
mathematics

Article

A Mixed Strategy of Higher-Order Structure for Link Prediction
Problem on Bipartite Graphs

Chao Li 1,2, Qiming Yang 3, Bowen Pang 3,*, Tiance Chen 3, Qian Cheng 3 and Jiaomin Liu 1

����������
�������

Citation: Li, C.; Yang, Q.; Pang, B.;

Chen, T.; Cheng, Q.; Liu, J. A Mixed

Strategy of Higher-Order Structure

for Link Prediction Problem on

Bipartite Graphs. Mathematics 2021, 9,

3195. https://doi.org/10.3390/

math9243195

Academic Editors: Xinsong Yang and

András Telcs

Received: 14 October 2021

Accepted: 8 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
lichao@hsnc.edu.cn (C.L.); liujm@hsnc.edu.cn (J.L.)

2 Department of Mathematics and Computer Science, Hengshui University, Hengshui 053000, China
3 LMIB and School of Mathematical Sciences, Beihang University, Beijing 536002, China;

asdyqm@buaa.edu.cn (Q.Y.); chentc@buaa.edu.cn (T.C.); cq1998@buaa.edu.cn (Q.C.)
* Correspondence: pangbw@buaa.edu.cn

Abstract: Link prediction tasks have an extremely high research value in both academic and com-
mercial fields. As a special case, link prediction in bipartite graphs has been receiving more and
more attention thanks to the great success of the recommender system in the application field, such
as product recommendation in E-commerce and movie recommendation in video sites. However,
the difference between bipartite and unipartite graphs makes some methods designed for the latter
inapplicable to the former, so it is quite important to study link prediction methods specifically
for bipartite graphs. In this paper, with the aim of better measuring the similarity between two
nodes in a bipartite graph and improving link prediction performance based on that, we propose
a motif-based similarity index specifically for application on bipartite graphs. Our index can be
regarded as a high-order evaluation of a graph’s local structure, which concerns mainly two kinds
of typical 4-motifs related to bipartite graphs. After constructing our index, we integrate it into a
commonly used method to measure the connection potential between every unconnected node pair.
Some of the node pairs are originally unconnected, and the others are those we select deliberately
to delete their edges for subsequent testing. We make experiments on six public network datasets
and the results imply that the mixture of our index with the traditional method can obtain better
prediction performance w.r.t. precision, recall and AUC in most cases. This is a strong proof of the
effectiveness of our exploration on motifs structure. Also, our work points out an interesting direction
for key graph structure exploration in the field of link prediction.

Keywords: link prediction; bipartite graph; motifs; recommender system

1. Introduction

Complex network models can be used to study a large number of systems in both
natural and social relations, e.g., gene networks, social networks and knowledge networks.
These types of networks often have the properties of structural complexity, connection
diversity, meta-complication, etc. which make them difficult to process and study [1]. How-
ever, with the development of computer technology and the improvement of computing
power, researchers can process large-scale network data more effectively, which boosts
different kinds of research topics based on complex networks. Among all those topics, link
prediction is one of the most concerned and important which aims to use known network
information (links and node features) to infer the missing connection between a pair of
nodes that should have existed or predict the possible future interaction between two
nodes. This technique is widely used in areas such as recommender systems, community
discovery, and bioinformatics [2].

In the field of link prediction, there are three types of methods commonly applied
by researchers. The first type is of methods based on node similarity metrics such as
CN (Common Neighborhood), AA (Adamic-Adar) [3] and CCLP [4]. Local similarity
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measures usually depend on the nature of the common neighbor nodes and it is easy
to calculate, while the global similarity indexes focus more on the global structure of
the network, but suffer from the high computational complexity because they usually
involve the calculation of multiple nodes and links. In addition, methods based on network
embedding are also well studied and used. M Zhang and Y Chen proposed a graph
neural network (GNN) based link prediction architecture in literature [5] and H Wang
used multiple deep autoencoders to map each node to a low-dimensional feature space [6].
The last type of methods is based on random walks, represented by restart random walk
(RWR) and extended restart random walk (ROWER) [7]. This type of methods designs
different random walk algorithms to calculate the stable probability of a node transferring
to another and uses the probability as a measure to infer the possibility of connecting edges.

