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Abstract: This paper investigates quasi-periodic oscillations of roll system in corrugated rolling mill
in resonance. The two-degree of freedom vertical nonlinear mathematical model of roller system
is established by considering the nonlinear damping and nonlinear stiffness within corrugated
interface of corrugated rolling mill. In order to investigate the quasi-periodic oscillations at the
resonance points, the Poincaré map is established by solving the power series solution of dynamic
equations. Based on the Poincaré map, the existence and stability of quasi-periodic oscillations from
the Neimark-Sacker bifurcation in the case of resonance are analyzed. The numerical simulation
further verifies the correctness of the theoretical analysis.

Keywords: corrugated rolling mill; resonance; quasi-periodic oscillation; Poincaré map; Neimark-
Sacker bifurcation

1. Introduction

The corrugated rolling mill is a multivariable, strongly coupled, multi-constrained
and time-varying non-linear system. The phenomena of resonance may occur during the
rolling process of composite plates due to the sinusoidal roll profile curve of the corrugated
roller and the nonlinear damping and stiffness between corrugated roll and flat roll. The
resonance will cause the fluctuation of roll gap and further affect the bonding strength of
the composite plates and reduce the online service time of rolls. It is of great theoretical
and practical significance to research the vibration behavior of rolling mill in resonance.

Over the past several decades, many researchers have investigated the vibration and
the bifurcation phenomena of rolling mill. However, there are many factors affecting rolling
mill vibration, which is a crossing research topic of vibration theory, rolling theory and
bifurcation control. Therefore, it is still challenging for the research of the vibration of the
rolling mill. Johnson and Qi [1] analyzed the influence of the nonlinearity of contact inter-
face between the work roll and the supporting roll on the rolling mill dynamics and found
that the nonlinearity could cause high frequency harmonic vibration. Swiatoniowski [2]
investigated the dynamic behavior of vertical vibration of rolling system by considering
the elastoplastic deformation as nonlinear elastic force. Yarita et al. [3] proposed a two-
degree-of-freedom vertical vibration system and studied the parameter excited resonance
by analyzed the fluctuating variation of stiffness between rollers. Kapil et al. [4] developed
a nonlinear parameter excited vibration single-degree of freedom model of the rolling mill
and obtained the amplitude-frequency vibration characteristics and unstable region of
the rolling mill. Li and Wen [5] established a nonlinear vibration mechanical model by
considering the clearance and vibration boundary of the main drive system of the rolling
mill and investigated various dynamic responses such as periodic, quasi-periodic and
chaotic vibrations. Huang and Zang [6] established the dynamic equation of the main
drive system of the rolling mill by considering nonlinear friction resistance and obtained
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the necessary and sufficient conditions of Hopf bifurcation in the system. Hou et al. [7,8]
established the torsional vibration equation of the main drive system of the rolling mill by
considering the nonlinear factors, such as piecewise nonlinearity, clearance, and nonlinear
friction damping of the roll system, and investigated a variety of dynamic behaviors of the
system. Liu et al. [9,10] studied the sliding bifurcation of a horizontal-torsional coupled
main drive system of rolling mill and Hopf bifurcation control of a coupled nonlinear
relative rotation system with time-delay feedbacks. Aiming at the difficulty to establish
accurate traditional mechanism model for cold rolling vibration, Zhou et al. [11] established
the gradient boosted decision tree model to perform vibration energy regression by using
production data measured on site. Qian et al. [12] established the 4 DOF mechanical hy-
draulic coupling model based on the analysis of the coupling effect of rolling mill hydraulic
and mechanical systems. Qi et al. [13] investigated the influence of the mill modulus control
gain on the vibration in hot rolling mills through experiments and numerical simulations.

Neimark-Sacker bifurcation is a second Hopf bifurcation of the original system. The
typical solution of Neimark-Sacker bifurcation is the quasi-periodic torus solution. Many re-
searchers pay attention to the Neimark-Sacker bifurcation of various mechanical systems in
non-resonant case. Chatterjee and Mallik [14] investigated the quasi-periodic vibro-impact
behaviors of a class of self-excited oscillators. Budd et al. [15] considered a vibro-impact
oscillator with a single stop to analyze the effect of frequency and clearance variations
on the system and proved that the quasi-periodic motion cannot occur in such systems.
Cui et al. [16] studied the existence of quasi-periodic solutions of the Van der pol-Duffing
oscillator by HAM method. Wen et al. [17] addressed the anti-controlling quasi-periodic
impact motion of an inertial impact shaker system by developing a linear feedback control
method. However, there are few studies on Neimark-Sacker bifurcation at the resonance
point of a mechanical system. Guo and Xie [18] investigated Neimark-Sacker Bifurcation
of an oscillator with dry friction in 1:4 strong resonance. To the authors’ best knowledge,
there is no literature focused on studying quasi-periodic oscillations from Neimark-Sacker
bifurcation at the resonance point for roll system of corrugated rolling mill.

