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Abstract: This paper examines the hybrid nanoparticles and the magnetic field impacts on the mixed
convection boundary layer flow and heat transfer caused by an inclined shrinking–stretching surface
in a hybrid nanofluid. Silver (Ag) is added into a MgO–water nanofluid to form Ag-MgO–water
hybrid nanofluid. By making use of proper similarity transformations, the governing equations are
transformed to ordinary differential equations. The problem is numerically solved with the help of
the MATLAB function bvp4c. The influences of the chosen parameters on the temperature, velocity,
heat transfer rate and the skin friction coefficient are addressed and graphically illustrated. The
results show that increasing the magnetic parameter substantially improves the heat transfer rate
and increases the skin friction coefficient. The findings also suggest that increasing the nanoparticle
volume fraction ϕ2 (Ag) improves the skin friction coefficient while decreasing the heat transfer rate.
For both stretching and shrinking instances, non-unique (dual) solutions are discovered. Only the
first solution is stable, according to the temporal stability analysis of the dual solutions.

Keywords: stretching–shrinking; hybrid nanofluid; stability analysis; MHD; dual solutions; mixed
convection

1. Introduction

Heat transfer enhancement has gained much attention in current years, caused by its
numerous uses in engineering and industries. In most applications, heat transfer fluids
are utilized as cooling fluids, such as water, paraffin oil, diathermic oil, ethylene glycol,
naphthenic mineral oil, vegetable oil, etc. However, these common fluids have poor thermal
conductivity, which minimizes the amount of heat transferred. Thus, an innovative method
of improving heat transfer in fluids is by adding nanosized particles in the base fluid to
create a nanofluid mixture. It was presented by Choi and Eastman [1]. Nanofluids possess
a significantly higher thermal conductivity than regular fluids. Therefore, nanofluids are
widely used for a wide range of applications, such as nuclear reactor cooling, cooling of
vehicles and machinery, electronic device cooling, biomedicine, etc. [2]. Consequently,
many researchers have investigated the behaviors and properties of nanofluids for different
aspects, numerically and experimentally. For example, Tiwari and Das [3] have proposed
mathematical models of nanofluids that study the nanofluids’ behavior, considering the
solid volume fractions of nanoparticles’ effects. The governing equations were numerically
solved by the finite volume method (FEM). Several researchers have used the Tiwari–Das
nanofluid model extensively; see [4–15].

The study of magnetohydrodynamics (MHD) flow is fundamental in the industry
and has applications in a variety of fields, including petroleum products and metallurgical
operations [16]. The rate of cooling in these processes has a huge impact on the finished
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product’s qualities, which can be regulated using a magnetic field and electrically conduc-
tive fluids. Various studies looked at the impact of applying a magnetic field on a nanofluid.
The stretching surface and convective stagnation point flow of an incompressible nanofluid
were used by Tian et al. [17] to study the magnetohydrodynamic flow numerically. The
entropy of the boundary layer flow was investigated by Rashid et al. [18] using nanofluid
generated by the shrinking porous surface. Moreover, Gopal et al. [19] revealed the effects
of electric and magnetic force with viscosity dissipation on nanofluids of higher-order
chemical processing over a continuously stretching porous wall. Furthermore, mixed
convection flow (forced and free convection flow) has numerous engineering applications,
for example, electrical engineering and chemical engineering, to name a few. As a result,
numerous experts have looked into the mixed convection flow of nanofluids. The flow
of a mixed convection nanofluid boundary layer toward a shrinking–stretching sheet at a
stagnation point has been analyzed by Othman et al. [20]. The impact of physical variables
on nanofluids’ flow, mass transfer, and heat transfer has been studied. Moreover, Ziaei-Rad
et al. [21] reviewed the study of the mixed convection boundary layer nanofluid flow past a
permeable inclined surface problem. In contrast, the numerical simulation of heat transfer
and mixed convection nanofluid flow in a trapezoidal channel in a porous medium was
carried out by El-shorbagy et al. [22]. Besides, in nanofluids, several researchers examined
the MHD mixed convection flow past a stretching sheet. Over a stretching permeable sheet,
Chamkha et al. [23] illustrated the MHD mixed convection nanofluid flow. The impact of
viscous dissipation and a changing magnetic field on entropy production in MHD mixed
convection nanofluid flow via a non-linear stretching surface were numerically explored by
Matin et al. [24]. Besides, Ibrahim et al. [25] examined the impacts of viscous dissipation,
thermal radiation, chemical reaction, suction, and heat generation of the MHD mixed
convection boundary layer nanofluid flow with a stretching permeable sheet. Additionally,
Vasanthakumari and Pondy [26] addressed the MHD mixed convection flow of a nanofluid
across the inclined stretching sheet, having internal heat generation taken into account.
Moreover, Gupta et al. [27] analyzed the joined impacts of the chemical reaction, magnetic
field, and thermal radiation on the mixed convection incompressible nanofluid flow and
heat transfer toward a stagnation point across an inclined stretching sheet.

