case of the dependence of the diffusivity on temperature and relaxation time has been
considered in the article [11]. In the papers [8,12], a fractional-differential combustion
model with the first derivative with respect to time and a fractional derivative with respect
to the spatial variable is considered:

∂tu = ∂α

∂|x|α u + f (u), u(x, 0) = u0(x), u(a, t) = u(b, t) = 0. (2)

Here, ∂t is the partial time derivative, and ∂α

∂|x|α is the fractional-differential Riesz
operator [9]. To solve this equation, a finite-difference scheme using an adaptive strategy is
described in the papers [8,12]. In the paper [13], a fractional-differential generalization of
the kinetic equation was obtained that describes the relationship between the radius of the
ball and time in the model of the combustion of a fireball, theoretically predicted by the
Soviet physicist Ya.B. Zeldovich [14].

However, when using the Equations (1) and (2), it should be kept in mind that they
are based on the process of Continuous Time Random Walk (CTRW) [15–22]. This process
assumes that a particle instantly moves from one point in space to another at a random
distance Ri, i = 1, 2, 3, . . . , and then rests at this point for a random time Ti, i = 1, 2, 3, . . .
All these random values Ri and Ti are independent of each other and between one another
and they are distributed by the laws pR(x) ∝ x−α−1, x → ∞ and qT(t) ∝ t−β−1, t → ∞,
respectively.

Depending on the value α, the path distribution has different properties. If α = 2,
then the distribution has finite mathematical expectation and variance, at 1 < α < 2,
mathematical expectation is finite and variance is infinite, at 0 < α 6 1 both mathematical
expectation and variance are infinite. The instantaneousness of jumps means that, for
an arbitrarily small time interval from the initial one, the particle can be at an arbitrarily
large distance from the source. In some cases, this non-physical behavior of a particle
does not lead to any contradiction with the experiment. For example, in the case of the
normal diffusion (α = 2, β = 1), when the distribution of paths and rest times have a finite
variance, the process is described by the classical diffusion equation, the solution to which is
expressed in terms of the normal distribution. It is well known that the normal distribution
is nonzero on the entire number axis, which indicates the infinite velocity of the particle
in the inherent walk model. However, in view of the finite variance of the distribution of
paths, the infinite velocity of motion is compensated for by a small value of the paths. The
situation is completely different in the case of anomalous diffusion. As the exponent α
decreases, the probability of greater paths increases and at values α < 1 this probability
turns out to be significant. Therefore, it is necessary to use the anomalous diffusion model
with a certain degree of caution, especially when considering problems with limited spatial
geometry or processes limited in time, for example, to describe combustion processes in
furnaces.

One of the ways to eliminate the difficulty described above is to introduce a constant
final velocity of the particle. One of the first works in which a constant velocity of particle
motion was introduced into the model of anomalous diffusion is the work [23]. In this
paper, the authors called this model Levy walks. Further study of this model was carried
out in the works [24–26]. The work [27] is devoted to the study of Levy walks in bounded
and semi-bounded spaces. In the work [28], kinetic equations of anomalous diffusion
with a finite velocity are obtained, the root-mean-square deviation is investigated, and
an exact solution to the kinetic equation in the one-dimensional case is obtained. The
work [29] is devoted to the study of statistical moments for the case of Levy random walks
with a random finite velocity without traps, and the case of multidimensional walks with
traps of arbitrary type with constant velocity is considered in the works and the case of
multidimensional walks with traps of arbitrary type with constant velocity is considered
in the works [30–33]. The work [34] examines the influence of the final velocity on the
spatial distribution of particles in Levy walks with exponential traps. In this work, it
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was found that, in the case 1 < α 6 2, taking account of the constant velocity of particle
motion is reduced to a decrease in the diffusion coefficient in the equation of anomalous
diffusion (2). In the case α < 1 distributions take W-like or U-like form and cannot be
described by the Equation (2). The papers [35–37] study the process of Levy random walks
without traps and it was shown that in the case of infinite mathematical expectation of
the distribution of paths, the asymptotic distributions have U-like and W-like form. In
the paper [38] an expression for current within framework of the Levy walks model was
obtained. The obtained expression generalize the Fourier’s law to the case of anomalous
thermal transport for the Levy diffusion model.

The work [39] succeeded in addressing the problem of describing Levy random walks
in the case α < 1. In this work, it was shown that, in the case of an infinite mathematical
expectation of the distribution of paths, to take account of the finite velocity, it is necessary
to replace the fractional Laplacian in the equation of anomalous diffusion by a material
derivative of a fractional order. Later, the authors of the works [40–44] come to the same
conclusion. The solution to the equation of anomalous diffusion with a material derivative
of the fractional order was obtained in the works [44–46]. In these works, it was shown
that the solution to this equation is expressed in terms of the Lamperti distribution.

In this paper, we consider a method for the numerical solution to the equations of
anomalous diffusion taking account of the constant finite velocity of the particle motion
between collisions. The work is organized as follows. In Section 2, a kinetic equation
describing the considered process of walks is derived. In Section 3, fractional differential
equations and the solutions of these equations are obtained, describing the asymptotic (at
t → ∞ and x → ∞) distribution of particles. It was shown that, in the case of an infinite
mathematical expectation of the distribution of paths (0 < α < 1) and finite mathematical
expectation 1 < α < 2, the behavior of the process is described by completely different
equations. In Section 4, a numerical method for solving the kinetic equation based on the
method of local density estimation is considered.