The main purpose of the present paper is to investigate the quasi-periodic oscillations
from the Neimark-Sacker bifurcation in resonance for the roll system of the corrugated
rolling mill. In Section 2, the two-degree of freedom nonlinear vertical vibration mathe-
matical model is established by considering the nonlinear damping and stiffness within
corrugated interface of corrugated rolling mill. The Poincaré map is derived by solving
the power series solution of dynamic equations in Section 3. Based on the Poincaré map,
the existence of the Neimark-Sacker bifurcation and the stability of quasi-periodic oscil-
lations in strong resonance and weak resonance are analyzed, and theoretical analysis is
verified by the numerical simulation in Section 4. A conclusion is drawn in Section 5.

2. The Mechanical Model and Dynamic Equation of Corrugated Rolling Mill

The roller system of a corrugated rolling mill with the nonlinear damping and nonlin-
ear stiffness within the corrugated interface of a corrugated rolling mill can be simplified
into a two-freedom-degree vertical nonlinear vibration model, as is shown in Figure 1.
The m1 and m2 represent the equivalent mass of the corrugated roll and the equivalent
mass of the flat roll, respectively; k1 and c1 are the stiffness and the average damping
value between the corrugated roll and rack, respectively; k2 and c2 are the stiffness and the
average damping value between the flat roll and rack, respectively, and k0 and c0 are the
average value of stiffness and the average value of damping in steady state of corrugated
rolling mill, respectively. F0 sin ωt is approximately the rolling force during the rolling
process. The F0 is rolling the force amplitude, and ω is the rolling force frequency. The
damping between the corrugated roll and flat roll caused by the roll shape curve is defined
as c0 + c′0(y1 − y2)

2. The c′0 represents the nonlinear damping coefficient of roller systems.
The stiffness between the roller system and rack is defined as ki + k′ iy2

i (i = 1, 2). The
k′ i represents the nonlinear stiffness coefficient of roller systems. The initial position for
system (1) is set to the zero position.
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Figure 1. The rolling diagram of corrugated rolling mill: (left) the mechanical model; (right) two-
freedom-degree vertical nonlinear vibration model. 
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Figure 1. The rolling diagram of corrugated rolling mill: (left) the mechanical model; (right)
two-freedom-degree vertical nonlinear vibration model.

The nonlinear parameter excited vibration equations of the roller system can be
established as follows:

m1
..
y1(t) +

(
c0 + c′0(y1(t)− y2(t))

2
)( .

y1(t)−
.
y2(t)

)
+ c1

.
y1(t) +

(
k1 + k′1y2

1(t)
)
y1(t)

+k0(y1(t)− y2(t))− F0 sin ωt = 0

m2
..
y2(t)−

(
c0 + c′0(y1(t)− y2(t))

2
)( .

y1(t)−
.
y2(t)

)
+ c2

.
y2(t) +

(
k2 + k′2y2

2(t)
)
y2(t)

−k0(y1(t)− y2(t)) + F0 sin ωt = 0

(1)

As the roller system has approximate symmetry, we suppose that m1 = m2 and
y1(t) = −y2(t). Thus, system (1) can be simplified as follows:

m1
..
y1(t) +

(
2c0 + c1 + 2c′0(2y1(t))

2
) .

y1(t) +
(

k1 + k′1y2
1(t)

)
y1(t) + 2k0y1(t)− F0 sin ωt = 0 (2)

If ω2
0 = 2k0+k1

m1
, α = 2c0+c1

m1
, β = 8c′0

m1
, γ = k′

m1
, F = F0

m1
, and θ = ωt, system (2) can be

written as follows:

..
y1(t) + ω0

2y1(t) +
(

α + βy1
2(t)

) .
y1(t) + γy3

1(t)− F sin(θ) = 0 (3)

Using the transformation
[

y1(t).
y1(t)

