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Abstract: The paper deals with Cauchy problems for first-order systems of linear ordinary differential
equations with unknown data. It is assumed that the right-hand sides of equations belong to certain
bounded sets in the space of square-integrable vector-functions, and the information about the initial
conditions is absent. From indirect noisy observations of solutions to the Cauchy problems on a
finite system of points and intervals, the guaranteed mean square estimates of linear functionals on
unknown solutions of the problems under consideration are obtained. Under an assumption that
the statistical characteristics of noise in observations are not known exactly, it is proved that such
estimates can be expressed in terms of solutions to well-defined boundary value problems for linear
systems of impulsive ordinary differential equations.

Keywords: indirect noisy observations; estimation; Cauchy problems; impulsive ordinary differential
equations; guaranteed mean square estimates; linear functionals

1. Introduction

A general theory of guaranteed estimates of solutions to Cauchy problems for ordinary
differential equations under uncertainty was constructed in [1]. These results were further
developed in [2–5].

The paper focuses on elaborating the methods of estimating the state of the sys-
tems described by the Cauchy problems for linear ordinary differential equations with
incomplete data.

The formulations of the estimation problems under the conditions of uncertainty,
which are considered in this article, are new, and research in this direction has not been
carried out previously.

For solving these estimation problems, we use observations that are linear transforma-
tions of unknown solutions on a finite system of intervals and points perturbed by additive
random noises. Such a type of observation is caused by the fact that in many practically
important cases, unknown solutions cannot be observed in a direct manner.

From observations of the state of systems, we find optimal, in a certain sense, estimates
for functionals from solutions of these problems under the condition that the information
about initial conditions is missing and that the right-hand sides of equations and correlation
functions of random noises in observations are not known exactly, but it is only known
that they belong to the certain given sets in the corresponding function spaces.

In such a situation, the minimax estimation method turns out to be applicable and
preferable. In fact, choosing this approach, one can obtain optimal estimates not only for
the unknown solutions but also for linear functionals with respect to these solutions. In
other words, the desired estimates linear with respect to observations are such that the
maximal mean square error determined over the whole set of realizations of perturbations
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from the sets under consideration attains its minimal value. Traditionally, these kinds of
estimates are referred to as the guaranteed or minimax estimates.

We demonstrate that these problems can be reduced to the determination of minima of
quadratic functionals on closed convex sets in Hilbert spaces. Expressions for the minimax
estimates and for the estimation errors are determined as a result of the solution to this
problem with the use of the Lagrange multipliers method. It is shown that such estimates
are expressed in terms of solutions to certain well-defined uniquely solvable systems of
differential equations.

This paper continues our research cycle accomplished in [6,7], where the guaranteed
(minimax) estimation method has been worked out for estimating linear functionals over
the set of unknown solutions and data under the condition that unknown right-hand sides
of the equations and initial conditions entering the statement of the Cauchy problems
belong to a certain set in the corresponding Hilbert space (for details, see [8–12]).

2. Preliminaries

Let us first present the assertions and notations that will be frequently used in the text
of the paper.

If vector-functions f (t) ∈ Rn and g(t) ∈ Rn are absolutely continuous on the closed
interval [t1, t2], then the following integration by the parts formula is valid

( f (t2), g(t2))n − ( f (t1), g(t1))n =
∫ t2

t1

[(
f (t),

dg(t)
dt

)
n
+
(

g(t),
d f (t)

dt

)
n

]
dt, (1)

where by (·, ·)n, we denote the inner product in Rn here and later on (see [13]).

Lemma 1. Suppose Q is a bounded positive (that is (Q f , f )H > 0 when f 6= 0). Hermitian
(self-adjoint) operator in a complex (real) Hilbert space H with bounded inverse Q−1. Then, the
generalized Cauchy–Schwarz inequality

|( f , g)H | ≤ (Q−1 f , f )1/2
H (Qg, g)1/2

H ( f , g ∈ H) (2)

is valid. The equality sign in (2) is attained at the element

g =
Q−1 f

(Q−1 f , f )1/2
H

.

For a proof, we refer to [14] (p. 186).

3. Setting of the Minimax Estimation Problem

We consider the following estimation problem. Let the unknown vector-function
x(t) ∈ Rn be a solution of the Cauchy problem

dx(t)
dt

= A(t)x(t) + B(t) f (t), t ∈ (t0, T), (3)

x(t0) = Cx0, (4)

where A(t) = [aij(t)] is an n× n-matrix and B(t) = [bij(t)] is an n× r-matrix with entries
aij(t) and bij(t), which are square-integrable and piecewise continuous (here and in what
follows, a function is called piecewise continuous on an interval if the interval can be
broken into a finite number of subintervals on which the function is continuous on each
open subinterval (i.e., the subinterval without its endpoints) and has a finite limit at the
endpoints of each subinterval). C = [cij] is n× k-matrix with entries cij ∈ R, i = 1, . . . , n,
j = 1, . . . , k, f (t) ∈ Rr is a vector-function belonging to the space (L2(t0, T))r, x0 ∈ Rk.

By a solution of this problem, we mean a function x(t) ∈ (W1
2 (t0, T))n that satisfies

Equation (3) almost everywhere (a.e.) on (t0, T) (except on a set of Lebesgue measure 0)
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and the conditions (4). Here, W1
2 (t0, T) is the space of functions absolutely continuous on

an interval [t0, T] for which the derivative that exists almost everywhere on (t0, T) belongs
to space L2(t0, T).