In recent years, scientists and researchers are still looking for a better fluid to re-
place nanofluid and obtain a highly efficient heat transfer fluid. Their efforts led to the
term: hybrid nanofluid. Hybrid nanofluids are an extension of nanofluids that contain
two distinct types of nanoparticles mixed together in a base fluid. Hybrid nanofluids
can enhance thermal characteristics better than regular nanofluids. The comparison be-
tween hybrid and traditional nanofluid in terms of the heat transfer characteristics was
made by Devi and Devi [28]. They discovered that the hybrid nanofluid’s heat transfer
rate is greater than the traditional nanofluid, even in the occurrence of a magnetic field.
Furthermore, because of the benefits of hybrid nanofluids, researchers are eager to work
toward hybrid nanofluids as heat transfer fluid. For instance, this includes the influence of
Cu-AI2O3–water hybrid nanofluid flow and heat transfer along a permeable moving sheet
were described by Waini et al. [29]. According to the findings, in comparison to nanofluids
containing single type of nanoparticles, hybrid nanofluids improve heat transfer properties.
At present, many researchers are interested in the presence of dual solutions for the mixed
convection flow. Zainal et al. [30] studied the MHD mixed convection flow across a vertical
flat plate in a hybrid nanofluid with convective boundary conditions. They discovered
dual solutions in both assisting and opposing flow regions. Waini et al. [31] analyzed the
steady flow of mixed convection hybrid nanofluids over a vertical surface in a porous
medium. Several dual solutions were found within a specific set of buoyancy parameters.
Furthermore, the usage of hybrid nanoparticles causes the boundary layer to separate more
slowly. Rostami et al. [32] evaluated the steady laminar MHD-mixed convection stagnation
point flow over a vertical permeable flat plate in a hybrid nanofluid. Within a specific
range of the buoyancy parameter, dual solutions have been reported, and the stability
of these solutions has been determined. Jamaludin et al. [33] examined the MHD mixed
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convection stagnation point flow and heat transfer in Cu-AI2O3–water hybrid nanofluid
above a permeable shrinking–stretching surface. Thus, a full report on the behavior of both
lower and higher branch solutions was presented. The dual solutions were determined by
Khashi’ie et al. [34] when they used hybrid nanofluids to study the mixed convection flow
via a vertical plate embedded in a porous medium.

A numerical study of a hybrid nanofluid flow problem over a stretching–shrinking
sheet has grabbed scientists’ and researchers’ intension in recent years. In a hybrid
nanofluid, Waini et al. [35] carried out a numerical analysis of the unsteady flow and
heat transfer toward a shrinking–stretching surface. They concluded that the velocity for
Cu-AI2O3–water hybrid nanofluid increases with the increase in the suction parameter.
They also discovered that the use of the hybrid nanofluid under the influence of the suction
force could cause a further decrease in the temperature. Khashi’ie et al. [36] numerically in-
vestigated the impact of the convective condition and velocity slip on the three-dimensional
hybrid nanofluids flow past a stretching–shrinking surface. They discovered that the in-
crease in Biot and slip parameters can improve the heat transfer rates, but increasing the
copper solid volume fraction has the opposite effect. In addition, using an Ag-MgO–water
hybrid nanofluid, a numerical examination of the influence of boundary layer flow and
heat transfer past an inclined permeable stretching–shrinking surface was carried out by
Anuar et al. [37]. They found that when the angle of inclination and suction parameters
increase, the local Nusselt number rises. The findings also show that raising the volume
fraction of Ag nanoparticles in MgO–water nanofluid reduces the local Nusselt number.
Furthermore, the hybrid nanofluid flow problem past a stretching–shrinking sheet was
revealed numerically by Roşca and Pop [38], Anuar et al. [39], Wahid et al. [40] and Waini
et al. [41], taking into account the various physical parameters.