]
=

[
1 0

0 −ω0

][
x1(t)
x2(t)

]
, system (3) is trans-

formed into the following standard form:{ .
x1(t) = −ω0x2(t).
x2(t) = ω0x1(t)−

(
α + βx2

1(t)
)
x2(t) +

γ
ω0

x3
1(t)−

F
ω0

sin(θ) (4)

3. The Poincaré Map

When the quasi-periodic oscillations of the system (4) in resonance is studied,
the derivative of θ with respect to time t is

.
θ = nω0(n = 3, 4, 5) . Through introduc-

ing the new time τ and scaling the original time by t = τ/ω0, system (5) with respect to τ
are given by
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dx1(τ)

dτ = −x2(τ)

dx2(τ)
dτ = x1(τ)− 1

ω0

(
α + βx2

1(τ)
)
x2(τ) +

1
ω2

0
γx3

1(τ)−
1

ω2
0

F sin(θ)
dθ
dτ = n

(5)

Suppose that − α
ω0

= µ, − β
ω0

= a, γ

ω2
0
= b, − F

ω2
0
= ε, system (5) can be written

as follows: 
.
x1(τ) = −x2(τ)
.
x2(τ) = x1(τ) + µx2(τ) + ax2

1(τ)x2(τ) + bx3
1(τ) + ε sin(θ)

.
θ = n

(6)

where the dot (.) denotes the derivative with respect to τ.
In order to establish Poincaré map, let z(τ) = x1(τ) + ix2(τ), and then, let system (6)

be changed into

.
z(τ) = iz(τ) + µ

z(τ)− z(τ)
2

+ a
(

z(τ) + z(τ)
2

)2 (z(τ)− z(τ))
2

+ ib
(

z(τ) + z(τ)
2

)3
+ iε sin(θ) (7)

According to continuous dependence on the parameters of the solution, the solution
to system (7) is expanded as a Taylor series in the parameters µ and ε as:

z(η, τ, µ, ε) = z0(η, τ) + µz10(η, τ) + εz01(η, τ)+

µεz11(η, τ) + 1
2 µ2z20(η, τ) + 1

2 ε2z02(η, τ) + · · ·
(8)

which satisfies the initial value condition z(η, 0, µ, ε) = η.
Substituting solution (8) into system (7) and collecting coefficients of primary and

quadratic terms of µ and ε, we can obtain

.
z0(η, τ) = iz0(η, τ) +

a
8
(z0 + z0)

2(z0 − z0) +
ib
8
(z0 + z0)

3 (9)

.
z10(η, τ) = iz10(η, τ) + (z0−z0)

2 + a
4 (z0 + z0)(z0 − z0)(z10 + z10)

+ a
8 (z0 + z0)

2(z10 − z10) +
3ib
8 (z0 + z0)

2(z10 + z10)
(10)

.
z01(η, τ) = iz01(η, τ) + a

4 (z0 + z0)(z0 − z0)(z01 + z01)

+ a
8 (z0 + z0)

2(z01 − z01) +
3ib
8 (z0 + z0)

2(z01 + z01) + i sin(θ)
(11)

.
z11(η, τ) = iz11(η, τ) + (z01−z01)

2 + a
4 (z01 + z01)(z0 − z0)(z10 + z10)

+ a
4 (z0 + z0)(z01 − z01)(z10 + z10) +

a
4 (z0 + z0)(z0 − z0)(z11 + z11)

+ a
4 (z0 + z0)(z10 − z10)(z01 + z01) +

a
8 (z0 + z0)

2(z11 − z11)

+ 6ib
8 (z0 + z0)(z10 + z10)(z01 + z01) +

3ib
8 (z0 + z0)

2(z11 + z11)

(12)

.
z20(η, τ) = i

2 z20(η, τ) + 1
2 (z10 − z10) +

a
8 (z10 + z10)

2(z0 − z0)+

+ a
4 (z0 + z0)(z10 − z10)(z10 + z10) +

a
8 (z0 + z0)(z0 − z0)(z20 + z20)

+ a
16 (z0 + z0)

2(z20 − z20) +
3ib
8 (z0 + z0)(z10 + z10)

2

+ 3ib
16 (z0 + z0)

2(z20 + z20)

(13)
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.
z02(η, τ) = i

2 z02(η, τ) + a
8 (z01 + z01)

2(z0 − z0) +
a
4 (z0 + z0)(z01 − z01)(z01 + z01)