We suppose that the Cauchy data (x0, f (t)) are unknown and satisfy the condition
(x0, f (·)) ∈ G1, where by G1 we denote the set

G1 :=
{

F = (x0, f ) ∈ Rk × (L2(t0, T))r :
∫ T

t0

(Q1(t)( f (t)− f0(t)), f (t)− f0(t))r dt ≤ ε1

}
. (5)

Here, matrix Q1(t) is a symmetric positive definite r × r matrix with real-valued
piecewise continuous entries on [t0, T] f0 ∈ (L2(0, T))r, which is a prescribed vector-
function, and ε1 is a prescribed positive number.

The problem is to estimate the expression

l(x) =
∫ T

t0

(l0(t), x(t))ndt + (a, x(T))n, (6)

from observations of the form (here, we denote vectors and matrices by y and H and
vector-functions and matrices-functions by y(·) and H(·)).

yj(t) = Hj(t)x(t) + ξ j(t), t ∈ Ωj, j = 1, . . . , M, (7)

yi = Hix(ti) + ξi, i = 1, . . . , N, (8)

in the class of estimates

l̂(x) =
M

∑
j=1

∫
Ωj

(yj(t), uj(t))ldt +
N

∑
i=1

(yi, ui)m + c, (9)

linear with respect to observations (7) and (8); here, x(t) is the state of a system described
by the Cauchy problem (3) and (4), l0 ∈ (L2(t0, T))n, a ∈ Rn, Hi are given m× n-matrices,
Hj(t) are given l × n-matrices where the elements are piecewise continuous functions on
Ω̄j, ui ∈ Rm, and uj(t) are vector-functions that belong to (L2(Ωj))

l , c ∈ R.
We suppose that

ξ := (ξ1(·), . . . , ξM(·), ξ1, . . . , ξN) ∈ G2,

where ξi = (ξ
(i)
1 , . . . , ξ

(i)
m )T and ξ j(·) = (ξ

(j)
1 (·), . . . , ξ

(j)
l (·))T are observation errors in (7)

and (8), respectively, that are realizations of random vectors ξi = ξi(ω) ∈ Rm and random
vector-functions ξ j(t) = ξ j(ω, t) ∈ Rl and G2 denotes the set of random elements ξ whose
components ξi and ξ j(·) are uncorrelated; that is, it is assumed that

E(ξ̃i, v)m(ξ̃ j(·), v(·))(L2(Ωj))l = 0 ∀v ∈ Rm, v(·) ∈ (L2(Ωj))
l ,

i = 1, . . . N, j = 1, . . . M;

have zero means, Eξi = 0 and Eξ j(·) = 0, with finite second moments E|ξi|2 and
E‖ξ j(·)‖2

(L2(Ωj))l , and unknown correlation matrices Ri = Eξiξ
T
i and Rj(t, s) = Eξ j(t)ξT

j (s),

satisfying the conditions

M

∑
j=1

∫
Ωj

Tr [Dj(t)Rj(t, t)]dt ≤ ε2, (10)

and
N

∑
i=1

Tr [DiRi] ≤ ε3, (11)
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correspondingly (Tr D := ∑l
i=1 dii denotes the trace of the matrix D = {dij}l

i,j=1). Here,
Di, i = 1, . . . , N, are symmetric positive definite m × m matrices with constant entries
and Dj(t), j = 1, . . . , M, are symmetric positive definite l × l matrices the entries that
are assumed to be piecewise continuous functions on Ω̄j, and εi, i = 2, 3, are prescribed
positive numbers.

Set

u := (u1(·), . . . , uM(·), u1, . . . , uN) ∈ (L2(Ω1))
l × · · · × (L2(ΩM))l ×RN×m =: H. (12)

The norm and inner product in space H are defined by

‖u‖H =
{ M

∑
j=1
‖uj(·)‖(L2(Ωj))l +

N

∑
i=1
‖ui‖2

Rm

}1/2

and

(u, v)H =
M

∑
j=1

(uj(·), vj(·))(L2(Ωj))l +
N

∑
i=1

(ui, vi)m ∀u, v ∈ H,

respectively.

Definition 1. The estimate

̂̂l(x) =
M

∑
j=1

∫
Ωj

(yj(t), ûj(t))ldt +
N

∑
i=1

(yi, ûi)m + ĉ, (13)

in which vectors ûi, and a number ĉ are determined from the condition

inf
u∈H,c∈R

σ(u, c) = σ(û, ĉ),

where
σ(u, c) = sup

F∈G1, ξ∈G2

E|l(x)− l̂(x)|2,

will be called the minimax estimate of expression (6).
The quantity

σ := {σ(û, ĉ)}1/2 (14)

will be called the error of the minimax estimation of l(x).

We see that a minimax estimate minimizes the maximal mean-square estimation error
determined for the “worst” implementation of perturbations.

4. Representations for Minimax Estimates and Estimation Errors

In order to reduce the problem of determination of the minimax estimates to a certain
optimal control problem, one can introduce, for any fixed u ∈ H vector-function, z(t; u) as
a unique solution to the problem (here and in what follows, we assume that if a function is
piecewise continuous, then it is continuous from the left).

− dz(t; u)
dt

= AT(t)z(t; u) + l0(t)−
M

∑
j=1

χΩj(t)HT
j (t)uj(t) for a.e. t ∈ (t0, T), (15)

∆z(·; u) |t=ti
= z(ti + t0; u)− z(ti; u) = HT

i ui, i = 1, . . . , N, z(T; u) = a, (16)

where χΩ(t) is a characteristic function of the set Ω, and U is denoted by the set

U :=
{

u ∈ H : CTz(t0; u) = 0
}

. (17)
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It is easy to see that if U 6= ∅ then U is closed and convex set in the space H. The following
result is valid.