Motivated by the above literature, the flat plate has been used in several research
articles in two different positions; horizontal and vertical. Conversely, the inclined flat plate
has received less interest. Nevertheless, there has never been a study of MHD mixed con-
vection on an inclined stretching–shrinking sheet employing a hybrid nanofluid. As a result
of the knowledge gap mentioned above, the current study attempts to enhance the work of
Anuar et al. [37]. It can be performed by examining the MHD mixed convection flow of a
hybrid nanofluid over an inclined permeable stretching–shrinking surface with suction
force effects. The present model considers the solid volume fractions of nanoparticles while
examining hybrid nanofluid behavior. The base fluid contains two distinct nanoparticles
(Ag and MgO). Utilizing the similarity transformation approach, the governing equations
with boundary conditions are transformed into a system of ordinary differential equations.
The equations system is then solved using the MATLAB boundary value problem solver
(bvp4c). In tabular and graphical representations, the impacts of many physical factors on
heat transfer and flow characteristics are presented and explained. The stability analysis is
carried out once the dual solutions for both stretching and shrinking instances are found.
Furthermore, the difference has been presented with the previously published data to
validate the obtained numerical results.

2. Formulation of the Problem

The mixed convection of magnetohydrodynamic flow of a hybrid nanofluid induced
by an inclined permeable stretching–shrinking surface with an angle of inclination α as
displayed in Figure 1 is considered, where x- and y-axes are the dimensional Cartesian
coordinates. Here, the x-axis extends along the plate while the y-axis normal to it. We
assume that the velocity of the stretching–shrinking surface is uw(x) = ax, where a is
a positive constant. Additionally, the surface temperature of the sheet is considered as
Tw(x) = T∞ + bx, where b is a constant and the constant ambient temperature is signified
as T∞. In addition, vw(x) denotes the mass flux velocity. A uniform magnetic field B0 is
applied normal to the plate. Meanwhile, the size of nanoparticles in the hybrid nanofluid is
assumed to be uniform, and the agglomeration effect is neglected since the hybrid nanofluid
is formed as a stable compound. Under the presumptions outlined above, the governing
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boundary layer equations of the hybrid nanofluid by employing the usual approximations
of the boundary layer for the continuity, momentum and energy equations can be written
as (see Devi and Devi [28], Afridi et al. [42] and Anuar et al. [37]):

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 +

(ρβ)hn f

ρhn f
g(T − T∞) cos α−

σhn f B2
0u

ρhn f
(2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρcp
)

hn f

∂2T
∂y2 , (3)

subject to the boundary conditions [37]:

v = vw, u = uwε, T = Tw(x) at y = 0
u→ 0, T → T∞ as y→ ∞,

(4)

where u and v are the hybrid nanofluid velocity components along x and y directions.
Here, T signifies the temperature of the hybrid nanofluid, α denotes the inclination angle,
B0 symbolizes the uniform magnetic field, g implies the acceleration due to gravity and ε
represents the parameter of the stretching–shrinking sheet with ε < 0 and ε > 0 are for the
shrinking and stretching sheets, respectively, while ε = 0 for the static surface. Meanwhile,
µhn f , ρhn f , khn f , σhn f , (ρβ)hn f , and

(
ρCp

)
hn f are the dynamic viscosity, density, thermal

conductivity, electrical conductivity, thermal expansion coefficient and heat capacity of the
Ag-MgO–water hybrid nanofluid, respectively, which have the following definitions (see
Devi and Devi [28]):

µhn f =
µ f

(1−ϕ1)
2.5(1−ϕ2)

2.5 , ρhn f = (1− ϕ2)
[
(1− ϕ1)ρ f + ϕ1ρ1

]
+ ϕ2ρ2,(

ρcp
)

hn f = ϕ2
(
ρcp
)

2 + (1− ϕ2)
[
(1− ϕ1)