+ a
8 (z0 + z0)(z0 − z0)(z02 + z02) +

a
16 (z0 + z0)

2(z02 − z02)

+ 3ib
8 (z0 + z0)(z01 + z01)

2 + 3ib
16 (z0 + z0)

2(z02 + z02)

(14)

The solutions z0(η, τ), z10(η, τ), z01(η, τ), z11(η, τ), z20(η, τ), and z02(η, τ) of Equa-
tions (10)–(15) are also expanded as Taylor series in the initial values η and η as:

z0(η, τ) = L10η + L01η + L20
2 η2 + L11ηη + L02

2 η2 + L30
6 η3 + L21

2 η2η + L12
2 ηη2

+ L03
6 η3 + L40

24 η4 + L31
6 η3η + L22

4 η2η2 + L13
6 ηη3 + L04

24 η4 + (. . .)
(15)

z10(η, τ) = A10η + A01η + (. . .) (16)

z01(η, τ) = B00 + B10η + B01η + (. . .) (17)

z11(η, τ) = C00 + C10η + C01η + (. . .) (18)

z20(η, τ) = D10η + D01η + (. . .) (19)

z02(η, τ) = E10η + E01η + (. . .) (20)

where Lij, Aij, Bij, Cij, Dij and Eij are the abbreviations for Lij(τ), Aij(τ), Bij(τ), Cij(τ),
Dij(τ), and Eij(τ), respectively.

As the cases of 1:3, 1:4 and 1:5 resonances are analyzed in the system, it is enough
that z0(η, τ) is expanded to fourth order terms of the initial value. Since z10(η, τ), z01(η, τ),
z11(η, τ), z20(η, τ), and z02(η, τ) are multiplied by small parameters, it is enough that
their series solutions are expanded to first order terms. Substituting Solution (15) into
Equation (9) and collecting coefficients of corresponding terms of η and η, we have

.
L10 = iL10,

.
L01 = iL01,

.
L20 = iL20,

.
L11 = iL11,

.
L02 = iL02,

.
L30 = iL30 +

3ib− 3a
4

L3
01 +

9ib− 3a
4

L10L2
01 +

9ib + 3a
4

L2
10L01 +

3ib + 3a
4

L3
10

.
L21 = iL21 +

3ib−3a
4 L2

01L10 +
3ib−a

4 L2
01L01 +

3ib−a
2 L10L01L10

+ 3ib+a
2 L10L01L01 +

3ib+a
4 L2

10L10 +
3ib+3a

4 L2
10L01

.
L12 = iL12 +

3ib−3a
4 L2

10L01 +
3ib−a

4 L2
10L10 +

3ib−a
2 L01L10L01

+ 3ib+a
2 L01L10L10 +

3ib+a
4 L2

01L01 +
3ib+3a

4 L2
01L10

.
L03 = iL03 +

3ib− 3a
4

L3
10 +

9ib− 3a
4

L01L2
10 +

9ib + 3a
4

L2
01L10 +

3ib + 3a
4

L3
01

.
L40 = iL40 +

9ib−9a
2 L2

01L02 +
9ib−3a

2 L2
01L20 + (9ib− 3a)L02L10L01

+(9ib + 3a)L20L10L01 +
9ib+3a

2 L2
10L02 +

9ib+9a
2 L2

10L20
.
L31 = iL31 +

9ib−9a
4 L2

01L11 +
9ib−3a

4 L2
01L11 +

9ib−3a
2 L11L10L01

+ 9ib+3a
2 L11L10L01 +

9ib−9a
4 L10L02L01 +

9ib−9a
4 L01L02L01

+ 9ib−3a
4 L10L20L01 +

9ib+3a
4 L01L20L01 +

9ib+3a
4 L2

10L11 +
9ib+9a

4 L2
10L11

+ 9ib−3a
4 L10L02L10 +

9ib+3a
4 L01L02L10 +

9ib+3a
4 L10L20L10 +

9ib+9a
4 L01L20L10
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.
L22 = iL22 +