Lemma 2. Let U 6= ∅ (in the Appendix A, we give some sufficient conditions of non-emptiness
of the set U). Then determination of the minimax estimate of l(x) is equivalent to the problem of
optimal control of the system governed by the Equations (15) and (16) with the cost function

I(u) = ε1
∫ T

t0
(Q̃1(t)z(t; u), z(t; u))ndt

+ε2
M
∑

j=1

∫
Ωj
(D−1

j (t)uj(t), uj(t))ldt + ε3
N
∑

i=1
(D−1

i ui, ui)m → infu∈U ,
(18)

where Q̃1(t) = B(t)Q−1
1 (t)BT(t).

Proof. For each i = 1, . . . , N + 1, denote by zi(t; u) the restriction of function z(t; u) to a
subinterval (ti−1, ti) of the interval (t0, T) and extend it from this subinterval to the ends
ti−1 and ti by continuity. Then, due to (15) and (16),

− dzi(t;u)
dt = AT(t)zi(t; u) + l0(t)−

M
∑

j=1
χΩj(t)HT

j (t)uj(t)

for a.e. t ∈ (ti−1, ti), i = 1, . . . , N + 1,

(19)

zi+1(ti; u) = zi(ti; u) + HT
i ui, i = 1, . . . , N, zN+1(T; u) = a, CTz1(t0; u) = 0. (20)

Let x be a solution to the problem (3) and (4). From relations (6)–(8), (19) and (20), and
the integration by parts formula (1) with f (t) = x(t), g(t) = zi(t; u), we obtain

l(x)− l̂(x) =
N+1

∑
i=1

∫ ti

ti−1

(x(t), l0(t))ndt + (a, x(T))n −
N

∑
i=1

(yi, ui)m

−
M

∑
j=1

∫
Ωj
(yj(t), uj(t))ldt− c

= (x(T), a)n +
N+1

∑
i=1

∫ ti

ti−1

(
x(t),− dzi(t;u)

dt − AT(t)zi(t; u)
)

n
dt−

N

∑
i=1

(x(ti), HT
i ui)n

−
N

∑
i=1

(ξi, ui)m −
M

∑
j=1

∫
Ωj
(ξ j(t), uj(t))ldt− c

= (x(T), a)n +
N+1

∑
i=1

(
(x(ti−1), zi(ti−1; u))n − (x(ti), zi(ti; u))n

)
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+
N+1

∑
i=1

∫ ti

ti−1

(
dx(t)

dt − A(t)x(t), zi(t; u)
)

n
dt

−
N

∑
i=1

(x(ti), zi+1(ti; u)− zi(ti; u))n −
N

∑
i=1

(ξi, ui)m −
M

∑
j=1

∫
Ωj

(ξ j(t), uj(t))ldt− c

= (x(T), a)n + (x(t0), z1(t0; u))n

−(x(t1), z1(t1; u))n +
N

∑
i=2

(
(x(ti−1), zi(ti−1; u))n − (x(ti), zi(ti; u))n

)
+(x(tN), zN+1(tN))n

−(x(T), a)n +
N+1

∑
i=1

∫ ti

ti−1

(
B(t) f (t), zi(t; u)

)
n
dt−

N

∑
i=1

(x(ti), zi+1(ti; u)− zi(ti; u))n

−
N

∑
i=1

(ξi, ui)m −
M

∑
j=1

∫
Ωj

(ξ j(t), uj(t))ldt− c.

Taking into account that

N

∑
i=2

(x(ti−1), zi(ti−1; u))n + (x(tN), zN+1(tN))n

=
N−1

∑
i′=1

(x(ti′), zi′+1(ti′ ; u))n + (x(tN), zN+1(tN))n

=
N

∑
i=1

(x(ti), zi+1(ti; u))n,

(21)

from latter equalities, we have

l(x)− l̂(x) = (x(t0), z1(t0; u))n +
N+1
∑

i=1

∫ ti+1
ti−1

(
B(t) f (t), zi(t; u)

)
n
dt

−
N
∑

i=1
(ξi, ui)m −

M
∑

j=1

∫
Ωj
(ξ j(t), uj(t))ldt− c

= (x0, CTz(t0; u))k +
∫ T

t0

(
B(t) f (t), z(t; u)

)
n
dt

−
N
∑

i=1
(ξi, ui)m −

M
∑

j=1

∫
Ωj
(ξ j(t), uj(t))ldt− c.

(22)

The latter relationship yields

E[l(x)− l̂(x)] = (x0, CTz(t0; u))k +
∫ T

t0

(
f (t), BT(t)z(t; u)

)
r
dt− c. (23)

Since vector x0 in the first term on the right-hand side of (23) may be an arbitrary
element of space Rk, the quantity

E[l(x)− l̂(x)]
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will be finite if and only if u ∈ U, that is, if the first term on the right-hand side of (23)
vanishes. Therefore, we will further assume that u ∈ U.

Taking into consideration the known relationship

Dη = E[η]2 − [Eη]2 (24)

that couples the variance Dη = E[η −Eη]2 of random variable η with its expectation Eη,
in which η is determined by the right-hand side of equality

l(x)− l̂(x) =
∫ T

t0

(
B(t) f (t), z(t; u)

)
n
dt−

N

∑
i=1

(ξi, ui)m −
M

∑
j=1

∫
Ωj

(ξ j(t), uj(t))ldt− c := η,

which follows from (22), and from the noncorrelatedness of ξi = (ξ
(i)
1 , . . . , ξ

(i)
m )T and

ξ j(·) = (ξ
(j)
1 (·), . . . , ξ

(j)
l (·))T , from the equalities (22) and (23), we find

E|l(x)− l̂(x)|2 =
∣∣∣∫ T

t0

(
f (t), BT(t)z(t; u)

)
r
dt− c

∣∣∣2

+E
∣∣∣ N

∑
i=1

(ξi, ui)m +
M

∑
j=1

∫
Ωj

(ξ j(t), uj(t))ldt
∣∣∣2

=
∣∣∣∫ T

t0

(
f (t)− f0(t), BT(t)z(t; u)

)
r
dt

+
∫ T

t0

(
f0(t), BT(t)z(t; u)

)
r
dt− c

∣∣∣2
+E
∣∣∣ N

∑
i=1

(ξi, ui)m

∣∣∣2 +E
∣∣∣ M

∑
j=1

∫
Ωj

(ξ j(t), uj(t))ldt
∣∣∣2.