(
ρcp
)

f + ϕ1
(
ρcp
)

1

]
,

(ρβ)hn f = ϕ2(ρβ)2 + (1− ϕ2)
[
(1− ϕ1)(ρβ) f + ϕ1(ρβ)1

]
,

khn f
kb f

=
k2+2kb f−2ϕ2(kb f−k2)
k2+2kb f +ϕ2(kb f−k2)

where
kb f
k f

=
k1+2kb f−2ϕ1(k f−k1)
k1+2k f +ϕ1(k f−k1)

σhn f
σf

=
σ2+2σb f−2ϕ2(σb f−σ2)
σ2+2σb f +ϕ2(σb f−σ2)

where
σb f
σf

=
σ1+2σf−2ϕ1(σf−σ1)
σ1+2σf +ϕ1(σf−σ1)

(5)

where the subscripts 1 and 2 represent MgO solid fraction and Ag solid fraction, while the
subscripts hn f and f symbolize hybrid nanofluid and fluid, respectively. Furthermore, ϕ1
and ϕ2 indicate the volume fractions of MgO and Ag nanoparticles, respectively, where
ϕ1 = ϕ2 = 0 signifies the regular fluid. The required hybrid nanofluid is formed by
adding Ag nanoparticles into MgO–water. The thermophysical properties of silver (Ag),
magnesium oxide (MgO) and water (H2O) are provided in Table 1, as reported by Abu-
Libdeh et al. [43], Khan et al. [44] and Ghalambaz et al. [45]. As stated in [45], the thermal
conductivity of the hybrid nanofluid is evaluated through curve fitting of the experimental
data of Esfe et al. [46].

Table 1. The physical thermal characteristics of nanoparticles and water.

Physical Properties MgO Water Ag

ρ
(

kg m−3
)

3580 997.1 10,500

cp

(
J kg−1 K−1

)
879 4179 235

k
(

W m−1 K−1
)

30 0.613 429

β
(

K−1
)

33.6× 10−6 21× 10−5 5.4× 10−5

σ(s/m) 8× 10−4 5.5× 10−6 8.1× 10−4
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Figure 1. The schematic problem flow. 
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Figure 1. The schematic problem flow.

Following Anuar et al. [37], to obtain the similarity solutions for the Equations (1)–(4),
the appropriate similarity transformations are employed as follows:

ψ =
√

aν f x f (η), η =

√
a

ν f
y, θ(η) =

T − T∞

Tw(x)− T∞
(6)

where f signifies as dimensionless velocity, θ symbolizes the dimensionless temperature, η
and ν f are the similarity variable and the kinematic viscosity, respectively. Meanwhile, ψ is

the stream function and the components of velocity are defined as u = ∂ψ
∂y and v = − ∂ψ

∂x .
Utilizing these definitions, the continuity Equation (1) is fully satisfied, and the velocities
are expressed as:

u = ax f ′(η), v = −√aν f f (η), (7)

such that:
νw = −√aν f s (8)

Here, s indicates the constant mass flux parameter where s < 0 for injection and s > 0
for suction.

Substituting the similarity variables (6) into governing Equations (2) and (3), one
obtains the following similarity equations:

µhn f /µ f

ρhn f /ρ f
f ′′′ − f ′2 + f f ′′ +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λθ cos α−

σhn f /σf

ρhn f /ρ f
M f ′ = 0, (9)

1
Pr

khn f /k f(
ρcp
)

hn f /
(
ρcp
)

f
θ′′ + f θ′ − f ′θ = 0. (10)

The boundary conditions (4) are converted to:

f ′(0) = ε, f (0) = s, θ(0) = 1.
f ′(η)→ 0, θ(η)→ 0 as η → ∞

(11)

Note that λ = Gr/Re2
x is the mixed convection parameter or the buoyancy parameter,

where Gr = gβ f (Tw(x)− T∞)x3/ν2
f is the Grashof number and Rex = uw(x)x/ν f repre-

sents the local Reynold number. Furthermore, λ < 0 demonstrates the opposing buoyancy
force while λ > 0 signifies the assisting buoyancy force. Moreover, M = σf B2

0/aρ f and
Pr = ν f /α f are the magnetic parameter and the Prandtl number, respectively.