In this paper, we propose a new similarity index specifically designed for bipartite net-
works inspired by the concept motifs, which is very instructive in the exploration of graph
structure. Motifs was first proposed by Milo et al. in literature [8], defined as statistically
significant patterns of interconnections or subgraphs recurring in certain network.

Different from the usual usage of motifs, in our research, we consider the 4-motifs
structure instead of the common 3-motifs one to build our similarity index and combine
it with the well-known existing index used in collaborative filtering. We use our mixed
index to measure the connection probability between unconnected nodes and test its
predictive effect in six real-world bipartite networks. The significance and contributions of
our research are summarized as follows:

• We propose a new motif-based similarity index that tries to capture more structural
information from bipartite networks, which may be neglected by simply examining
edges or nodes. This construction is very enlightening and can be extended by
considering different motifs.

• We combine our index with a traditional widely-applied similarity measure and use
the mixed index to predict links.

• We experiment with our mixed index on six public benchmark datasets and acquire
better prediction accuracy and generalization ability in most cases.

The rest of the paper proceeds as follows. Section 2 summarizes the related work on
link prediction in bipartite graph and recommendation algorithms. Section 3 introduces
our proposed similarity measure, its definition and properties. Section 4 describes the
experiments and analyzes the performance of our index. Finally, we conclude the paper
with future work in Section 5.

2. Related Work
2.1. Link Prediction in Bipartite Graph

Many networks in real life can be regarded as bipartite graphs e.g., authorship network,
customer-item network, usage logs and so on. How to make link prediction in these cases is
a topic of concern, but it should be noted that there are some major differences between this
task on bipartite graphs and unipartite graphs. In a unipartite graph, several assumptions
are made, such as new edges tending to form triangle structures and nodes tending to
form communities in which they are well-connected [9]. However, as a comparison, these
assumptions no longer hold in a bipartite graph due their unique structure. For instance,
the triangle structure (three interconnected nodes) does not exist in bipartite graphs because
nodes in bipartite graphs are separated into two categories and nodes of the same category
cannot be connected. Therefore, predicting the potential link between two nodes sharing
the same neighbor is logically wrong. Nonetheless, those algorithms that do not take
triangle numbers or common neighbors connections into account might still work, such as
the preferential attachment model [10], which measures the similarity between two nodes
by the production of their own degrees and infers connections based on this. In contrast to
the direct neighborhood fashion, the link prediction problem could also be considered in an
algebraic way. These methods correspond to matrix decomposition and can be solved by
using iterative algorithms, such as the von Neumann Pesudokernal Method [11]. With the
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development of machine learning, several machine learning approaches are also provided
and introduced in this area. Benchettara considered expressing the link prediction problem
as a two class discrimination problem, and applied classical supervised machine learning
methods to solve it [12]. Xin Li and Hsinchun Chen [13] took advantage of the structure of
a bipartite graph and proposed a kernel-based random walk method to solve the problem.
Gao mapped the bipartite network onto a unipartite network and performed link prediction
only within the CNPs (candidate node pair) [14].

2.2. Recommendation Algorithms

In previous studies, collective local structure of a graph is the most commonly con-
sidered feature when designing recommendation algorithms. The following are three
representative methods among them, which will be taken for comparison in this paper.

PA (Preferential Attachment) is a similarity function proposed by Albert Barabasi et al. [10]
in 1999. It is based on the simple idea that a high degree nodes tend to be connected to
each other compared with low degree nodes. This is also known as the rich-get-richer
concept. The calculation formula is as follows, which means the production of the number
of neighbors of node i and node j.

SPA(i, j) = |Γi| × |Γj|, (1)

where Γi is the neighborhood nodes set of i.
N2V (Node2vec) is an algorithm devised for graph representation [15]. It can be seen

as an extension of DeepWalk, also a well-known framework for representational learning
on a graph [16]. Using node2vec, we can learn the low-dimensional feature representation
for each node, which can be used for downstream machine learning tass such as node
classification, community detection and especially link prediction [17]. Once we acquire
the graph embedding, we simply apply the Euclidean distance between each node pair to
measure the similarity.