Thus,
inf
c∈R

σ(u, c) = inf
c∈R

sup
F∈G1, ξ∈G2

E[l(x)− l̂(x)]2

= inf
c∈R

sup
F∈G1

[∫ T

t0

(
f (t)− f0(t), BT(t)z(t; u)

)
r
dt +

∫ T

t0

(
f0(t), BT(t)z(t; u)

)
r
dt− c

]2

+ sup
ξ∈G2

(
E

∣∣∣∣∣ N

∑
i=1

(ξi, ui)m

∣∣∣∣∣
2

+E
∣∣∣ M

∑
j=1

∫
Ωj

(ξ j(t), uj(t))ldt
∣∣∣2). (25)

Set

y :=
∫ T

t0

(
f (t)− f0(t), BT(t)z(t; u)

)
r
dt,

d = c−
∫ T

t0

(
f0(t), BT(t)z(t; u)

)
r
dt.

Then ∀F = (x0, f ) ∈ G1, the generalized Cauchy−Schwarz inequality and (5) imply

|y| ≤
[∫ T

t0

(Q−1
1 (t)BT(t)z(t; u), BT(t)z(t; u))r dt

]1/2

×
[∫ T

t0

(Q1(t)( f (t)− f0(t)), f (t)− f0(t))r dt
]1/2
≤ ε1/2

1 L,

where

L =
[∫ T

t0

(Q̃1(t)z(t; u), z(t; u))ndt
]1/2

.
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The direct substitution shows that the last inequality is transformed to an equality at
F = (x0, f ) ∈ G1, where

f = f0 ±
ε1/2

1
L

Q−1
1 BT(·)z(·; u).

Taking into account that

inf
d∈R

sup
|y|≤ε1/2

1 L

|y− d|2 = ε1L2,

we find

inf
c∈R

sup
F∈G1

[∫ T

t0

(
BT(t)z(t; u), f (t)− f0(t)

)
r
dt

+
∫ T

t0

(
BT(t)z(t; u), f0(t)

)
r
dt− c

]2
= ε1L2

= ε1

∫ T

t0

(Q̃1(t)z(t; u), z(t; u))ndt, (26)

where the infimum over c is attained at

c =
∫ T

t0

(
BT(t)z(t; u), f0(t)

)
r
dt. (27)

Calculate the last term on the right-hand side of (25). Applying Lemma 1, we have

E

∣∣∣∣∣ N

∑
i=1

(ξi, ui)m

∣∣∣∣∣
2

≤ E
[

N

∑
i=1

(D−1
i ui, ui)m ·

N

∑
i=1

(Diξi, ξi)m

]

=
N

∑
i=1

(D−1
i ui, ui)m ·E

[
N

∑
i=1

(Diξi, ξi)m

]
. (28)

Transform the last factor on the right-hand side of (28):

E
[

N

∑
i=1

(Diξi, ξi)m

]
=

N

∑
i=1

E
(

m

∑
j=1

m

∑
k=1

d(i)jk ξ
(i)
k ξ

(i)
j

)
=

N

∑
i=1

m

∑
j=1

m

∑
k=1

d(i)jk Eξ
(i)
k ξ

(i)
j

=
N

∑
i=1

m

∑
j=1

m

∑
k=1

d(i)jk r(i)kj =
N

∑
i=1

Tr [DiRi].

Similarly,

E
∣∣∣ M

∑
j=1

∫
Ωj

(ξ j(t), uj(t))ldt
∣∣∣2 ≤ M

∑
j=1

∫
Ωj

(D−1
j (t)uj(t), uj(t))ldt ·E

[
M

∑
j=1

∫
Ωj

(Dj(t)ξ j(t), ξ j(t))ldt

]

and

E
[

M

∑
j=1

∫
Ωj

(Dj(t)ξ j(t), ξ j(t))ldt

]
=

M

∑
j=1

∫
Ωj

Tr [Dj(t)Rj(t, t)]dt

In view of (10) and (11), we deduce from (28)

E
∣∣∣∣ N

∑
i=1

(ui, ξi)m

∣∣∣∣2 +E
∣∣∣ M

∑
j=1

∫
Ωj
(ξ j(t), uj(t))l dt

∣∣∣2

≤ ε3
N
∑

i=1
(D−1

i ui, ui)m + ε2
M
∑

j=1

∫
Ωj
(D−1

j (t)uj(t), uj(t))l dt.
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It is not difficult to check that here, the equality sign is attained at the element

ξ(0) = (ξ
(0)
1 , . . . , ξ

(0)
N , ξ

(0)
1 (·), . . . , ξ

(0)
M (·)) ∈ G2

with

ξ
(0)
i =

ε1/2
3 η1D−1

i ui[
∑N

i=1

(
D−1

i ui, ui

)
m

]1/2 , i = 1, . . . , N,

ξ
(0)
j (t) =

ε1/2
2 η2D−1

j (t)uj(t)[
∑M

j=1
∫

Ωj

(
D−1

j (t)uj(t), uj(t)
)

l
dt
]1/2 , j = 1, . . . , M,

where η1 and η2 are uncorrelated random variables such that Eηi = 0 and E|ηi|2 = 1,
i = 1, 2. Hence,

supξ∈G2

(
E
∣∣∣∣ N

∑
i=1

(ξi, ui)m

∣∣∣∣2 +E
∣∣∣ M

∑
j=1

∫
Ωj
(ξ j(t), uj(t))ldt

∣∣∣2)

= ε3
N
∑

i=1
(D−1

i ui, ui)m + ε2
M
∑

j=1

∫
Ωj
(D−1

j (t)uj(t), uj(t))ldt.