Next, the local Nusselt number (Nux) and the skin friction coefficient
(

c f

)
are the

parameters of physical interest, which can be defined as follows:

Nux = −
xkhn f

k f (Tw − T∞)

(
∂T
∂y

)
y=0

, C f =
µhn f

ρ f u2
w

(
∂u
∂y

)
y=0

. (12)
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By substituting (6) into Equation (12), one obtains:

Re1/2
x C f =

µhn f

µ f
f ′′ (0), Re−1/2

x Nux = −
khn f

k f
θ′(0) (13)

3. Stability Analysis

The numerical results reveal that there are non-uniqueness solutions from the bound-
ary value problem (9)–(11) for a specific value of the physical parameters. As a result, a
stability analysis, as shown in Merkin [47] as well as Weidman et al. [48], is used to identify
the most trustworthy and stable solution and thus physically reliable. We have,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 +

(ρβ)hn f

ρhn f
g(T − T∞) cos α−

σhn f B2
0u

ρhn f
(14)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρcp
)

hn f

∂2T
∂y2 (15)

thus, the new dimensionless time variable τ is considered. By using variables in (6), the
new similarity variables are introduced as:

ψ =
√

aν f x f (η, τ), η =

√
a

ν f
y, θ(η, τ) =

T − T∞

Tw(x)− T∞
, τ = at (16)

Applying Equation (16) into Equations (14) and (15), the following system of equations
are attained:

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 −

(
∂ f
∂η

)2
+ f

∂2 f
∂η2 +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λθ cos α−

σhn f /σf

ρhn f /ρ f
M

∂ f
∂η
− ∂2 f

∂η∂τ
= 0 (17)

1
Pr

khn f /k f(
ρcp
)

hn f /
(
ρcp
)

f

∂2θ

∂η2 + f
∂θ

∂η
− ∂ f

∂η
θ − ∂θ

∂τ
= 0 (18)

With the following initial and boundary conditions:

∂ f
∂η (0, τ) = ε, f (0, τ) = s, θ(0, τ) = 1,

∂ f
∂η (η, τ)→ 0, θ(η, τ)→ 0, as η → ∞

(19)

Following Weidman et al. [48], to examine the stability of the dual solutions f (η) = f0(η)
and θ(η) = θ0(η), we write:

θ(η, τ) = θ0(η) + e−γτG(η, τ), f (η, τ) = f0(η) + e−γτ F(η, τ), (20)

by which γ is an unknown eigenvalue parameter, while functions F(η) and G(η) are small
relative to f0(η) and θ0(η), respectively. Thus, by substituting Equation (20) into (17)
and (18) along with the conditions (19), and by taking τ = 0, we can express the linear
eigenvalue problem as follows:

µhn f /µ f

ρhn f /ρ f
F′′′0 + f0F′′0 + F0 f ′′0 +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λG0 cos α−

(
2 f ′0 − γ +

σhn f /σf

ρhn f /ρ f
M

)
F′0 = 0 (21)

1
Pr

khn f /k f(
ρcp
)

hn f /
(
ρcp
)

f
G′′0 + f0G′0 + F0θ′0 − f ′0G0 − F′0θ0 + γG0 = 0 (22)

Subject to the linearized conditions:

F′0(0) = 0, F0(0) = 0, G0(0) = 0,
F′0(η)→ 0, G0(η)→ 0 as η → ∞

(23)
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Following Harris et al. [49], resting the boundary condition on F0(η) leads to the
determination of the smallest eigenvalues γ. In the current work, the condition F′0(η)→ 0
as η → ∞ is relaxed, which is replaced by the new boundary condition F′′0 (0) = 1.