3(ib−a)
4 L2

01L20 +
3ib−a

4 L2
01L02 + (3ib− 3a)L11L10L01 + (3ib− a)L11L10L01

+ 3ib−a
2 L20L10L01 +

3ib+a
2 L02L10L01 + (3ib− a)L11L01L01 + (3ib+a)L11L01L01

+ 3(ib−a)
4 L2

10L02 +
3ib−a

4 L2
10L20 + (3ib− a)L11L10L10 + (3ib+a)L11L10L10

+ 3ib−a
2 L02L01L10 +

3ib+a
2 L20L01L10 +

3ib+a
4 L2

10L20 +
3ib+3a

4 L2
10L02

+(3ib+a)L11L01L10 + (3ib+3a)L11L01L10 +
3ib+a

4 L2
01L02 +

3ib+3a
4 L2

01L20
.
L13 = iL13 +

9ib−9a
4 L2

10L11 +
9ib−3a

4 L2
10L11 +

9ib−3a
2 L11L01L10

+ 9ib+3a
2 L11L01L10 +

9ib−9a
4 L01L20L10 +

9ib−3a
4 L10L20L10

+ 9ib−3a
4 L01L02L10 +

9ib+3a
4 L10L02L10 +

9ib+3a
4 L2

01L11 +
9ib+9a

4 L2
01L11

9ib−3a
4 L01L20L01 +

9ib+3a
4 L10L20L01 +

9ib+3a
4 L01L02L01 +

9ib+9a
4 L10L02L01

.
L04 = iL04 +

9ib−9a
2 L2

10L20 +
9ib−3a

2 L2
10L02 + (9ib− 3a)L20L01L10

+(9ib + 3a)L02L01L10 +
9ib+3a

2 L2
01L20 +

9ib+9a
2 L2

01L02

which satisfies the initial value condition as:

L10(0) = 1, L01(0) = 1, L20(0) = 1, L11(0) = 1, L02(0) = 1,

L30(0) = 0, L21(0) = 0, L12(0) = 0, L03(0) = 0,

L40(0) = 0, L31(0) = 0, L22(0) = 0, L13(0) = 0, L04(0) = 0.

Through solving the differential equations on Lij(τ), we obtain

L10(τ) = L01(τ) = eiτ , L20(τ) = L02(τ) = eiτ , L11(τ) = eiτ ,

L30(τ) = ((0.94i + 0.75τ)a + (0.94 + 2.25iτ)b)eiτ − 0.19(b + ai)e−3iτ

−(1.13b + 0.38ai)e−iτ + 0.38(b− ai)e3iτ

L03(τ) = L21(τ) = L12(τ) = L30(τ),

L40(τ) = ((5.63i + 4.5τ)a + (5.63 + 13.5iτ)b)eiτ − 1.13(b + ai)e−3iτ

−(6.75b + 2.25ai)e−iτ + 2.25(b− ai)e3iτ

L04(τ) = L31(τ) = L13(τ) = L22(τ) = L40(τ).

Letting sin(θ)= sin(nτ) (n = 3, 4, 5) and substituting the above series solution of
z0(η, τ) in Equations (10)–(14), the coefficients of series solutions on z10(η, τ), z01(η, τ),
z11(η, τ), z20(η, τ) and z02(η, τ) are obtained as:

A10 = A01 =
2τ + i

4
eiτ − i

4
e−iτ

B00 = e−
∫
−idτ

∫
i sin(nτ)e

∫
−idτdτ + Ce−

∫
−idτ(n = 3, 4, 5) , B00(0) = 0

B10 = B01 = eiτ ,

C00 = e−
∫
−idτ

∫ B00 − B00

2
e
∫
−idτdτ + Ce−

∫
−idτ(n = 3, 4, 5), C00(0) = 0

C10 = C01 =
2τ + i

4
eiτ − i

4
e−iτ

D10 = D01 =
2τ2 − 1 + 2τi

8
eiτ +

1
8

e−iτ

E10 = e−
∫
−idτ

∫
Q10e

∫
−idτdτ + Ce−

∫
−idτ(n = 3, 4, 5), E10(0) = 0
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Q10 = B2
00

[
3(ib−a)

4 L10 +
3ib−a

4 L10

]
+
(

3ib−a
2 L10 +

3ib+a
2 L10

)
B00B00

+B2
00

[
3ib+a

4 L10 +
3(ib+a)

4 L10

]
E01 = e−

∫
−idτ

∫
Q01e

∫
−idτdτ + Ce−

∫
−idτ(n = 3, 4, 5), E01(0) = 0

Q01 = B2
00

[
3(ib−a)