(29)

From (25)–(27) and (29), we obtain

inf
c∈R

sup
F∈G1,ξ∈G2

E|l(x)− l̂(x)|2 = I(u),

where I(u) is defined by (18) and where the infimum over c is attained at

c =
∫ T

t0

(
BT(t)z(t; u), f0(t)

)
r
dt. (30)

As a result of solving the optimal control problem formulated in Lemma 2, we come
to the following assertion.

Theorem 1. There exists a unique minimax estimate ̂̂l(x) of l(x), which can be represented as

̂̂l(x) =
M

∑
j=1

∫
Ωj

(yj(t), ûj(t))ldt +
N

∑
i=1

(yi, ûi)m + ĉ = l(x̂),

where

ûj(t) = ε−1
2 Dj(t)Hj(t)p(t), j = 1, . . . , M,

ûi = ε−1
3 Di Hi p(ti), i = 1, . . . , N,

(31)

ĉ =
∫ T

t0

(
BT(t)ẑ(t), f0(t)

)
r
dt, (32)

and functions p, ẑ and x̂ are found from the solution of systems of equations

− dẑ(t)
dt = AT(t)ẑ(t) + l0(t)− ε−1

2

M

∑
j=1

χΩj(t)HT
j (t)Dj(t)Hj(t)p(t) for a.e. t ∈ (t0, T), (33)

∆ẑ |t=ti
= ε−1

3 HT
i Di Hi p(ti), i = 1, . . . , N, ẑ(T) = a, CT ẑ(t0) = 0, (34)
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dp(t)
dt

= A(t)p(t) + ε1Q̃1(t)ẑ(t) for a.e. t ∈ (t0, T), (35)

p(t0) = Cλ, (36)

and

− dp̂(t)
dt = AT(t) p̂(t)− ε−1

2

M

∑
j=1

χΩj(t)HT
j (t)Dj(t)[Hj(t)x̂(t)− yj(t)] for a.e. t ∈ (t0, T), (37)

∆ p̂ |t=ti
= ε−1

3 HT
i Di[Hi x̂(ti)− yi], i = 1, . . . , N, p̂(T) = 0, CT p̂(t0) = 0, (38)

dx̂(t)
dt

= A(t)x̂(t) + ε1Q̃1(t) p̂(t) + B(t) f0(t) for a.e. t ∈ (t0, T), (39)

x̂(t0) = Cµ, (40)

respectively, where λ ∈ Rk and µ ∈ Rk are Lagrange multipliers. Problems (33)–(36) and (37)–(40)
are uniquely solvable. Equations (37)–(40) are fulfilled with probability 1.

The estimation error σ is given by the expression

σ = [l(p)]1/2. (41)

Proof. Applying the same reasoning as in the proof of Theorem 1 from [8] and taking into
account estimate (1.21) from [15], one can verify that the functional I(u) is strictly convex
and lower semicontinuous on U. Since

I(u) = ε1
∫ T

t0
(Q̃1(t)z(t; u), z(t; u))ndt + ε2

M
∑

j=1

∫
Ωj
(D−1

j (t)uj(t), uj(t))ldt

+ε3
N
∑

i=1
(D−1

i ui, ui)m ≥ c‖u‖2
H ∀u ∈ U, c = const,

then, by Remark 1.2 to Theorem 1.1 (see [16]), there exists a unique element û ∈ U such
that

I(û) = inf
u∈U

I(u).

Applying the regularity condition (A1), we see that there exists a Lagrange multiplier
λ ∈ Rk such that

d
dτ

Iλ(û + τv) |τ=0 = 0 ∀τ ∈ R, ∀v ∈ H,

where by Iλ we denote the Lagrange function of problem (15), (16) and (18) defined by

Iλ(u) = I(u) + 2
(

λ, CTz(t0; u)
)

k
.

It follows from here that

0 = (Cλ, z̃(t0; v))n + ε1

∫ T

t0

(Q̃1z(t; û), z̃(t; v))ndt

+ ε2

M

∑
j=1

∫
Ωj

(D−1
j (t)ûj(t), vj(t))ldt + ε3

N

∑
i=1

(D−1
i ûi, vi)m, (42)

where z̃(t; v) is the solution of problem (15) and (16) at ł0(t) = 0, a = 0, and u = v. Next,
denote by p(t) the unique solution to the following problem

dp(t)
dt

= A(t)p(t) + ε1Q̃1(t)z(t; û) for a.e. t ∈ (t0, T),

p(t0) = Cλ.
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Then

(Cλ, z̃(t0; v))n + ε1

∫ T

t0

(Q̃1z(t; û), z̃(t; v))ndt

= (p(t0), z̃(t0; v))n +
N+1

∑
s=1

∫ ts

ts−1

(dp(t)
dt
− A(t)p(t), z̃s(t; u)

)
n
dt

= (p(t0), z̃(t0; v))n +
N+1

∑
s=1

(
(p(ts), z̃s(ts; u))n − (p(ts−1), z̃s(ts−1; u))n

+
∫ ts

ts−1

(
−dz̃s(t; u)

dt
− AT(t)z̃s(t; u), p(t)

)
n
dt
)

= −
N

∑
i=1

(p(ti), HT
i vi)n −

M

∑
j=1

∫
Ωj

(p(t), HT
j (t)vj(t))ndt. (43)

From (30), (42) and (43), and it follows (31) and (32) and that the pair of functions
(ẑ(t), p(t)) := (z(t; û)), p(t)) is a unique solution of problems (33)–(35).