4. Numerical Method

The governing Equations (9) and (10) subject to the boundary restrictions (11) are
solved numerically by the aid of the bvp4c function in MATLAB software. The bvp4c
solver is explained in detail by Shampine et al. [50]. This solver uses the finite difference
method that implements the three stages of the Lobatto IIIa formula. The syntax of the
solver is defined by “sol=bvp4c (@OdeBVP, @OdeBC, solinit, options)”. To start the bvp4c
routine, we need to convert Equations (9) and (10) into a system of first-order ordinary
differential equations and rewrite them as follows:

f = y(1), f ′ = y(2), f ′′ = y(3), θ = y(4), θ′ = y(5)

f ′′′ =
ρhn f /ρ f
µhn f /µ f

(
y(2)y(2)− y(1)y(3)−

(ρβ)hn f /(ρβ) f
ρhn f /ρ f

λy(4) cos α +
σhn f /σf
ρhn f /ρ f

My(2)
)

(24)

θ′′ = Pr

(
ρcp
)

hn f /
(
ρcp
)

f

khn f /k f
(y(2)y(4)− y(1)y(5)). (25)

The initial and boundary conditions (11) become:

ya(1)− s, ya(2)− ε, ya(4)− 1, yb(2), θb(4) (26)

The dual solutions are explored using two different initial guesses for the values of
−θ′(0) and f ′′ (0). The appropriate initial guess and thickness of the boundary layer, η∞
must be chosen relying on the parameters applied, to obtain the required results. To validate
the current numerical procedure, the values of f ′′ (0) are compared to cases that have been
reported in Roşca and Pop [51] and Anuar et al. [37] for regular fluid (ϕ1 = ϕ2 = 0) with
various values of ε and s when λ = 0, M = 0 and α = 90◦ as elucidated in Table 2, which
shows a favorable agreement. Additionally, Table 3 compares the values of −θ′(0) for
regular fluid (ϕ1 = ϕ2 = 0) for various values of λ when ε = 1, s = 0, M = 0, α = 0◦ and
Pr = 1 with those reported in Roşca and Pop [51] and Anuar et al. [37]. As a result, these
tables indicate that the current results are valid and reliable. Thus, we can conclude that
the developed algorithm for studying numerically the hybrid nanofluids flow can be used
with great confidence.

Table 2. Comparison of f ′′ (0) when (ϕ1 = ϕ2 = 0 ) with diverse values of ε and s when λ = 0, M = 0
and α = 90◦.

ε s Present Result Anuar et al. [37] Roşca and Pop [51]

1 2.0 −2.414214 −2.414214 −2.4142
2.5 −2.850781 −2.850781 −2.8507
3.0 −3.302776 −3.302776 −3.3027
3.5 −3.765564

−1 2.0 1.010530 1.010532 1.0106
2.5 2.000000 2.000000 2.0000
3.0 2.618034 2.618034 2.6180
3.5 3.186141
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Table 3. Comparison of −θ′(0) when (ϕ1 = ϕ2 = 0) with diverse values of λ when ε = 1, s = 0,
M = 0, α = 0◦ and Pr = 1.

λ Present Result Anuar et al. [37] Roşca and Pop [51]

0 1.000008 1.000008 1.0000
1 1.087275 1.087275 1.0872
5 1.252700
10 1.371564 1.371564 1.3715

5. Results

The present work aims to investigate the influence of governing parameters such as
suction parameter, s, nanoparticle volume fraction parameter, ϕ1, ϕ2, mixed convection
parameter, λ, stretching–shrinking parameter, ε, magnetic parameter, M, and inclination
angle parameter, α, on the reduced skin friction f ”(0) and the reduced Nusselt number
−θ′(0) which are presented in Figures 2 and 3 as well as the dimensionless velocity f ′(η)
and temperature θ(η) which are displayed in Figures 4 and 5. From these figures, it can be
seen that two solutions exist for Equations (9)–(11) in the range of ε < εC for both inclined
permeable stretching and shrinking sheet, a unique solution found when ε = εC and no
solution is obtained when ε < εC, where εc signifies the critical value of ε which the dual
solutions are joined.
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Figure 5. Velocity profiles f ′(η) and temperature profiles θ(η) for various values of ϕ2.

For more details, Figure 2 displays the effect of M on the reduced skin friction f ”(0)
and the reduced Nusselt number−θ′(0) against ε when Pr = 6.2, ϕ1 = ϕ2 = 0.1, α = π/4,
λ = −1.5 and s = 2.5. It can be seen that the rise of M augments both f ′′ (0) and −θ′(0)
because of the reverse force known as the Lorentz force. As a result of the resistance to the
motion of the fluid particles, this force appears to reduce fluid velocity. The synchronization
of the magnetic and electric fields resulting from the creation of the Lorentz force appears
to slow down the fluid movement. The boundary layer is becoming increasingly thin (see
Figure 4a) as M upsurges due to the postponed flow, thus increasing of f ′′ (0) and −θ′(0).
From these figures, the behavior of the critical value of the stretching–shrinking parameter
ε is going down with the incrementing of M. The critical values of ε for M = 0, 0.05, 0.1 are
εc = −1.92974,−2.01633 and −2.10275, respectively.