4 L01 +
3ib−a

4 L01

]
+
(

3ib−a
2 L01 +

3ib+a
2 L01

)
B00B00

+B2
00

(
3ib+a

4 L01 +
3(ib+a)

4 L01

)
Substituting the above results of Lij, Aij, Bij, Cij, Dij, and Eij into the solution (8),

we obtain the series solution to Equation (7). Based on the series solution, when the
Poincaré section is chosen as τ = 2π

n (n = 3, 4, 5), the Poincaré map in the case of resonance
can be presented as:

η 7→ z
(
η, 2π

n , µ, ε
)
= z0

(
η, 2π

n
)
+ µz10

(
η, 2π

n
)
+ εz01

(
η, 2π

n
)
+ µεz11

(
η, 2π

n
)

+ 1
2 µ2z20

(
η, 2π

n
)
+ 1

2 ε2z02
(
η, 2π

n
)
+ . . .

= ei 2π
n (η + η) + µ

(
4π+in

4n ei 2π
n − i

4 e−i 2π
n

)
(η + η) + εei 2π

n (η + η)

+εB00 + µεC00 + µε
(

4π+in
4n ei 2π

n − i
4 e−i 2π

n

)
(η + η) +

g20
2 η2

+ 1
2 µ2
(

8π2+4πni−n2

8n2 ei 2π
n + 1

8 e−i 2π
n

)
(η + η) + 1

2 ε2(E10η + E01η)

+ 1
2 ε2(E10η + E01η) + g11ηη + g02

2 η2 + g30
6 η3 + g21

2 η2η + g12
2 ηη2

+ g03
6 η3 + g40

24 η4 + g31
6 η3η + g22

4 η2η2 + g13
6 ηη3 + g04

24 η4 + o(. . .)

(21)

Due to G(η, µ, ε) =
[
z
(
η, 2π

n , µ, ε
)
− η

]∣∣
η=0, µ=0, ε=0 = 0 and

∂
∂η G(η, µ, ε)

∣∣∣
η=0, µ=0, ε=0

= eiτ − 1 6= 0
(
τ = 2π

n (n = 3, 4, 5)
)
, the map (21) has

a fixed point as denoted by η∗, which continuously depends on parameters µ and ε
according to the implicit function theorem.

Theorem 1. By solving the power series solution of dynamic equations and using the transformation
of coordinate ξ = η − η∗, the Poincaré map for system (6) is established as follows:

ξ 7→ Ψ(ξ, µ, ε) = ei 2π
n
(
ξ + ξ

)
+ µ

(
4π+in

4n ei 2π
n − i

4 e−i 2π
n

)(
ξ + ξ

)
+ εei 2π

n
(
ξ + ξ

)
+µε

(
4π+in

4n ei 2π
n − i

4 e−i 2π
n

) (
ξ + ξ

)
+ 1

2 ε2(E10ξ + E01ξ
)
+ g20

2 ξ2 + g11ξξ

+ 1
2 µ2
(

8π2+4πni−n2

8n2 ei 2π
n + 1

8 e−i 2π
n

)(
ξ + ξ

)
+ g02

2 ξ
2
+ g30

6 ξ3 + g21
2 ξ2ξ

+ g12
2 ξξ

2
+ g03

6 ξ
3
+ g40

24 ξ4 + g31
6 ξ3ξ + g22

4 ξ2ξ
2
+ g13

6 ξξ
3
+ g04

24 ξ
4
+ o(. . .)

(22)

where, g20 = L20, g11 = L11, g02 = L02, g30 = L30, g21 = L21, g12 = L12, g03 = L03,
g40 = L40, g31 = L31, g22 = L22, g13 = L13, g04 = L04.

It follows from the map (22) that the eigenvalue has the following form:

λ(µ, ε) = ei 2π
n

(
1 +

(
4π+in

4n − i
4 e−i 4π

n

)
µ + ε +

(
4π+in

4n − i
4 e−i 4π

n

)
µε

+
(

8π2+4πni−n2

16n2 + 1
16 e−i 4π

n

)
µ2 + 1

2 E10e−i 2π
n ε2 + o(. . .)

) (23)

The eigenvalue (23) can be simplified as

λ(µ, ε) = ei 2π
n

(
1 + λ̃µ + o(. . .)