CF (Collaborative Filtering) is one of the earliest and most successful techniques used
by the recommender system. It was first proposed by Goldberg et al., [18] which introduced
the first collaborative filtering recommender system Tapestry. After that, Resnick et al. [19]
proposed the first automated collaborative filtering system GroupLens, which aimed to
help users find their favorite news among a large number of online news. Due to the
great success of GroupLens, more and more researchers have been conducting research on
collaborative filtering, and the research results published in major journals have also been
increasing year by year. In general, collaborative filtering methods can be divided into
two categories: memory-based methods and model-based methods [20]. Memory-based
collaborative filtering uses the entire user-item rating dataset for calculation, and each user
is an integral part of the rating prediction process. Memory-based collaborative filtering
selects a fraction of neighbor users with similar interests for the target user and predicts
the target user’s score on the item based on the scores of its neighbors. Typical memory-
based collaborative filtering methods include Neighbor-Based collaborative filtering and
its improved algorithm [21,22]. Model-based collaborative filtering first learns from the
training dataset to obtain a complex model. It then derives the target user’s score for the
unrated items based on the learned model and the target user’s scored data, etc.

3. Methods

The similarity measurements for bipartite-graph recommender systems are classified
as item-based similarity and user-based similarity, both of which focus on the common
neighbors of targeted nodes. For example, the similarity between two items i, j can be
defined as the number of users that once had these two items. Also, normalization is always
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introduced to make the similarity more reasonable, such as the cosine-similarity-based
Salton Index (SA) [23],

SSA(i, j) =
|Γi

⋂
Γj|√

|Γi| × |Γj|
. (2)

And in the frame of item-based CF index, the interest of user u on item j can be
defined as

Puj = ∑
i∈Γu

S(i, j), (3)

where S(i, j) is the similarity between items i, j and the summation is always performed on
items with the top k similarities.

The similarity of the CF index is always related to the common neighbor information
of targeted items i, j, which neglects the structural information in their local environment.
To reflect more local structures, a motif-based similarity will be introduced to reveal the
local connection density,

SM(i, j) =
|Cycle(i, j)|
|Chain(i, j)| , (4)

where Cycle(i, j) is the set of four cycles involving items i, j and Chain(i, j) is the set of four
chains involving i, j. A schematic view of the difference between SM(i, j) and SSA(i, j) is
shown in Figure 1a. Similar to the CF index, the potential of connection between user u
and item j can be defined as

PM
uj = ∑

i∈Γu

SM(i, j) = ∑
i∈Γu

|Cycle(i, j)|
|Chain(i, j)| . (5)

j

u

i

j

u

i

u1 u2

i1

u1 u2

(a) (b)

Figure 1. (a) A schematic view of the difference between the items similarity of CF index and motif-
based measurement. In the left upper subgraph, the items i, j have two common neighbors u1, u2

and the similarity related to the CF index is based on the characteristics of u1, u2. In the left lower
subgraph, two kinds of four motifs are considered. One is the red 4-chain u, i, u1, j and another is
the dashed four cycle u1, i, u2, j, u1. The similarity based on the motif structures calculates the ratio
of four cycles to four chains related to items i, j. (b) The two four motifs used in the similarity are
illustrated: the right upper one is the four cycle and the right lower is the four chain.

In the viewpoint of the study of motifs and the example in Figure 1, traditional
similarity indexes mostly consider the common neighbors, which are indeed three motifs.
However, our proposed motif-based similarity considers the four motif such as four chains
or four cycles, which can be treated as a high-order evaluation on the local structures.
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Combining the effect of CF index and the PM index, a mixed strategy for the potential
evaluation between user u and item j can be given as

PCF−Mix
uj = PSA

uj + PM
uj = ∑

i∈Γu

(
|Γi

⋂
Γj|√

|Γi| × |Γj|
+ λ
|Cycle(i, j)|
|Chain(i, j)| ), (6)

where the first term in the summation can be viewed as a three order structure (3-motif)
statistics, the second term is a four order structure (four motif) statistics and λ is an
adjustable weight measuring the contribution of four motifs in the definition. There is no
definite standard for the choice of weight λ. As we will see in the experiments section,
the best value of λ is different in different networks. With regard to application, we strongly
recommend that users test different values of λ and select the best one.