Similarly, we can prove representation ̂̂l(x) = l(x̂)
Prove (41). By virtue of relations CT ẑ(t0) = 0, (18) and (32), we obtain

σ(û, ĉ) = I(û) = (λ, CT ẑ(t0))k + ε1

∫ T

t0

(Q̃1(t)ẑ(t), ẑ(t))ndt

+ε−1
2

M

∑
j=1

∫
Ωj

(Hj(t)p(t), Dj(t)Hj(t)p(t))ldt + ε−1
3

N

∑
i=1

(Hi p(ti), Di Hi p(ti))m

and

(λ, CT ẑ(t0))k + ε1

∫ T

t0

(Q̃1(t)ẑ(t), ẑ(t))ndt

= (p(t0), ẑ(t0))n +
∫ T

t0

(dp(t)
dt
− A(t)p(t), ẑ(t)

)
n
dt

= (p(t0), ẑ(t0))n +
N+1

∑
s=1

∫ ts

ts−1

(dp(t)
dt
− A(t)p(t), ẑs(t)

)
n
dt

= (p(t0), ẑ(t0))n +
N+1

∑
s=1

(
(p(ts), ẑs(ts))n − (p(ts−1), ẑs(ts−1))n

+
∫ ts

ts−1

(
p(t),−dẑs(t)

dt
− AT(t)ẑs(t)

)
n
dt
)

= −ε−1
3

N

∑
i=1

(p(ti), HT
i Di Hi p(ti))n + (p(T), a)n

+
∫ T

t0

(p(t), l0(t))n dt− ε−1
2

M

∑
j=1

∫
Ωj

(
p(t), HT

j (t)Dj(t)Hj(t)p(t)
)

n
dt.

From two latter relations, (41) follows.

5. σ1-Optimal Estimates of Unknown Solution of the Cauchy Problem at the
Moment T

In this section, we will define an optimal, in a certain sense, estimate of unknown
solution x(t) of the Cauchy problem (3) and (4) at the moment T that is linear with respect
to observations (7) and (8) and show that this estimate of x(T) coincides with the function
x̂(t) obtained from the solution to problems (37)–(40) at the moment T.
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Let xe(T) be an estimate of x(T) linear with respect to observations (7) and (8), which
have the form

xe(T) =
M

∑
j=1

∫
Ωj

Uj(t)yj(t) dt +
N

∑
i=1

Uiyi + C,

where Uj(t) are n× l-matrices with entries that are square-integrable functions on Ωj, and
Ui are n×m-matrices, C ∈ Rn.

Let Mnm(R) be the set of n×m-matrices with real elements, Mnl(R) be the set of n× l-
matrices with real elements, and L2(Ωi

j, Mnl) be the set of Mnl-valued square-integrable
functions on Ωj. Set

U := (U1(·), . . . , UM(·), U1, . . . , UN) ∈ H,

where H := L2(Ω1, Mnl) × · · · × L2(ΩM, Mnl) × (Mnm(R))N and let {e1, . . . , en} be an
orthogonal basis of Rn. Let σ1(U, C) be the error functional of estimate xe(T), which has
the form

σ1(U, C) =
{ n

∑
s=1

sup
F∈G1,ξ∈G2

E|(x(T)− xe(T), es)n|2
}1/2

.

Definition 2. An estimate

x̂e(T) =
M

∑
j=1

∫
Ωj

Ûj(t)yj(t) dt +
N

∑
i=1

Ûiyi + Ĉ (44)

for which matrix-functions Ûj(·), matrices Ûi, and vector Ĉ are determined from the condition

inf
U∈H,C∈Rn

σ1(U, C) = σ1(Û, Ĉ)

will be called a σ1-optimal estimate of vector x(T). The quantity

σ1 = σ1(Û, Ĉ)

will be called the error of σ1-optimal estimation.

Let ẑ(s)(t), p(s)(t) be the solution of problem (33)–(36) at a = es, s = 1, . . . , n, and
l0(t) ≡ 0.

Theorem 2. The σ1-optimal estimate of vector x(T) is determined by (44) with

Ûj(t) = ε−1
2

n

∑
s=1

es ⊗ (p(s))T(t)HT
j (t)Dj(t), j = 1, . . . , M,

Ûi = ε−1
3

n

∑
s=1

es ⊗ (p(s))T(ti)HT
i Di, i = 1, . . . , N, Ĉ =

n

∑
s=1

ĉ(s)es, (45)

where ĉ(s) are defined by (32) at ẑ(t) = ẑ(s)(t), and symbol ⊗ denotes the tensor product of a
column vector and a row vector.

Proof. Obviously,

σ2
1 (U, C) ≥

n

∑
k=1

inf
U∈H,C∈Cn

sup
F∈G1,ξ∈G2

E|(x(T)− xe(T), es)n|2

≥
n

∑
s=1

inf
us∈H,cs∈C

sup
F∈G1,ξ∈G2

E|(x(T), es)n − ̂(x(T), es)n|2,
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where ̂(x(T), es)n is an estimate defined by (9) at a = es,

us := ((u(s)
1 )T(·), . . . , (u(s)

M )T(·), u(s)
1 )T , . . . , (u(s)

N )T),

u(s)
j (·) is the s-th row of matrix Uj(·), j = 1, . . . , M, u(s)

i is the s-th row of matrix Ui,
i = 1, . . . , N, and cs is the sth coordinate of vector C, s = 1, . . . , n.