)
,
(

λ̃ =

(
4π + in

4n
− i

4
e−i 4π

n

))
(24)
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4. Neimark-Sacker Bifurcation in Resonance
4.1. 1:3 Resonance

When Neimark-Sacker bifurcation in 1:3 strong resonance occurs in the roll sys-
tem, through using the appropriate transformation and letting sin(θ)= sin(3τ) (n = 3),
the map (22) can be transformed into the normal form as [19]:

ζ 7→ Φ1(ζ, µ) = λζ + γζ
2
+ αζ2ζ + O

(
|ζ|5
)

(25)

Through calculation, some coefficients at µ = 0 of map (25) can be obtained as:

λ(0) = −1
2
+

√
3

2
i, γ(0) =

g02(0)
2

= −1
4
+

√
3

4
i,

α(0) = 2λ(0)−1
2λ(0)(1−λ(0)) g11(0)g20(0) +

|g11(0)|2

1−λ(0)
+ g21(0)

2

= 0.75− 1.01i + (−0.96 + 0.26i)a− (1.9 + 0.29i)b
(26)

Lemma 1. [20] If ∂
∂µ |λ(µ)|

∣∣∣
µ=0

= Re
(

λ̃
)

> 0, a stable invariant cycle (corresponding to

a stable quasi-periodic oscillation of the original roll system) can appear through a Neimark-Sacker
bifurcation when µ > 0 if Re(α(0)/λ(0)) < 0, and an unstable invariant cycle arises in the
system when µ < 0 if Re(α(0)/λ(0)) > 0.

When the parameters ε = −0.1, a = −1.5, b = 0.6 are taken as an example and
substituted into the expressions (24) and (26), we have ∂

∂µ |λ(µ)|
∣∣∣

µ=0
= 1.26 > 0 and

Re(α(0)/λ(0)) = −1.88 < 0. This means that the map (25) has a stable fixed point when
µ < 0, as is shown in the left-hand sketch of Figure 2, which corresponds to a stable
periodic oscillation of the original roll system (6) as shown in the right-hand sketch of
Figure 2. When µ > 0, the fixed point loses its stability, and a stable invariant cycle appears
through Neimark-Sacker bifurcation, as is shown in the left-hand sketch of Figure 3, which
corresponds to a stable quasi-periodic oscillation of the original roll system (6) as shown in
the right-hand sketch of Figure 3.
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4.2. 1:4 Resonance

Using the appropriate transformation, the map (22) in 1:4 resonance can be trans-
formed into the normal form as [19]:

ζ 7→ Φ2(ζ, µ) = λζ + σζ2ζ + βζ
3
+ O

(
|ζ|5
)

(27)

Some coefficients at µ = 0 of map (27) are calculated as:

λ(0) = i,
σ (0) = g21(0)

2 + |g11(0)|2

1−λ(0)
+ |g02(0)|2

2(λ2(0)−λ(0))
+ 2λ(0)−1

2λ(0)(1−λ(0)) g11(0)g20(0)

= (−0.75 + 0.59i)a + (−1.77 + 0.75i)b− 1.5i

β(0) = 1
2λ(0)(λ(0)−1) g11(0)g02(0) +

g02(0)g20(0)
2(λ2(0)−λ(0))

+ g03(0)
6

= (−0.25 + 0.2i)a + (−0.59 + 0.25i)b− 0.5i
(28)

Lemma 2. [20] If
∣∣∣Im( σ

λ̃

)∣∣∣ > ∣∣∣ β

λ̃

∣∣∣, there is no period 4 orbit bifurcating from the fixed point of
map (27). The stable invariant circle can bifurcate from the fixed point when Re(α(0)/λ(0)) < 0.
The unstable invariant circle can bifurcate from the fixed point when Re(α(0)/λ(0)) > 0.

Lemma 3. [20] If
∣∣∣Im( σ

λ̃

)∣∣∣ < ∣∣∣ β

λ̃

∣∣∣, the period 4 orbits can bifurcate from the fixed point of
map (27). Furthermore, if |σ| > |β|, the period 4 orbits exist on one side of the critical value of
parameter, and at least one of them is unstable. If |σ| < |β|, the period 4 orbits exist on both sides
of the critical parameter, all of which are unstable.