2. Kinetic Equation of the Random Walk Process

To obtain the kinetic equation, we will use the approach proposed in the paper [28],
which was developed in the paper [47]. We will consider the density of collisions f (r, p, t),
where r is the radius-vector of the particle, p—is the particle momentum, t—is time. The
value f (r, p, t)dr dp dt is the number of collisions in the volume element dr of the vicinity
of the point r for the interval of time dt, at which the momentum of the particle takes on
a value from p to p + dp. We will consider the nonrelativistic case p = mv. Without loss
of generality, we assume that m = 1. The paper [47] shows that, with the presence n of
discrete states, the value f (r, v, t) can be represented in the form:

f (r, v, t) =
n

∑
j=1

f j(r, v, t), (3)

where

f j(r, v, t) = sj(r, v, t) +
n

∑
i=1

cij

∫ t

0
ki(τ)dτ

∫
Wij(Ω

′, Ω)dΩ′×∫
fi
(
r− v′Ω′τ, v′Ω′, t− τ

)
hij(v′, v)dv′. (4)

Here, ki(τ) is the probability density distribution of the residence time in the state
i, cij—the probabilities of transition from the state i into the state j, Wij(Ω

′, Ω) is the
probability density that before collision the velocity had the direction Ω′, after collision
the direction took the value Ω, hij(v′, v) is the density of the probability of the change in
velocity from the value v′ to v, sj(r, v, t) is the density of new particle sources in the state
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j, v = vΩ, v = |v|, dv = dv dΩ, the summation is carried out over all possible previous
states. The values cij, Wij(Ω

′, Ω) and hij(v′, v) are normalized:

n

∑
j=1

cij = 1,
∫

Wij(Ω
′, Ω)dΩ = 1,

∫
hij(v′, v)dv = 1. (5)

The transition from the density of collisions f (r, v, t) to the phase density ψ(r, v, t) is
carried out with the help of the integral,

ψ(r, v, t) =
∫ t

0
K(τ) f (r− vΩτ, vΩ, t− τ)dτ, (6)

where K(t) =
∫ ∞

t k(τ)dτ. Substituting (3) in (6) we get that the phase density has the form
of the sum,

ψ(r, v, t) =
n

∑
j=1

ψj(r, v, t), (7)

where

ψj(r, v, t) =
∫ t

0
Kj(τ) f j(r− vΩτ, vΩ, t− τ)dτ, (8)

where Kj(t) =
∫ ∞

t k j(τ)dτ. The physical interpretation of the last expression is simple. To
detect the particle in the state j of the vicinity dr of the point r with the velocity in the
interval from v to v + dv at the moment of time from t to t + dt the particle must pass to
this state at the point r− vΩτ at the moment of time t− τ and stay in this state during the
time greater than τ. Transition to the density of particles ρ(r, t) is carried out with the help
of the integral,

ρ(r, t) =
∫

ψ(r, v, t)dv. (9)

The system of Equations (4), (7) and (8), together with conditions (5) describes practi-
cally any process of random walks with n discrete states under fairly general assumptions
about the scattering indicatrix Wij(Ω

′, Ω) and the law of redistribution of speed hij(v′, v).
In this work, using these equations, we obtain kinetic equations describing Levy walks
with a constant velocity of motion between two successive scatterings of a particle.

We define the process of walks as follows. There is only this state—the state of motion
(n = 1). A particle moves at a constant velocity v between two successive collisions. After
the collision, the particle changes its direction, which is determined by the scattering
indicatrix W(Ω). After which, the particle continues to move in a new direction with the
same constant velocity v. Random times between two successive collisions of a particle
Ti, i = 1, 2, 3, . . . are independent random values. Since the motion occurs with a finite
speed, then for times Ti the particle covers the path Ri = vTi, i = 1, 2, 3, . . . . The values Ri
are the paths of particles.

Since there is only one state, then in Equations (4), (7) and (8), we need to put n = 1,
c11 = 1. We will also assume that the source can be represented in the form s(r, v, t) =
s(r, t)hs(v)Ws(Ω) and, for brevity, we omit the subscript indicating the status number. As
a result, we obtain:

ψ(r, v, t) =
∫ t

0
K(τ) f (r− vΩτ, vΩ, t− τ)dτ, (10)

f (r, v, t) = s(r, t)hs(v)Ws(Ω)

+
∫ t

0
k(τ)dτ

∫
W(Ω′, Ω)dΩ′

∫
f
(
r− v′Ω′τ, v′Ω′, t− τ

)
h(v′, v)dv′. (11)
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The motion velocity between two successive collisions will be denoted by v0. Let
us also assume that the direction of motion after each collision does not depend on the
previous direction of motion. In view of the foregoing, we get:

h(v′, v) = hs(v) = δ(v− v0), W(Ω′, Ω) = Ws(Ω) = W(Ω).