The definition of the CF-Mix index combines two kinds of local structures and can
reflect more local structural information. Also, inspired by the Taylor formula expansion,
higher order characteristics can describe more details of the potential correlations among
objects. As four cycles of targeted items i, j in the CF-Mix index only emerge in the common
neighbors, the counting of four cycles only exploit special structures with thier common
neighborhood of i, j, which brings no more time consumption. For the 4 chains with
item j as an end, it is induced by nodes i, j and one of their common neighbors with some
neighbors of node i. So the counting of such four chains only consider the wedges’ (induced
by i, j and one of their common neighbors) number multiplied by degree of i, which does
not increase the computational complexity. Thus, the CF-Mix index has no more time
consumption than the CF but it contains more information.

For items i, j, counting the number of Chain(i, j) covers that of Cycle(i, j) because
Cycle(i, j) belongs to Chain(i, j). Therefore, to find all the members of Chain(i, j), the main
effort is to enumerate all the neighbors of item i and j and check whether i connects
j’s neighbor or j connects i’s neighbor. The number of such operation will not exceed
|Γi| × |Γj| and its computational cost will not be greater than O(N), in which N is the
number of users. Also, to find all the members of Cycle(i, j), we need to find all the
common neighbors of i and j, so the computational cost will not be greater than O(N)
either. Therefore, the computational cost of calculating PCF−Mix

uj between user u and item j
will be at the level of O(MN), in which M is the number of items. In addition, detecting
four motifs structures has the same computational cost as three motifs structures, and this
can be generalized to more complicated motifs structures on bipartite graphs.

4. Experiments
4.1. Implementation

We use Python to implement our proposed strategy and do the whole experiments.
Every index we discuss has a very concise definition in the form of calculation formula
so the programming process is not difficult. Below, we present the pseudo code of the
implementation of our proposed motif-based similarity index SM and CF-Mix index in
Algorithms 1–3.

4.2. Data

Here, we introduce the six datasets we used, each of which is a bipartite graph.
CEO: This dataset is an affiliation network which consists of the CEOs of 26 corporations
and their affiliation with 15 clubs, cultural boards, and corporate boards of directors.
This network was originally collected by Galaskiewicw (1985) [24]. Divorce: This dataset
describes the grounds for divorce allowed in each of the 50 states in the U.S. There are
nine grounds in total, which are incompatibility, cruelty, desertion, nonsupport, alcohol,
felony, impotence, insanity, and separation [25]. Leadership: This dataset describes the
relationship between 22 companies and 20 company directors. If a person is the director
of a company, then they will be connected by a link [26]. Membership: This dataset shows
the membership information of corporate executive officers in social organizations such
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as clubs and boards [27]. Southernwomen: This dataset consists of 32 nodes, out of which
18 represent 18 women and the remaining 14 represent 14 informal social events. It
records which women met forwhich events [28]. MovieLens: This is a classic dataset
used in recommender system testing, which records the ratings given to movies by the
audience [29]. We deliberately selected the above 6 networks with a large span in network
scale in order to test the performance of our proposed method. We hoped it could work
well in both small-scale and large-scale networks.

Algorithm 1 Motif-based similarity SM.

Input: Graph matrix G, node x, node y of the same node type
Output: SM similarity of node x and node y

1: function COUNT OF CYCLE(node x, node y)
2: Nx ← neighbors of node x
3: Ny ← neighbors of node y
4: Count← 0
5: for i in Nx do
6: for j in Ny do
7: if i and j is connected then
8: Count+ = 1
9: end if

10: end for
11: end for
12: return Count
13: end function
14: function COUNT OF CHAIN(node x, node y)
15: Nx ← neighbors of node x
16: Ny ← neighbors of node y
17: Nxy ← common neighbors of node x, y
18: Count← |Nxy| ∗ [(|Nx| − 1) + (|Ny| − 1)]
19: return Count
20: end function
21: function SM CALCULATION(node x, node y)
22: return Count of Cycle(x, y)/Count of Chain(x, y)
23: end function

Algorithm 2 SSA similarity used in CF.

Input: Graph matrix G, node x, node y of the same node type
Output: SSA similarity of node x and node y

1: function SSA CALCULATION(node x, node y)
2: Nx ← neighbors of node x
3: Ny ← neighbors of node y

4: return |Nx ∩ Ny|/
√
|Nx| ∗ |Ny|

5: end function
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Algorithm 3 CF-Mix index.