Choosing ε = −0.15, a = −5.5, b = 0.1 and according to the expressions (24) and (28),
we obtain

∣∣∣Im( σ
λ̃

)∣∣∣− ∣∣∣ β

λ̃

∣∣∣ = 4.32 > 0 and Re(α(0)/λ(0)) = −4.66 < 0. Based on Lemma 2,
we assert that the map (27) has a stable invariant circle. According to the expression (23),
we can calculate that ∂

∂µ |λ(µ)|
∣∣∣

µ=0
= 0.79 > 0. This means a stable fixed point as shown in

the left-hand sketch of Figure 4 exists in the map (27) when µ < 0, which corresponds to
the stable periodic motion of the original system, as is shown in the right-hand sketch of
Figure 4. When µ > 0, there exists a stable invariant circle as shown in the left-hand sketch
of Figure 5 bifurcating from the fixed point, which corresponds to the stable quasi-periodic
motion of the original system, as is shown in the right-hand sketch of Figure 5.
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4.3. 1:5 Resonance

Using the appropriate transformation, the map (22) in 1:5 resonance can be trans-
formed into the normal form as [19]:

ζ 7→ Φ3(ζ, µ) = λζ + δζ2ζ + O
(
|ζ|5
)

(29)

Some coefficients at µ = 0 of map (29) are calculated as:

λ(0) = cos
(

2π

5

)
+ i sin

(
2π

5

)

δ(0) = 2λ(0)−1
2λ(0)(1−λ(0)) g11(0)g20(0) +

|g11(0)|2

1−
−
λ(0)

+ g21(0)
2

= −0.06− 1.29i + (−0.53 + 0.76i)a + (−1.45 + 1.25i)b

Lemma 4. [20] If Re(α(0)/λ(0)) < 0, the stable invariant circle can bifurcate from the fixed point
of map (29). The unstable invariant circle can bifurcate from the fixed point for Re(α(0)/λ(0)) > 0.

The parameters ε = −0.1, a = −2.5 and b = 0.8 are chosen as an example. It follows from
the expressions (30) and (23) that Re(α(0)/λ(0)) = −2.06 < 0 and ∂

∂µ |λ(µ)|
∣∣∣

µ=0
= 0.48 > 0

are obtained. Based on Lemma 4, the map (29) has a stable fixed point as shown in the
left-hand sketch of Figure 6 when µ < 0, which corresponds to the stable periodic motion
of the original system, as is shown in the right-hand sketch of Figure 6. There exists a stable
invariant circle, as shown in the left-hand sketch of Figure 7, bifurcating from the fixed
point when µ > 0, which corresponds to the stable quasi-periodic motion of the original
system, as is shown in the right-hand sketch of Figure 7.
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(right) the stable periodic motion.

Mathematics 2021, 9, x FOR PEER REVIEW 12 of 13 
 

 

point as shown in the left-hand sketch of Figure 6 when 0μ < , which corresponds to the 
stable periodic motion of the original system, as is shown in the right-hand sketch of Fig-
ure 6. There exists a stable invariant circle, as shown in the left-hand sketch of Figure 7, 
bifurcating from the fixed point when 0μ > , which corresponds to the stable quasi-peri-
odic motion of the original system, as is shown in the right-hand sketch of Figure 7. 

  
Figure 6. The stable periodic motion in 1:5 resonance when = 0.01μ − : (left) the stable fixed point; 
(right) the stable periodic motion. 

  
Figure 7. The stable quasi-periodic motion in 1:5 resonance when =0.01μ : (left) the stable invariant 
circle; (right) the stable quasi-periodic motion. 

5. Conclusions 
The quasi-periodic oscillations in 1:3, 1:4 and 1:5 resonances have been studied in the 

roll system of a corrugated rolling mill. The Poincaré map has been established through 
deriving the series solution of vibration equations. The existence and stability of quasi-
periodic oscillations from the Neimark-Sacker bifurcation in resonance have been ana-
lyzed. The numerical simulations have been carried out to show the stable quasi-periodic 
oscillations in the roll system and validate the feasibility of the theoretical method. The 
results can provide some useful information for structural optimizing design of the roller 
system of the corrugated rolling mill. 

Author Contributions: Writing—original draft preparation, D.H.; writing—review and editing 
H.X.; funding acquisition, T.W.; supervision, Z.W. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This research was funded by National Key Research and Development Project, grant num-
ber 2018YFA0707300 and TW was also funded by National Natural Science Foundation of China, 
grant number 51974196. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The datasets generated and analyzed during the current study are 
available from the corresponding author on reasonable request. 

Figure 7. The stable quasi-periodic motion in 1:5 resonance when µ = 0.01: (left) the stable invariant
circle; (right) the stable quasi-periodic motion.

5. Conclusions
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