Now, substituting these expressions in Equation (11), we obtain:

f (r, v, t) = W(Ω)δ(v− v0)

(
s(r, t) +

∫ t

0
k(τ)dτ

∫
dΩ′

∫
f
(
r− v′Ω′τ, v′Ω′, t− τ

)
dv′
)

. (12)

From this relation, it is clear that, in cases when the densities of transition probabilities
h(v′, v) and Wij(Ω

′, Ω) do not depend on the previous value v′ and Ω′, then the density of
the collision can be represented in the form of the product f (r, vΩ, t) = W(Ω)h(v)F(r, t).
Thus, we obtain:

f (r, vΩ, t) = W(Ω)δ(v− v0)F(r, t). (13)

Now substituting this relation in (12) and by integrating over dv dΩ we get the
equation for F(r, t):

F(r, t) = s(r, t) +
∫ t

0
k(τ)dτ

∫
W(Ω′)dΩ′

∫
F(r− v′Ω′τ, t− τ)δ(v′ − v0)dv′

= s(r, t) +
∫ t

0
k(τ)dτ

∫
F(r− v0Ω′τ, t− τ)W(Ω′)dΩ′. (14)

Here, we used the normalization condition
∫

W(Ω′)dΩ′ = 1. The physical meaning
of the quantity F(r, t) is quite simple. This is the density of collisions in the volume element
dr of the vicinity of the point r.

Let us now pass from the collision density to the phase density ψ(r, v, t), and then to
the density of particles ρ(r, t). To this end, we put the expression (13) in (10). As result,
we obtain:

ψ(r, v, t) =
∫ t

0
K(τ)W(Ω)δ(v− v0)F(r− vΩτ, t− τ)dτ.

Now integrating this expression over dv dΩ and taking account of the ratio (9), we get
the equation for the density of particles:

ρ(r, t) =
∫ t

0
K(τ)dτ

∫
W(Ω)F(r− v0Ωτ, t− τ)dΩ. (15)

For the further solution to the obtained equations, it turns out to be convenient to pass
from the time τ to the particle path ξ. By substituting the integration variable τ = ξ/v0, in
Equations (14) and (15), we get:

ρ(r, t) =
1
v0

∫ v0t

0
P(ξ)dξ

∫
F(r− ξΩ, t− ξ/v0)W(Ω)dΩ, (16)

F(r, t) = s(r, t) +
∫ v0t

0
p(ξ)dξ

∫
F(r− ξΩ′, t− ξ/v0)W(Ω′)dΩ′.. (17)

Here, the following notation was introduced: p(ξ) = 1
v0

k(ξ/v0) is the density of

probability of the path distribution and K( ξ
v0
) ≡ P(ξ) =

∫ ∞
ξ p(y)dy.
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From this system of equations, it is possible to exclude the equation for F(r, t). To
do this, we will substitute Equation (17) in (16) and change the order of integration in the
second summand. As a result, we obtain the equation for density,

ρ(r, t) =
1
v0

∫ v0t

0
P(ξ)dξ

∫
s(r− ξΩ, t− ξ/v0)W(Ω)dΩ

+
∫ v0t

0
p(ξ)dξ

∫
ρ(r− ξΩ′, t− ξ/v0)W(Ω′)dΩ′. (18)

The first summand in this equation describes unscattered radiation. The second
summand describes multiply scattered radiation. This equation describes the random
walk of a particle with constant velocity in three-dimensional space with an arbitrary
distribution of paths.

Let us simplify the problem and consider one-dimensional particle walks. Let the
random walk process occur along the axis x. In this case, the function W(Ω) takes the
form:

W(Ω) = W(θ, ϕ) =
1

sin θ
(ω1δ(ϕ) + ω2δ(ϕ− π))δ(θ − π/2), (19)

where ω1 and ω2 are the probabilities of motion in the positive and negative directions of
the axis Ox respectively and ω1 + ω2 = 1. Now substituting (19) in Equation (18) and con-
sidering that Ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ), ρ(r, t) = ρ(x, y, z, t), s(r, t) = s(x, y, z, t),
dΩ = sin θdθdϕ and integrating the resulting equation over the angular variables, we
obtain:

ρ(x, y, z, t) =
1
v0

∫ v0t

0
P(ξ)(ω1s(x− ξ, y, z, t− ξ/v0) + ω2s(x + ξ, y, z, t− ξ/v0))dξ

+
∫ v0t

0
p(ξ)(ω1ρ(x− ξ, y, z, t− ξ/v0) + ω2ρ(x + ξ, y, z, t− ξ/v0))dξ.

Since random walks along the axis Ox are considered, then,

ρ(x, y, z, t) = ρ(x, t)δ(y)δ(z), s(x, y, z, t) = s(x, t)δ(y)δ(z).

Now substituting these expressions into the previous equation and integrating over
the variables y and z, we finally obtain:

ρ(x, t) =
1
v0

∫ v0t

0
P(ξ)(ω1s(x− ξ, t− ξ/v0) + ω2s(x + ξ, t− ξ/v0))dξ

+
∫ v0t

0
p(ξ)(ω1ρ(x− ξ, t− ξ/v0) + ω2ρ(x + ξ, t− ξ/v0))dξ. (20)

The first component in this equation describes unscattered particles that, after escaping
from the source, did not have a single collision and move in positive and negative directions,
respectively. The second component describes multiply scattered particles, which at the
moment of time t− ξ/v0 had a collision and after that they began their motion in positive
and negative directions, respectively.

