Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Citation: Sharma, M.; Nath, R.K.; Shang, Y. On g-Noncommuting Graph of a Finite Group Relative to Its Subgroups. Mathematics 2021, 9, 3147. https://doi.org/10.3390/ math9233147

Academic Editor: Adolfo Ballester-Bolinches

Received: 9 November 2021
Accepted: 3 December 2021
Published: 6 December 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. conditions of the Creative Commons

Figure 1. $\Delta_{H_{1}, A_{4}}^{b a b^{2}}$.

Figure 2. $\Delta_{H_{1}, A_{4}}^{b^{2} a b}$.

Figure 3. $\Delta_{H_{2}, A_{4}}^{a}$.

Figure 4. $\Delta_{H_{2}, A_{4}}^{b^{2} a b}$.

Figure 5. $\Delta_{H_{3}, A_{4}}^{a}$.

Figure 6. $\Delta_{H_{3}, A_{4}}^{b a b^{2}}$.

2. Vertex Degree and a Consequence

In this section, we first determine $\operatorname{deg}(x)$, the degree of a vertex x of the graph $\Delta_{H, G}^{g}$. After that, we determine whether $\Delta_{H, G}^{g}$ is a tree. Corresponding to Theorems 2.1 and 2.2 of [18], we have the following two results for $\Delta_{H, G}^{g}$.

Theorem 1. Let $x \in H \backslash Z(H, G)$ be any vertex in $\Delta_{H, G}^{g}$.
(a) If $g=1$, then $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|$.
(b) If $g \neq 1$ and $g^{2} \neq 1$, then

$$
\operatorname{deg}(x)= \begin{cases}|G|-|Z(H, G)|-\left|C_{G}(x)\right|-1, & \text { if } x \text { is conjugate to } \\ & x g \text { or } x g^{-1} \\ |G|-|Z(H, G)|-2\left|C_{G}(x)\right|-1, & \text { if } x \text { is conjugate to } \\ & x g \text { and } x g^{-1}\end{cases}
$$

(c) If $g \neq 1$ and $g^{2}=1$, then $\operatorname{deg}(x)=|G|-|Z(H, G)|-\left|C_{G}(x)\right|-1$, whenever x is conjugate to $x g$.

Proof. (a) Let $g=1$. Then, $\operatorname{deg}(x)$ is the number of $y \in G \backslash Z(H, G)$ such that $x y \neq y x$. Hence,

$$
\operatorname{deg}(x)=|G|-|Z(H, G)|-\left(\left|C_{G}(x)\right|-|Z(H, G)|\right)=|G|-\left|C_{G}(x)\right|
$$

Proceeding as the proof of (Theorem 2.1 (b), (c), [18]), parts (b) and (c) follow noting that the vertex set of $\Delta_{H, G}^{g}$ is $G \backslash Z(H, G)$.

Theorem 2. Let $x \in G \backslash H$ be any vertex in $\Delta_{H, G}^{g}$.
(a) If $g=1$, then $\operatorname{deg}(x)=|H|-\left|C_{H}(x)\right|$.
(b) If $g \neq 1$ and $g^{2} \neq 1$, then

$$
\operatorname{deg}(x)=\left\{\begin{aligned}
&|H|-|Z(H, G)|-\left|C_{H}(x)\right|, \text { if } x \text { is conjugate to } x g \text { or } \\
& x g^{-1} \text { for some element in } H \\
&|H|-|Z(H, G)|-2\left|C_{H}(x)\right|, \text { if } x \text { is conjugate to } x g \text { and } \\
& x g^{-1} \text { for some element in } H .
\end{aligned}\right.
$$

(c) If $g \neq 1$ and $g^{2}=1$, then $\operatorname{deg}(x)=|H|-|Z(H, G)|-\left|C_{H}(x)\right|$, whenever x is conjugate to $x g$, for some element in H.

Proof. (a) Let $g=1$. Then, $\operatorname{deg}(x)$ is the number of $y \in H \backslash Z(H, G)$ such that $x y \neq y x$. Hence,

$$
\operatorname{deg}(x)=|H|-|Z(H, G)|-\left(\left|C_{H}(x)\right|-|Z(H, G)|\right)=|H|-\left|C_{H}(x)\right|
$$

Proceeding as the proof of (Theorem 2.2 (b), (c), [18]), parts (b) and (c) follow noting that the vertex set of $\Delta_{H, G}^{g}$ is $G \backslash Z(H, G)$.