Input: Graph matrix G, node x, node y of different node types, weight λ
Output: Potential of connection between node x and node y

1: function CF-MIX CALCULATION(node x, node y)
2: Nx ← neighbors of node x
3: Score← 0
4: for i in Nx do
5: Score+ = SM Calculation(x, i) + λ * SSA Calculation(x, i)
6: end for
7: return Score
8: end function

In Table 1, some statistics like nodes’ number N, edges’ number M, average degree
<k> and average shortest path length <d> for the datasets CEO, Divorce, Leadership,
Membership, Southernwomen and MovieLens are provided.

Table 1. Statistics of Network datasets, including number of nodes and edges, average degree and
clustering coefficient.

Nets N M <k> <d>

CEO 41 98 4.78 2.44
Divorce 59 225 7.63 2.2

Leadership 44 99 4.5 2.76
Membership 40 95 4.75 2.45

Southernwomen 32 89 5.56 2.31
MovieLens 10,334 100,836 19.52 3.39

4.3. Results

In the following data analysis, on each network, 90% edges will be randomly selected
for training and the remaining 10% edges will be used for testing. We calculate the
similarity-based index value (including our proposed index and baseline indexes) between
every pair of nodes with no edges. Then, we sort these values in descending order.
Theoretically, the pair of nodes with higher value are more likely to be connected in the
sense that the value reflects the connection potential between them by definition. Therefore,
we select the different parameter L and connect the pair of nodes whose index value is
among the top L.

Firstly, we use ROC curve and AUC value to measure the generalized predictive
ability of different indexes. The ROC curve (receiver operating characteristic curve) is
created by plotting TPR (true positive rate) against FPR (false positive rate) at different
discrimination threshold. It illustrates the variation of a binary classifier’s classification
ability with the change of threshold. Usually, the threshold is selected from the minimum
and maximum of the target score at equal intervals. The total number of thresholds is
determined by the user according to the specific requirements of plotting. To better quantify
the information contained in the curve, the AUC (area under the curve) is often calculated
with it. The larger the AUC value is, the stronger the classification ability of the classifier
is [30]. In Table 2, the Area Under Curves (AUC) of PA, N2V, CF and CF-Mix on the
datesets CEO, Divorce, Leadership, Membership, Southern-Women and MovieLens are
given to illustrate the efficiency of the CF-Mix index. On all the six datasets, our proposed
CF-Mix index performs better than others except on the PA index. Especially on CEO,
Membership and Southernwomen, significant improvements have been achieved. Also, it
can be seen that the results of CF-Mix always has better performance than CF, which reflects
the effect of high-order structures in link prediction. In Figure 2, the Receiver Operating
Characteristic (ROC) curves for different datasets are given to show the comparison on the
studied indexes.
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Table 2. Link prediction accuracy of compared similarity indexes estimated by AUC. Each result is
the average on 100 such experiments.

AUC PA N2V CF CF-Mix

CEO 0.59 0.571 0.733 0.763
Divorce 0.772 0.662 0.789 0.804

Leadership 0.633 0.735 0.842 0.853
Membership 0.604 0.59 0.728 0.773

Southernwomen 0.584 0.693 0.76 0.795
MovieLens 0.906 0.773 0.893 0.902
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Figure 2. The ROC curves of index PA, N2V, CF and CF-Mix. The vertical axis shows TPR (true
positive rate) and the horizontal axis represents FPR (false positive rate). Each result is the average
on 100 such experiments.

In addition, a top-L precision LT/L is also considered, which is defined as the right
predicted LT edges in the top L edges (L = 20 in all the experiments) with highest score
by the indexes studied. In Tables 3 and 4, the top-L precision and corresponding recall
values are calculated to show the efficiency of the CF-Mix index. It can be seen that CF-Mix
outperforms the others except on the MovieLens dataset, but the performance of CF-Mix
always works no worse than the CF. In Figure 3, the dynamic changes of the cumulated
right-predicted edge number LT with different values of L on all the datasets are provided
to show the evolution of the top-L precision for different indexes.
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Table 3. Link prediction accuracy of compared indexes estimated by precision. Each result is the
average on 100 such experiments.