3. Asymptotic Solution to a Kinetic Equation

An asymptotic solution to this equation can be found. To do this, we perform the
Fourier–Laplace transform:

ρ̂(k, λ) =
∫ ∞

0
dt
∫ ∞

−∞
eikx−λtρ(x, t)dx (21)
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of the Equation (20). As a result, we obtain:

ρ̂(k, λ) =
1
v0

ŝ2(k, λ)
(
ω1P̂(λ/v0 − ik) + ω2P̂(λ/v0 + ik)

)
+ ρ̂(k, λ)(ω1 p̂(λ/v0 − ik) + ω2 p̂(λ/v0 + ik)).

As a result, we obtained a simple algebraic equation, the solution to this equation has
the form:

ρ̂(k, λ) =
1
v0

ŝ(k, λ)
(
ω1P̂(λ/v0 − ik) + ω2P̂(λ/v0 + ik)

)
1−ω1 p̂(λ/v0 − ik)−ω2 p̂(λ/v0 + ik)

.

Let there be a point instantaneous source s(x, t) = δ(x)δ(t). This means that ŝ(k, λ) = 1.
Considering that

P̂(λ) =
∫ ∞

0
e−λξ P(ξ)dξ =

1− p̂(λ)
λ

,

we obtain

ρ̂(k, λ) =
1/v0

1−W(k, v0, λ)

ω1

1− p̂
(

λ
v0
− ik

)
λ
v0
− ik

+ ω2

1− p̂
(

λ
v0

+ ik
)

λ
v0

+ ik

, (22)

where W(k, v, λ) = ω1 p̂(λ/v− ik)− ω2 p̂(λ/v + ik). This solution describes the spatial
distribution of particles with random walks of a particle at a constant velocity, with an
arbitrary distribution of paths. This solution is not new and was obtained earlier (see, for
example, [40,42,48–52]). In this paper, we will consider the asymptotic solution to this
equation in the case when the distribution of paths has asymptotics of the form:

p(x) ∝ αxα
0 x−α−1, 0 < α < 2, x → ∞, (23)

where x0 = (Γ(1− α) sin(π
2 (1− α)))−1/α. The cases of other distributions of paths are

considered in the work [52].
Let us consider the case 0 < α < 1. In this case, the Laplace transform of the density

(23) has the form (see [33]):

p̂(λ) ≈ 1− (λx0)
αΓ(1− α), λ→ 0.

Now substituting this expression into the solution (22), we obtain:

ρ̂(k, λ) =
ω1(λ− ikv0)

α−1 + ω2(λ + ikv0)
α−1

ω1(λ− ikv0)
α + ω2(λ + ikv0)

α . (24)

This expression completely coincides with the result obtained in [37,49,53]. Taking
account of the fact that the multiplier (λ± ikv)α is the Fourier–Laplace transform of the
fractional material derivative [40,54],

(λ± ıkv)α f̂ (k, λ) =
∫ ∞

0
dt
∫ ∞

−∞
eıkx−λt f (x, t)

(
∂

∂t
± v

∂

∂x

)α

dx,

we obtain that the process is described by the fractional differential equation [44,53–55]:[
ω1

(
∂

∂t
− v0

∂

∂x

)α

+ ω2

(
∂

∂t
+ v0

∂

∂x

)α]
ρ(x, t) =

=

[
ω1

(
∂

∂t
− v0

∂

∂x

)α−1
+ ω2

(
∂

∂t
+ v0

∂

∂x

)α−1
]

δ(x)δ(t). (25)
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By changing the variable s = ik in (24), one can perform the inverse transformation
using the method described in the work [56] (see also [37]). As result, we have:

ρ(x, t) =
2 sin(πα)

πv0t
ω1ω2

(
1− (x/v0t)2)α−1

ω2
1(1− x/v0t)2α + ω2

2(1 + x/v0t)2α + 2ω1ω2(1− (x/v0t)2) cos(πα)
. (26)

In the case 1 < α < 2, the distribution (23) has a mathematical expectation. In view of
the fact that the Laplace transform of density (23) takes the form (see [33]):

p̂(λ) ≈ 1−m1λ + m2λα, λ→ 0,

where m1 = αx0
α−1 , m2 =

xα
0 Γ(2−α)

α−1 . Now substituting this expression in (22) and considering
asymptotics λ→ 0, k→ 0, |λ/kv| → 0, we get:

ρ(k, λ) ≈ 1
λ + ikv0(ω2 −ω1)− m2

m1
(ω1(−ikv0)α + ω2(ikv0)α)

. (27)

To obtain an equation describing the process of random walks, we rewrite this expres-
sion in the form:

λρ̂(k, λ)− 1 = ρ̂(k, λ)

(
ikv0(ω1 −ω2) +

m2

m1
(ω1(−ikv0)

α + ω2(ikv0)
α)

)
.

Let us simplify the problem and consider symmetric random walks ω1 = ω2 = 1/2,
we obtain:

λρ̂(k, λ)− 1 = ρ̂(k, λ)
m2

2m1
vα

0 |k|α((−i)α + iα).