The variations of the reduced skin friction coefficient f ′′ (0) and the reduced Nusselt
number −θ′(0) with some rates of ε together with three varying values of solid volume
fraction ϕ2 = 0.01, 0.05, 0, 1, are illustrated in Figure 3 where Pr = 6.2, ϕ1 = 0.1, α = π/4,
M = 0.1, λ = −1.5 and s = 2.5. Figure 3a highlights that the value of f ′′ (0) is increasing
for the second solution; however, dual behaviors are found for the first solution of f ′′ (0),
where these values are decrementing at the shrinking region (ε < 0) but increasing at the
stretching region (ε > 0) when the value of ϕ2 boosts, because of the increase in the volume
fraction of nanoparticles raises the viscosity of the fluid. Hence, this helped to recover
the coefficient of the skin friction along the surface. Moreover, Figure 3b conveys that the
reduced Nusselt number (heat transfer rate) is reduced as the nanoparticle volume fraction
augments for both inclined stretching and shrinking surfaces. Meanwhile, the values
of f ′′ (0) appear to increase with the decrease of ε, but for −θ′(0), the opposite trend is
observed. The critical values of ε are observed for solid volume fraction ϕ2 = 0.01, 0.05, 0, 1
where εc = −2.42401,−2.28061 and −2.10275, respectively.
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The profiles of f ′(η) and θ(η) for certain physical parameters are presented in
Figures 4 and 5. From these figures, it is noticeable that there are dual solutions for
the velocity profiles f ′(η) and the temperature profiles θ(η), which asymptotically satisfy
the conditions (11), indicating that the current numerical findings are valid. The distribu-
tion of velocity profiles f ′(η) and the temperature profiles θ(η) for numerous values of the
magnetic parameter M when λ = −1.5, ϕ1 = ϕ2 = 0.1, α = π/4, ε = −1.25 and s = 2.5
are presented in Figure 4. As seen in Figure 4a, the velocity f ′(η) appears to increase with
the increase of M for the first solution. Furthermore, a different direction is observed for the
second solution. Meanwhile, Figure 4b exposes that the rise in M causes a decrease in the
temperature for the first solution, whereas an increment activity is preserved in the second
solution. The Lorentz force is a resistive force that resists the fluid movement, resulting in
decreasing manner of the velocity and the temperature for the first solutions, as shown in
Figure 4. As a result, the velocity gradient as well as the temperature gradient at the surface
increases, which in turn increases the skin friction coefficient and the Nusselt number.
These findings are in agreement with the outcomes presented in Figure 2. Conversely, the
second solutions show a different behavior, which is related to the stability of the solution
that will be explained later.

Figure 5 shows the solid volume fraction ϕ2 effect toward the velocity profiles f ′(η)
and the temperature profiles θ(η) when λ = −1.5, ϕ1 = 0.1, α = π/4, ε = −1.25, M = 0.1
and s = 2.5. As depicted in Figure 5a, the velocity increases in absolute sense for the
first solution. This outcome demonstrates that the momentum boundary layer thickness
increases in response to the increase of ϕ2, thus reducing the magnitude of the velocity
gradient at the surface. This finding is due to the opposing flow caused by the buoyancy
force (represented by λ = −1.5). However, Figure 5b shows that the rise in ϕ2 significantly
raises the temperature θ(η) for both solutions. The magnification of the nanoparticle
volume fraction ϕ2 enhances the thermal conductivity of hybrid nanofluid, thus raising
the temperature, which in turn reduces the magnitude of the temperature gradient at the
surface, |θ′(0)|. Thus, the Nusselt number, which represents the heat transfer rate at the
surface decreases as ϕ2 increases. This finding is consistent with the results presented in
Figure 3b.