Precision PA N2V CF CF-Mix

CEO 0.11 0.04 0.135 0.165
Divorce 0.275 0.24 0.345 0.39

Leadership 0.105 0.075 0.215 0.215
Membership 0.13 0.05 0.14 0.19

Southernwomen 0.11 0.085 0.18 0.215
MovieLens 0.75 0 0.65 0.65

Table 4. Link prediction accuracy of compared indexes estimated by recall. Each result is the average
on 100 such experiments.

Recall PA N2V CF CF-Mix

CEO 0.244 0.089 0.3 0.367
Divorce 0.25 0.218 0.314 0.355

Leadership 0.233 0.167 0.478 0.478
Membership 0.289 0.111 0.311 0.422

Southernwomen 0.275 0.212 0.45 0.538
MovieLens 0.001 0 0.001 0.001
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Figure 3. The results of prediction by the PA, N2V, CF and CF-Mix indexes. The vertical coordinate
is the cumulative number of predicted edges LT , the horizontal coordinate is L. Each result is the
average on 100 such experiments.
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Based on the above results, the efficiency of the CF-Mix index can be obtained due to
higher order structures. While most of the recommendation rules take advantage of local
information, especially common neighbor information, to predict potential connections,
proper selection of valuable structures and deep excavation on some key motifs structures
can promote the efficiency of link prediction algorithms. Certainly, different order struc-
tures may have different influences on the link prediction accuracy and the parameter λ
has a function to regulate the contribution of different structures (three motifs and four
motifs in this paper), which is shown in Figure 4. From the results, it can be seen that
the best AUC values on different networks are achieved with λ > 1 except the Leadership,
which reflects that the four motifs have a relative larger contribution than three motifs to
describe the local structure information.

In general, our proposed index CF-Mix outperforms other indexes in most cases.
In terms of AUC, CF-Mix has the largest value compared to others on all those six datasets
except Movielens. Even on Movielens, there is only a tiny gap between CF-Mix and the
best-performing index PA. The same situation also occurs in terms of prediction precision,
in which case our index CF-Mix achieves the best performance on most datasets. Finally,
with regard to recall, CF-Mix is always the best performing index. In a word, the above
results indicate that our proposed index has excellent predictive effect.
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Figure 4. The variation of the AUC values by the mixed parameter λ for the CF-Mix indexes. Each
result is the average on 100 such experiments.

5. Conclusions and Discussions

The link prediction problem on bipartite graphs is a widely researched topic in graph
learning, and most of the recommendation rules focus on the local structures or user/item
based similarity. In this paper, a motif-based similarity for items is proposed based on
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some typical four motif structures, which sufficiently uses the relations of the targeted user
and item, and a CF-Mix index based on the classical CF index, but considering both three
motifs and four motifs is provided for potential edge prediction. Experiments on some
real-world datasets show the efficiency of our proposed method, and the contribution of
four motifs on different networks is also discussed by optimizing the mixed parameter λ.

As a generalization, other higher order structures such as five motifs or six motifs
can also be used to optimize the definition of the CF-Mix index, but corresponding higher
computational complexity will arise, which will create a large obstacle for large-scale
networks. Higher order motifs may lead to a sharp increasing of the motif number,
and the effective way to detect key motifs in local structures (e.g., random walk) will
be an interesting direction for link prediction investigation, which will be studied in
our future work.Also, the similarity measurement and link prediction problem based on
graph structure can provide an alternative research tool for synchronization and control of
complex networks, especially those with a bipartite structure. The similarity measurement
proposed in this paper, which is based on high-order topology of bipartite graphs, can be
applied to the collaborative control and synchronization optimization of complex networks
by effectively combining neural network methods [31,32]. This is also an important and
meaningful research direction.

In terms of application, our proposed method also has huge potential. Up to now, link
prediction methods have been successfully applied to many fields. For instance, Kagan et al.
utilized link prediction algorithms to detect fake profiles in social networks [33]. Mean-
while, Berlusconi et al. [34] and Calderoni et al. [35] applied this technique to criminology
studies, which is a very practical and meaningful scenario. On the other hand, Barbieri et al.
presented a link prediction-based method to make user recommendations on Twitter and
Flickr [36],while Pham et al. carried out link prediction experiments in the biomedical
domain to exploit potential protein interaction [37]. In view of the great success of our
proposed method on test datasets, we have begun to consider how to apply it in practice,
which is also an open topic for researchers to study.
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