In view of the fact that 1
2 ((−i)α + iα) = cos(π

2 α) we get:

λρ̂(k, λ)− 1 = −Dαρ̂(k, λ)|k|α. (28)

Here, Dα = m2
m1

vα
0 sin

(
π
2 (α− 1)

)
. To perform the inverse Fourier–Laplace transform of

this equation, we need the Riesz fractional differentiation operator:

∂ν

∂|x|ν =
−1

2 cos(πν/2)
(−∞Dν

x +
∞Dν

x).

The Fourier transform of this operator has the form (see, for example, [9]):∫ ∞

−∞
eikx ∂ν f (x)

∂|x|ν dx = −|k|ν f̂ (k).

Taking this relation into account, it is possible to perform the inverse Fourier–Laplace
transform of Equation (28). As a result, we obtain the equation of anomalous diffusion:

∂ρ(x, t)
∂t

= Dα
∂αρ(x, t)

∂|x|α , (29)

with the initial condition ρ(x, 0) = δ(x)δ(t).
The solution to this equation can be obtained by performing the inverse Fourier–

Laplace transform of the solution (27). It has already been done in the works [52,53]. As a
result, the inverse Fourier–Laplace transform has the form:

ρ(x, t) =
1

(Dαt)1/α
g
(
(x−ωvt)(Dαt)−1/α; α, ω, 0, 1

)
,
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where g(x; α, ω, 0, 1) is the density of the standard stable law and ω = ω1 −ω2. In the case
of symmetric walks ω1 = ω2 = 1/2, this expression takes the form:

ρ(x, t) =
1

(Dαt)1/α
g
(

x(Dαt)−1/α; α, 0, 0, 1
)

. (30)

As we can see, the equation solution (29) is expressed in terms of a symmetrical stable
law [20,57,58].

Thus, taking account of the constant velocity of the particle in the Levy walk model
leads to the need to consider two cases 0 < α < 1 and 1 < α < 2. The principal difference
between these two cases is that, at 0 < α < 1, the mathematical expectation of the
distribution (23) is equal to infinity and in the case 1 < α < 2, the mathematical expectation
is finite. It is this fact that leads to different asymptotic distributions of particles. In the
case of an infinite mathematical 0 < α < 1 the probability of the appearance of large paths
turns out to be significant, and leads to the fact that the overwhelming majority of particles
move along the front of the distribution x = ±vt. This is especially clear at values α < 0.6.
In this case, the U—like form of the asymptotic distribution of particles is formed. As the
parameter α increases, the share of large paths decreases. This leads to the appearance of
multiply scattered particles, which form a hump in the central part of the distributions.
As a result, the W—like asymptotic distribution of particles is formed. These solutions
are not new and were obtained earlier when considering random walks with constant
velocity [49,52,53], and when considering similar models of random walks [37,42,48,59,60]
(see also the overview work [50]). In the case of the finite mathematical expectation
(1 < α < 2), the process of random walks of a particle with a constant velocity falls under
the action of the generalized central limit theorem. As a result, the asymptotic distribution
of the particle coordinate is described by a stable law. In this case, the influence of the final
velocity is reduced to a decrease in the diffusion coefficient D → Dα [34].

As we can see, in the case of the finite mathematical expectation and infinite math-
ematical expectation, not only are the asymptotic distributions different, but so are the
equations describing the process of random walks. In the case of the finite mathematical
expectation, the random walk process is described by the anomalous diffusion equation
with the first time derivative (29), and the influence of the finite velocity is reduced to
replacing the diffusion coefficient in this equation. In the case of the infinite mathematical
expectation for taking account of the finite velocity of motion, as noted in the work [34], it
is no longer sufficient to simply replace the diffusion coefficient. For this, it is necessary to
replace the operator of the fractional Laplacian with the material derivative of the fractional
order, which was first noted in the work [39]. Later, the authors of the works [40–44] come
to the conclusion like this. Thus, in the case 0 < α < 1 in asymptotics t→ ∞ the random
walk process is described by Equation (25).

4. Numerical Solution to a Kinetic Equation

It should be noted that the numerical methods for solving Equation (29) are well
investigated (see, for example, [8,12]). For a more detailed familiarization with the methods
of numerical solutions of equations with fractional derivatives we refer the reader to the
reviews [61,62]. However, there are no numerical methods for solving Equation (25) or
similar equations with the material derivative of the fractional order. At least, the authors
are not familiar with works devoted to methods of the numerical solution of such equations.

We consider a method for a numerical solution to Equations (25) and (29), which is
based on the Monte Carlo method. From Section 2, it is clear that the random walk process
of a particle with a constant velocity is described by an integral transport equation, which
in the one-dimensional case takes the form (20). This allows the use of the Monte Carlo
method to find a solution to this equation. The advantage of Monte Carlo methods is that
they allow one to find a solution in multidimensional problems, as well as for various
boundary and initial conditions.
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From Section 2, the simplest method of numerical solution immediately follows based
on modeling trajectories and histogram estimates of the particle distribution density. Each
trajectory starts at a moment in time t = 0 from the origin of coordinates x = 0. We will
consider one-dimensional symmetric walks ω1 = ω2 = 1/2. Therefore, from the origin of
coordinates, a particle with equal probability moves to the right or to the left at a random
distance R1, spending time T1 = R1/v0 on it. After that, the direction of motion is again
modeled and with equal probability the particle continues to move to the right or to the
left, moving a random distance R2, spending time T2 = R2/v0 on it. After that, the process
continues in the same way. The construction of the trajectory continues as long as the
condition is met:

N(T∗)

∑
k=1

Tk 6 T∗, (31)

where T∗ is a given moment in time at which it is necessary to find a solution. As soon as
this condition is no longer met, the trajectory is terminated and a new trajectory begins.
Random paths Rk, k = 1, 2, . . . are distributed with a density,

p(x) =
{

αxα
0 x−α−1 x > x0,

0 x < x0.