As a consequence of the above results, we have the following:
Theorem 3. If $|H| \neq 2,3,4,6$, then $\Delta_{H, G}^{g}$ is not a tree.
Proof. Suppose that $\Delta_{H, G}^{g}$ is a tree. Then, there exists a vertex $x \in G \backslash Z(H, G)$ such that $\operatorname{deg}(x)=1$. If $x \in H \backslash Z(H, G)$, then we have the following cases.
Case 1: If $g=1$, then by Theorem 1(a), we have $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|=1$. Therefore, $\left|C_{G}(x)\right|=1$, contradiction.
Case 2: If $g \neq 1$ and $g^{2}=1$, then by Theorem 1(c), we have $\operatorname{deg}(x)=|G|-|Z(H, G)|-$ $\left|C_{G}(x)\right|-1=1$. That is,

$$
\begin{equation*}
|G|-|Z(H, G)|-\left|C_{G}(x)\right|=2 \tag{1}
\end{equation*}
$$

Therefore, $|Z(H, G)|=1$ or 2 . Thus, (1) gives $|G|-\left|C_{G}(x)\right|=3$ or 4 . Therefore, $|G|=6$ or 8 . Since $|H| \neq 2,3,4,6$, we must have $G \cong D_{8}$ or Q_{8} and $H=G$ and hence, by (Theorem 2.5, [22]), we get a contradiction.
Case 3: If $g \neq 1$ and $g^{2} \neq 1$, then by Theorem $1(\mathrm{~b})$, we have $\operatorname{deg}(x)=|G|-|Z(H, G)|-$ $\left|C_{G}(x)\right|-1=1$, which will lead to (1) (and eventually to a contradiction) or $\operatorname{deg}(x)=$ $|G|-|Z(H, G)|-2\left|C_{G}(x)\right|-1=1$. That is,

$$
\begin{equation*}
\text { or }|G|-|Z(H, G)|-2\left|C_{G}(x)\right|=2 \tag{2}
\end{equation*}
$$

Therefore, $|Z(H, G)|=1$ or 2 . Thus, if $|Z(H, G)|=1$, then (2) gives $|G|=9$, which is a contradiction since G is non-abelian. Again, if $|Z(H, G)|=2$, then (2) gives $\left|C_{G}(x)\right|=2$ or 4. Therefore, $|G|=8$ or $|G|=12$. If $|G|=8$, then we get a contradiction as shown in Case 2 above. If $|G|=12$, then $G \cong D_{12}$ or Q_{12}, since $|Z(H, G)|=2$. In both of the cases, we must have $H=G$ and hence, by (Theorem 2.5, [22]), we get a contradiction.

Now, we assume that $x \in G \backslash H$ and consider the following cases.
Case 1: If $g=1$, then by Theorem 2(a), we have $\operatorname{deg}(x)=|H|-\left|C_{H}(x)\right|=1$. Therefore, $|H|=2$, a contradiction.
Case 2: If $g \neq 1$ and $g^{2}=1$, then by Theorem 2(c), we have $\operatorname{deg}(x)=|H|-|Z(H, G)|-$ $\left|C_{H}(x)\right|=1$. That is,

$$
\begin{equation*}
|H|-\left|C_{H}(x)\right|=2 \tag{3}
\end{equation*}
$$

Therefore, $|H|=3$ or 4 , a contradiction.
Case 3: If $g \neq 1$ and $g^{2} \neq 1$, then by Theorem 2(b), we have $\operatorname{deg}(x)=|H|-|Z(H, G)|-$ $\left|C_{H}(x)\right|=1$, which leads to (3) or $\operatorname{deg}(x)=|H|-|Z(H, G)|-2\left|C_{H}(x)\right|=1$. That is,

$$
\begin{equation*}
|H|-2\left|C_{H}(x)\right|=2 \tag{4}
\end{equation*}
$$

Therefore, $\left|C_{H}(x)\right|=1$ or 2 . Thus, if $\left|C_{H}(x)\right|=1$, then (4) gives $|H|=4$, a contradiction. If $\left|C_{H}(x)\right|=2$, then (4) gives $|H|=6$, a contradiction.

The following theorems also show that the conditions on $|H|$ as mentioned in Theorem 3 can not be removed completely.

Theorem 4. If G is a non-abelian group of order ≤ 12 and $g=1$, then $\Delta_{H, G}^{g}$ is a tree if and only if $G \cong D_{6}$ or D_{10} and $|H|=2$.