The present mathematical model can be applied to predict the results of experiment
works. Moreover, the present study also investigates the stability of the solutions in the
long run. Figure 6 shows the variations of the eigenvalues γ against λ, while the other
parameters are fixed. Referring to Equation (20), the unsteady (time dependent) solution
converges to the steady (time independent) state solution as time evolves ( τ → ∞ ) if γ
is positive. In contrast, the solution diverges if γ < 0. The sign of γ determines either
decay or growth of the disturbance, which then determines the flow stability as time
passes. It is evident from Figure 6 that γ is positive for the first solution, while it is
negative for the second solution. Therefore, the first solution is stable and thus physically
reliable as τ → ∞ , while the second solution is not. Spangenberg et al. [52] have reported
in their experimental work on turbulent boundary layer under strong adverse pressure
gradient that dual solutions were obtained as a function of how the pressure gradient
was realized. Another example of non-unique flow was reported by Aidun et al. [53],
where they observed experimentally that the primary steady state flow in a through-flow
lid-driven cavity was non-unique and only one of the multiple steady-state patterns can
stabilize in the cavity. Although the second solutions are deprived of physical significance,
they are still of interest from mathematical point of view. These solutions are also solutions
to the differential equations, which satisfy the far field boundary conditions asymptotically.
Similar equations may arise in other situations, where the lower branch solutions could
have more realistic meaning [54].
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Figure 6. Plot of eigenvalue γ against λ for Pr = 6.2, S = 2.5, M = 0.1, ε = −1.5, α = π/4, ϕ1 = 0.1
and ϕ2 = 0.1.

6. Conclusions

The MHD mixed convection flow problem past an inclined permeable shrinking–
stretching surface in a hybrid Ag-MgO–water nanofluid was investigated. Similarity
transformations were utilized to help in obtaining the similarity equations. These equations
were solved numerically using the MATLAB program’s boundary value problem solver,
bvp4c. The significant findings are summarized as follows:

• Dual solutions are found for both stretching and shrinking scenarios (εc < ε < 1), while
the solutions came together at ε = εc. Furthermore, there are no solutions for ε < εc.

• The temporal stability analysis shows that only the first solution is stable over time.
• Deferred boundary layer separation occurs in the presence of nanoparticle volume

fraction as well as the magnetic parameter.
• The temperature and velocity increase by raising the nanoparticle volume fraction ϕ2

and magnetic parameter M.
• The skin friction coefficient as well as the heat transfer rate increases dramatically as

magnetic parameter M is raised.
• The augmentation of the nanoparticle volume fraction ϕ2 increases the skin friction

coefficient but slows down the heat transmission across the inclined shrinking surface.
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Nomenclature

a, b positive constants
B0 uniform magnetic field
C f skin friction coefficient

cP specific heat at constant pressure
(

J kg−1 K−1
)

f dimensionless velocity
g acceleration due to gravity
Gr Grashof number

k thermal conductivity of the fluid
(

Wm−1 K−1
)

M magnetic parameter
Nux local Nusselt number
Pr Prandtl number
Rex local Reynold number
S constant mass flux parameter
t time (s)
T fluid temperature (K)
Tw surface temperature (K)
T∞ ambient temperature (K)
u, v elements of velocity in x and y directions, respectively

(
ms−1)

uw velocity of the stretching–shrinking surface
(
ms−1)

vw mass flux velocity
(
ms−1)

x, y Cartesian coordinates (m)

Greek symbols

β thermal expansion coefficient
(

K−1
)

γ eigenvalue
ε parameter of stretching–shrinking sheet
η similarity variable
θ dimensionless temperature
λ mixed convection parameter

µ dynamic viscosity of the fluid
(

kg m−1 s−1
)

ν kinematic viscosity of the fluid
(
m2 s−1)

ρ Density of the fluid
(

kg m−3
)

(
ρcp
)

heat capacity of the fluid
(

J K−1 m−3
)

σ electrical conductivity of the fluid
(

S m−1
)

τ dimensionless time variable
ϕ1 nanoparticle volume fractions for MgO (magnesium oxide)
ϕ2 nanoparticle volume fractions for Ag (silver)
ψ stream function
Subscripts
f base fluid
n f nanofluid
hn f hybrid nanofluid
1 first nanoparticle (MgO)
2 second nanoparticle (Ag)
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