Thus, random quantities Rk, k = 1, 2, . . . are modeled according to the formula
R = x0ζ−1/α, where ζ is a uniformly distributed random variable on a segment (0, 1].

To construct the simplest histogram estimate for the solution to the kinetic equation,
the entire area of interest ∆ = [a, b] is broken down into non-overlapping intervals ∆i =
(xi, xi+1], i = 1, 2, . . . M − 1, x1 = a, xM = b. To construct a histogram, the trajectory is
modeled until the condition is met (31). As soon as this condition ceases to be met, the
trajectory is terminated and the contribution from this trajectory is calculated:

hj(∆i) =
I(∆i)

∆i
,

where I(∆i) is the interval indicator ∆i,

I(∆i) =

{
1, x∗ ∈ ∆i,
0, x∗ /∈ ∆i,

where x∗ is the coordinate of a particle at the moment of time T∗. As a result, the estimate
of the density for the interval ∆i is given by the expression:

ρ̃(∆i, t) =
1
N

N

∑
j=1

hj(∆i), (32)

where summation is performed over the ensemble N of independent trajectories.
Despite the simplicity of this estimate, it has several disadvantages. Firstly, the

estimate of the solution ρ̃(∆i, t) is sought for the interval ∆i. This is the source of the
systematic (horizontal) component of the error δx. Secondly, this estimate also contains the
statistical component of the error δ̂, which decreases like N−1/2 at N → ∞. It is impossible
to eliminate these errors completely; one can only reduce their value. However, a decrease
in one of these values leads to an increase in the other value or to an increase in the
calculation time.

It is possible to get rid of the systematic component of the error completely δx, if to
consider one of the varieties of a local estimate. As in the case of the histogram estimate,
the problem is to estimate the probability density of detecting a particle at the point x∗ at
the moment of time T∗. The main element of solving the problem of transport theory by
the Monte Carlo method—trajectory modeling remains unchanged. The difference lies in
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the estimation method. In the case of a local estimate, the probability of a particle reaching
a point is calculated (x∗, T∗), provided that the next collision is the final one.

To find this probability, let us consider the process of a random walk. Suppose that
the density needs to be estimated at the point x∗ at the moment of time T∗ (see Figure 1).
We will consider symmetrical random walks ω1 = ω2 = 1/2. The particle trajectory begins
at the point x = 0 at the moment of time t = 0. Let the particle, as a result of a random
walk at the moment of time t′, reach the point x′. To estimate the density at the point x∗,
it is necessary to calculate the probability of transition from the point (x′, t′) to the point
(x∗, T∗). It is obvious that, to get from the point (x′, t′) to the point (x∗, T∗), there are two
possible alternatives of the trajectory continuation (see, Figure 1). The first option is to
cover the distance ξ1 in the positive direction of the axis Ox. Then, to scatter at the point
(x′1, t′1) and to cover the distance greater than ξ2 in the negative direction of the axis Ox.
The second option is to cover the distance ξ2 first in the negative direction of the axis Ox.
Then, to scatter at the point (x′2, t′2) and to cover the distance greater than ξ1 in the positive
direction of the axis Ox. Since the particle is moving with a constant velocity v0 all the time,
then the paths ξ1 and ξ2 will take time τ1 = ξ1/v0 and τ2 = ξ2/v0. The values of the paths
ξ1 and ξ2 are determined by the formulas:

ξ1 = 1
2 (v0(T∗ − t′) + (x∗ − x′)), ξ2 = 1

2 (v0(T∗ − t′)− (x∗ − x′)).

x

t

x
=
vt

x
= −

vt

T ∗

✵

(x′
1, t

′
1)

(x′
2, t

′
2)

(x∗, T ∗)O

x′

t′

x′
1

t′1

x∗

ξ1

ξ2

τ1

τ2

A

B

Figure 1. Possible continuation of the particle trajectory for constructing a local estimate.

Thus, the probability of transition from the point (x′, t′) to the point (x∗, T∗) is deter-
mined by the formula:

ψ(x∗, x′, T∗, t′) = 1
4 (p(ξ1)P(ξ2) + p(ξ2)P(ξ1)), (33)

where P(ξ) =
∫ ∞

ξ p(ξ ′)dξ ′, and the multiplier 1/4 appears as a result of the fact that, on
the considered section of the trajectory, the particle changes its direction of motion twice.
This transition probability is calculated after each particle scattering.