By Theorem 1, we have

inf
us∈H,cs∈C

sup
F∈G1,ξ∈G2

E|(x(T), es)n − ̂(x(T), es)n|2 = sup
F∈G1,ξ∈G2

E|(x(T), es)n − (x̂(T), es)n|2,

where x̂(t) is defined from a system of Equations (37)–(40).
Notice that the following equality

x̂(T) =
n

∑
s=1

(x̂(T), es)nes =
n

∑
s=1

̂̂
(x(T), es)nes

holds. However,

̂̂
(x(T), es)n =

M

∑
j=1

∫
Ωj

(yj(t), û(s)
j (t))ldt +

N

∑
i=1

(yi, û(s)
i )m + ĉ(s),

where
û(s)

j (t) = ε−1
2 Dj(t)Hj(t)p(s)(t), j = 1, . . . , M,

û(s)
i = ε−1

3 Di Hi p(s)(ti), i = 1, . . . , N,

c(s) =
∫ T

t0

( f0(t), BT(t)ẑ(s)(t))rdt + (x0
0, CT ẑ(s)(t0))k.

Therefore,

n

∑
s=1

(x̂(T), es)nes =
n

∑
s=1

[ M

∑
j=1

∫
Ωj

(yj(t), û(s)
j (t))ldt +

N

∑
i=1

(yi, û(s)
i )m + ĉ(s)

]
es

=
n

∑
s=1

[ M

∑
j=1

∫
Ωj

(yj(t), ε−1
2 Dj(t)Hj(t)p(s)(t))l dt +

N

∑
i=1

(yi, ε−1
3 Di Hi p(s)(ti))m + ĉ(s)

]
es

=
∫

Ωj

M

∑
j=1

n

∑
s=1

(ε−1
2 (Hj)

T(t)Dj(t)yj(t), p(s)(t))n dtes

+
N

∑
i=1

n

∑
s=1

(ε−1
3 HT

i Diyi, p(s)(ti))nes +
n

∑
s=1

ĉ(s)es

=
M

∑
j=1

∫
Ωj

Ûj(t)yj(t) dt +
N

∑
i=1

Ûiyi + Ĉ,

where Ûj(t), Ûi, and Ĉ are defined by (45). It follows from here that functional σ2
1 (U, C)

attains its minimum value on matrices Ûj(t), j = 1, . . . , M, Ûi, i = 1, . . . , N, and on vector
Ĉ. This proves the theorem.

Corollary 1. Vector x̂(T) is the σ1-optimal estimate of vector x(T).
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Corollary 2.

σ2
1 =

n

∑
s=1

(p(T), es).

Denote by σ(U, C) the quantity defined by

σ(U, C) = sup
F∈G1,ξ∈G2

E‖x(T)− xe(T)‖2
n.

An estimate

ˆ̂xe(T) =
N

∑
i=1

Ûiyi +
M

∑
j=1

∫
Ωj

Ûj(t)yj(t) dt + Ĉ

for which matrices Ûi, matrix-functions Ûj(·) and vector Ĉ are determined from the condition

inf
U∈H,C∈Rn

σ(U, C) = σ(Û, Ĉ)

which is called an optimal mean square estimate of vector x(T). The quantity

σ = [σ(Û, Ĉ)]1/2

is called the error of the optimal mean square estimation.
Parseval’s formula implies the inequality

σ(U, C) ≤ σ1(U, C).

Therefore, for the error of the optimal mean square estimation σ, the following estimate
from above holds:

σ ≤ σ1 =
{ n

∑
s=1

(p(s)1 (T), es)
}1/2

.

6. Conclusions

When elaborating the guaranteed estimation of solutions to the Cauchy problem in
the absence of restrictions on unknown initial data, we have reduced the determination of
the necessary minimax estimates to well-defined optimal control problems.

Using this approach, we have proved the existence of the unique minimax estimate
and obtained its representation together with that of the estimation error in terms of
solutions to the explicitly derived systems of impulsive ordinary differential equations.

The results and techniques of this study can be extended to a wider class of initial
value problems and, after appropriate generalization, to the analysis of such estimation
problems for linear partial differential equations of the parabolic and hyperbolic types that
describe evolution processes.
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Appendix A

Below, we shall provide some sufficient conditions providing the non-emptiness of
the set U. To do this, we begin with the following remarks. Define in the space H the
mapping D : H → Rk by Du := CTz(t0; u). Then, since the solution of this problem can be
represented as z(t; u) = z̃(t; u)+ z0(t), where z̃(t; u) is the solution of problem (15) and (16)
at ł0(t) = 0 and a = 0 and z0(t) is the solution of this problem at u = 0, the Frechet
derivative of the mappingD is a linear operator D̃ ∈ L(H;Rk), defined by D̃u = CT z̃(t0; u)
(see Example 1 on page 47 from [17]).

Suppose that the condition
Im D̃ = Rk, (A1)

called the condition of regularity of the mapping D, is fulfilled. It is clear that from the
condition of regularity of the mapping D, it follows that U is a non-empty set.