Theoretically, the contribution to the sought density can be made at the point x∗ by
those particles that can get to the point x∗ from the current point without having a single
scatter in the remaining time. Suppose that, as a result of random walks, the particle is
scattered at the point x′1 at the moment of time t′1 (see Figure 1). Thus, staying at the point
x′1 at the moment of time t′1, the particle can be found at the point x∗ at the moment of time
T∗ if its path ξ satisfies the inequality ξ > |x∗ − x′1|. In this case, the contribution to the
density estimate has the form,

ψunsc(x∗, x′, T∗, t′) = 1
2 P(|x∗ − x′|),
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where we need to substitute x′ = x′1, t′ = t′1. However, it should be noted that, for such
a situation to be realized, during the random walk, the particle must undergo scattering
at some point exactly lying on the segments OA or OB. Considering that the probability
that the coordinate of a particle will take exactly a given value is equal to zero, then
the contribution to the sought density from such particles will be zero. Nevertheless,
unscattered particles make a significant contribution to the points lying on the half lines
x = ±vt. These half lines determine the front of the distribution. Beyond this front, the
probability of detecting a particle is zero. In view of the fact that the source is at the point
x = 0, then it is obvious that the probability to detect a particle at the point x = 0 at the
moment of time t = 0 is equal to one. Therefore, if after its appearance, the particle did not
have any scattering and its path ξ > v0T∗, then such particles reach the points x = ±v0T∗

and form the front of the distribution. The contribution of such particles at the points
x = ±v0T∗ is calculated by the formula:

ψunsc(±v0T∗, 0, T∗, 0) = 1
2 P(v0T∗).

The particles will also form the front of the distribution which, after their appearance
during scattering, did not change their original direction of motion. Density contribution at
points x = ±v0T∗ from such particles after each collision is calculated by a similar formula:

ψ(±v0T∗, x′, T∗, t′) = 1
2 P(| ± v0T∗ − x′|). (34)

Here, x′, t′ is the coordinate and moment of time at which the particle scattered. It
should be noted that if, after its appearance, the particle began its motion in the positive
direction, then unscattered or multiply scattered in one direction particles contribute only
at the point v0T∗. Particles that began their motion in the negative direction—to the point
−v0T∗. As a result, the contribution to the density estimate from each individual trajectory
has the form:

hj(x∗, T∗) =
K(T∗)

∑
i=1

ψ(x∗, xi, T∗, ti),

where K(T∗) is the number of scatterings that occurred during the time interval (0, T∗).
To estimate the density at the points x 6= ±v0T∗, the function ψ(x∗, xi, T∗, ti) has the form
(33), to estimate the density at the points x = ±v0T∗ the function ψ(x∗, xi, T∗, ti) takes the
form (34). We finally obtain that the density at the point x∗ at the moment of time T∗, is
estimated by the formula:

ρ̃(x∗, T∗) =
1
N

N

∑
j=1

hj(x∗, T∗), (35)

where the summation is performed over an ensemble of N independent trajectories.
In Figure 2, the results of the numerical solution to the Equation (25) are given for the

values α = 0.5, v = 1, T∗ = 1000. Circles show the results of the histogram’s estimation
of the Monte Carlo method (32), asterisks are the results of the local estimate (35) and
the solid line is the solution (26). The calculation results are transformed for the variable
−1 6 ζ 6 1 with the help of transformation ρ(ζ, t) = vtρ(x/vt, t), where −vt 6 x 6 vt. As
we can see from the figure, at the value α = 0.5, the results of all three solutions coincide.
The figure also shows the advantages of the considered solution method. The results of the
local estimate (35) do not contain the horizontal component of the error, which is present
in the histogram estimate of the Monte Carlo method (32) and is connected with a finite
quantity of the interval ∆i. In view of the fact that the contribution from one trajectory to
the point x∗ is calculated K(T∗) times, then this leads to a decrease in the statistical (vertical)
error. In the figure, the magnitude of the statistical error does not exceed the size of the
symbol. It should be noted that the solution (26) is an asymptotic solution and describes
the distribution of particles at t → ∞. As we can see from the figure, in the case α = 0.5
and time T∗ = 1000, the results of all three methods of solution coincide. This means that
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the process of the random walk of a particle has already entered the asymptotic regime.
However, the moment when the random walk process enters the asymptotic regime for
different values α is different.
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Figure 2. Particle distribution density at α = 0.5, v = 1.0, t = 1000. Number of trajectories N = 105.

Figure 3 contains the solution results of a kinetic Equation (20) using the method of
the histogram estimation (circles), the method of the local estimation (asterisks). Solution
results are given for three times T∗ = 102, 103, 104. The figure also shows the solution to
the Equation (25) (solid curve), which describes the asymptotic distribution of particles.
As we can see in the figure, for the value α = 0.8 at the indicated times, the random walk
process does not yet reach the asymptotic regime. However, when time T∗ increases, the
solutions to the kinetic equation gradually approach the asymptotic distribution. It can also
be seen from the figure that, at times T∗ = 103 and T∗ = 104, the solutions to the histogram
estimate of the Monte Carlo method and the local estimate coincide, which confirms the
validity of the results of the local estimation method. It can be seen from this figure that, at
large times T∗ = 103 and T∗ = 104, there is an increase in the magnitude of the statistical
error in the results of the local estimation. This increase in the calculation error is due to
the fact that, at greater times, the value of the contribution (33) turns out to be a small
magnitude. As a result, the calculation error can already affect it.
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Figure 3. The density of particle distribution for the value α = 0.8 and specified values T∗. Number
of trajectories N = 106.