Remark A1. Let the condition

U =
{

u ∈ H : CTz(t0; u) = 0
}
6= ∅

be fulfilled. Then there exists û := (û1(·), . . . , ûM(·), û1, . . . , ûN) ∈ U such that the equality

l(x̃) =
M

∑
j=1

∫
Ωj

(ŷj(t), ûj(t))ldt +
N

∑
i=1

(ŷi, ûi)m, (A2)

holds for all those x0 ∈ Rk at which the following vector-functions

ŷj(t) = Hj(t)x̃(t), t ∈ Ωj, j = 1, . . . , M,

and the vectors
ŷi = Hi x̃(ti), i = 1, . . . , N,

are observed, where x̃(t) solves the problem

dx̃(t)
dt

= A(t)x̃(t), t ∈ (t0, T),

x̃(t0) = Cx0.

Proof. Let û ∈ U. Since

l(x̃) =
M

∑
j=1

∫
Ωj

(ŷj(t), ûj(t))ldt +
N

∑
i=1

(ŷi, ûi)m = (CT ẑ(t0), x0)k,

where ẑ(t) = z(t; û) is a solution of problem (15) and (16) at u = û, then equality
CT ẑ(t0) = 0 implies (A2).

Remark A2. Let j0 be a positive integer such that the system described by equation

−
dzj0(t; u)

dt
= AT(t)zj0(t; u)− χΩj0

(t)HT
j0(t)u(t) (A3)

is controllable, that is, for all t1 < t2 and for all z1, z2 ∈ Rn there exists a vector-function u(t) such
that zj0(t1) = z1 and zj0(t2) = z2. Then, the set U is nonempty.

Proof. Let u(t) be such a function. Then it is possible to choose z1 so that the conditions
zj0(tj0) = z1 and zj0(T) = a are fulfilled, where Ωj0 = (tj0 , tj0+1), tj0+1 > tj0 . Obviously,
in this case element u with components uj(t) = 0, j = 1, . . . , M, j 6= j0, uj0(t) = u(t), and
ui = 0, j = 1, . . . , N, belongs to U since the equalities z(t0) = 0, z(T) = a hold.
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Corollary A1. If matrices A(t) and Hj0(t) are time-independent, then system (A3) is controllable
if and only if the Kalman rank condition

rank
(

HT
j0 , AT HT

j0 , . . . , (AT)n−1HT
j0

)
= n

holds.

Now, we provide sufficient conditions for non-emptiness of the set U. Introduce
matrix-function Φ(t, s) as a unique solution to the problem

dΦ(t, s)
dt

= A(t)Φ(t, s), Φ(s, s) = En t > s.

Denote by Kj(t) and Nj k × l and k × m-matrices, respectively, such that KT
j (t) =

Hj(t)Φ(t, t0)C and NT
i = HiΦ(ti, t0)C.

Proposition A1. The set U is non-empty if det DT 6= 0, where

det DT =
M

∑
j=1

∫
Ωj

Kj(t)KT
j (t) dt +

N

∑
i=1

Ni NT
i . (A4)

Proof. Let det DT 6= 0. Show then that there exist vector-functions ûj(t), j = 1, . . . , M, and
vectors ûi, i = 1, . . . , M, such that the equality CT ẑ(t0) = 0 (or the equivalent equality
(CT ẑ(t0), x0)k = 0 for an arbitrary vector x0 ∈ Rk) holds.

Notice that

(CTz(t0; u), x0)k = l(x̃)−
M

∑
j=1

∫
Ωj

(ŷj(t), uj(t))ldt−
N

∑
i=1

(ŷi, ui)m.

Introduce vector-function z̄(t) as a unique solution to the problem

−dz̄(t)
dt

= AT(t)z̄(t) + l0(t) for a.e. t ∈ (t0, T), z̄(T) = a.

Then l(x̃) = (CT z̄(t0), x0)k. It is easy to see that ŷj(t) = Hj(t)x̃(t) = Hj(t)Φ(t, t0)Cx0,
j = 1, . . . , M, and ŷi = HiΦ(ti, t0)Cx0, i = 1, . . . , N. Hence,

(CTz(t0; u), x0)k = (CT z̄(t0)−
M

∑
j=1

∫
Ωj

Kj(t)uj(t) dt−
N

∑
i=1

Niui, x0)k.

Then a necessary and sufficient condition for the existence of uj(t) and ui such that
(CTz(t0; u), x0)k = 0 for all x0 ∈ Rk is that the equation

M

∑
j=1

∫
Ωj

Kj(t)uj(t) dt +
N

∑
i=1

Niui = CT z̄(t0)

be solvable.
We will look for a solution to this equation in the form uj(t) = KT

j (t)d, ui = NT
i d,

where vector d is determined from the system of equations

DTd = CT z̄(t0).

Since det DT 6= 0 then there exists a vector d̂ such that d̂ = D−1
T CT z̄(t0). Therefore,

the element û with components ûj(t) = KT
j D−1

T CT z̄(t0), j = 1, . . . , M, ûi = NT
i D−1

T CT z̄(t0),
i = 1, . . . , N, belongs to the set U.
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Proposition A2. Under condition (A4), the regularity condition of the mappingD in Equation (A1)
is fulfilled.

Proof. In fact, the previous reasoning leads to the conclusion that for function z̃(t; u), the
equality

CT z̃(t0; u) = −
M

∑
j=1

∫
Ωj

Kj(t)uj(t) dt−
N

∑
i=1

Niui

holds and condition (A1) is fulfilled if for any g ∈ Rk the system

g = −
M

∑
j=1

∫
Ωj

Kj(t)uj(t) dt−
N

∑
i=1

Niui

has a solution. It is easy to see that the element u0 ∈ H with components u0
j (·) =

−KT
j (·)D−1

T g, j = 1, . . . , M, u0
i = −NT

i D−1
T g, i = 1, . . . , N, satisfies this equation.
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