The solution to the kinetic equation for the case α > 1 and specified values T∗ is given
in Figure 4. In this figure, the points are the results of solving the kinetic Equation (20)
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with the use of the local estimation method, the solid curve is the solution (30). As in
the previous cases, the calculation results are given for the variable ζ = x/vt, where
−vt 6 x 6 vt. The figure shows that, at times T∗ = 100 and T∗ = 1000, the random walk
process has not yet reached the asymptotic regime. The asymptotic regime of random
walks is reached at T∗ = 104. As one can see, for a given time, the asymptotic solution (30)
and the local estimation results are in good agreement with each other.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0
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2

3

4

5

6

Figure 4. Density of the particle distribution for the value α = 1.3 and specified values T∗. Number
of trajectories N = 105.

One obvious shortcoming of the local estimation method should also be pointed
out. In the considered method, it is necessary to calculate the contribution (33) after each
scattering of a particle. This leads to an increase in the computational operations of the
processor, which in turn leads to an increase in the calculation time in comparison with
the histogram method for estimating the density. However, this increase in calculation
time is a necessary price to pay for the clear advantages of the local estimation method. As
noted earlier, the main benefit of the local estimation (35) is the possibility to find a solution
at a given point x∗. This means that the results of the local estimation do not contain a
systematic (horizontal) component of the error. If we give a set of points x∗i , i = 1, . . . , n,
then one trajectory will contribute at once to all points of the set x∗i . This allows the solution
to be constructed as a smooth function of the coordinate x. If we also take into account
that the contribution (33) is calculated after each particle scattering, then the contribution
from one trajectory is calculated K(T∗) times, where K(T∗) is the number of scatterings
of a particle in the interval [0, T∗]. This leads to a decrease in the statistical component of
the error.

5. Conclusions

The use of the theory of anomalous diffusion to describe combustion processes is only
at the initial stage of development. At present, there are a few works devoted to the studies
undertaken in this area of research [3,6–8,10,12]. In all the works, to describe combustion
processes, the use of the equations of anomalous diffusion (1) or (2) is proposed. As is
known, these equations describe the asymptotic (t→ ∞, x → ∞) distribution of particles
in the CTRW process, which is based on the assumption of the instant travel of particles
from one point of space to another. This non-physical behavior of the particle leads to the
fact that, at a time instant that is arbitrarily close to the initial one, the particle can be at an
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arbitrarily large distance from the source. Therefore, it is necessary to use these equations
to describe the processes occurring in a limited area of space and develop them in time
with a certain degree of caution.

An obvious way to eliminate the instantaneous movement of a particle is to introduce
into consideration a constant final velocity of the movement of a particle, which was done
in this work. Taking account of the constant velocity of motion shows that, depending
on whether the mathematical expectation of the travel is finite or infinite, the asymptotic
distribution of particles is described by completely different equations. In the case of the
finite mathematical expectation of the path value (1 < α < 2), the asymptotic process is
described by the anomalous diffusion Equation (29), and the consideration of the finite
velocity is reduced to the substitution of the anomalous diffusion coefficient D → Dα. In
the case of the infinite mathematical expectation (0 < α < 1), the consideration of the
finite velocity leads to a completely different Equation (25) containing the fractional-order
material derivative operator.

The main difficulty in using equations in fractional derivatives is to find solutions to
these equations. Analytical methods for solving these equations are only at the stage of
development. Therefore, the main method of solution is to apply numerical methods. In
this paper, a numerical solution method is considered which is based on a local estimate of
the Monte Carlo method. This method is based on the idea of modeling the trajectory of a
particle’s random walk. The idea of the proposed method consists of the following. Now,
after each scattering of a particle, one should calculate the probability of transition from
the scattering point to a given point at which it is necessary to estimate the particle density.
By giving a set of points, the transition probability should be calculated for each point from
the given set. The advantages of this method over the standard histogram estimation of
the Monte Carlo method are obvious. Firstly, since the solution is estimated at a specified
point, then the estimation results do not contain a systematic (horizontal) component of
the error. Secondly, each trajectory will contribute to all points of the given set at once.
Taking account of the fact that, before the termination of the simulation of the trajectory, the
particle undergoes K(T∗) of scatterings, then one trajectory will contribute K(T∗) times to
each point of the given set. This leads to a decrease in the statistical error. However, since
now the transition probability is calculated after each particle scattering, this leads to an
increase in the arithmetic operations of the processor. As a result, in comparison with the
histogram estimate of the Monte Carlo method, more time is spent on modeling the same
number of trajectories. However, an increase in the calculation time should be considered
a necessary payment for the complete absence of horizontal error.

The calculations made show that the results of the local estimation of the Monte Carlo
method are in good agreement with both the results of the histogram estimation of the
Monte Carlo method and the results of solving Equations (25) and (29), describing the
asymptotic behavior of the process. From the calculations presented it also follows that, at
different values of the parameter α, the process of random walks reaches the asymptotic
regime at different times. This indicates another advantage of using the Monte Carlo
method. In fact, Equations (25) and (29) describe the asymptotic behavior of the process at
t→ ∞, while the Monte Carlo method allows us to find a solution to the kinetic equation at
any arbitrary moment in time and, thus, trace the evolution of the distribution of particles
in time.
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