Proof. If H is the trivial subgroup of G, then $\Delta_{H, G}^{g}$ is an empty graph. If $H=G$, then, by (Theorem 2.5, [22]), we have $\Delta_{H, G}^{g}$ is not a tree. Thus, we examine only the proper subgroups of G, where $G \cong D_{6}, D_{8}, Q_{8}, D_{10}, D_{12}, Q_{12}$ or A_{4}. We consider the following cases:
Case 1: $G \cong D_{6}=\left\langle a, b: a^{3}=b^{2}=1\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$. If $|H|=2$, then $H=\langle x\rangle$, where $x=b, a b$ and $a^{2} b$. We have $[x, y] \neq 1$ for all $y \in G \backslash Z(H, G)$. Therefore, $\Delta_{H, D_{6}}^{g}$ is a star graph and hence a tree. If $|H|=3$, then $H=\left\{1, a, a^{2}\right\}$. In this case, the vertices $a, a b, a^{2}$ and b make a cycle since $[a b, a]=a^{2}=\left[a^{2}, a b\right]$ and $[a, b]=a=\left[b, a^{2}\right]$.
Case 2: $G \cong D_{8}=\left\langle a, b: a^{4}=b^{2}=1\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$. If $|H|=2$, then $H=Z\left(D_{8}\right)$ or $\left\langle a^{r} b\right\rangle$, where $r=1,2,3,4$. Clearly $\Delta_{H, D_{8}}^{g}$ is an empty graph if $H=Z\left(D_{8}\right)$. If $H=\left\langle a^{r} b\right\rangle$, then, in each case, a^{2} is an isolated vertex in $G \backslash H$ (since $\left[a^{2}, a^{r} b\right]=1$). Hence, $\Delta_{H, D_{8}}^{g}$ is disconnected. If $|H|=4$, then $H=\left\{1, a, a^{2}, a^{3}\right\},\left\{1, a^{2}, b, a^{2} b\right\}$ or $\left\{1, a^{2}, a b, a^{3} b\right\}$. If $H=\left\{1, a, a^{2}, a^{3}\right\}$, then, the vertices $a b, a, b$, and a^{3} make a cycle; if $H=\left\{1, a^{2}, b, a^{2} b\right\}$, then the vertices $a b, b, a^{3}$ and $a^{2} b$ make a cycle, and, if $H=\left\{1, a^{2}, a b, a^{3} b\right\}$, then the vertices $a b$, $a, a^{3} b$ and b make a cycle (since $[a, b]=\left[a^{3}, b\right]=\left[a^{3}, a b\right]=\left[a^{3}, a^{2} b\right]=[a b, a]=\left[a^{2} b, a b\right]=$ $\left.\left[a^{3} b, a\right]=[b, a b]=\left[b, a^{3} b\right]=a^{2} \neq 1\right)$.
Case 3: $G \cong Q_{8}=\left\langle a, b: a^{4}=1, b^{2}=a^{2}\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$. If $|H|=2$, then $H=Z\left(Q_{8}\right)$ and so $\Delta_{H, Q_{8}}^{g}$ is an empty graph. If $|H|=4$, then $H=\left\{1, a, a^{2}, a^{3}\right\}$, $\left\{1, a^{2}, b, a^{2} b\right\}$ and $\left\{1, a^{2}, a b, a^{3} b\right\}$. Again, if $H=\left\{1, a, a^{2}, a^{3}\right\}$, then the vertices a, b, a^{3} and $a b$ make a cycle; if $H=\left\{1, a^{2}, b, a^{2} b\right\}$, then the vertices $b, a^{3} b, a^{2} b$ and a^{3} make a cycle; and if $H=\left\{1, a^{2}, a b, a^{3} b\right\}$, then the vertices $a b, a, a^{3} b$ and $a^{2} b$ make a cycle (since $[a, b]=$ $\left.\left[b, a^{3}\right]=\left[a^{3}, a b\right]=[a b, a]=\left[b, a^{3} b\right]=\left[a^{3} b, a^{2} b\right]=\left[a^{2} b, a^{3}\right]=\left[a, a^{3} b\right]=\left[a^{2} b, a b\right]=a^{2} \neq 1\right)$.
Case 4: $G \cong D_{10}=\left\langle a, b: a^{5}=b^{2}=1\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$. If $|H|=2$, then $H=\left\langle a^{r} b\right\rangle$, for every integer r such that $1 \leq r \leq 5$. For each case of $H, \Delta_{H, D_{10}}^{g}$ is a star graph since $\left[a^{r} b, x\right] \neq g$ for all $x \in G \backslash H$. If $|H|=5$, then $H=\left\{1, a, a^{2}, a^{3}, a^{4}\right\}$. In this case, the vertices $a, a b, a^{3}$ and $a^{3} b$ make a cycle in $\Delta_{H, D_{10}}^{g}$ since $[a, a b]=a^{3} \neq 1,\left[a b, a^{3}\right]=a \neq 1$, $\left[a^{3}, a^{3} b\right]=a^{4} \neq 1$ and $\left[a^{3} b, a\right]=a^{2} \neq 1$.
Case 5: $G \cong D_{12}=\left\langle a, b: a^{6}=b^{2}=1\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$. If $|H|=2$, then $H=Z\left(D_{12}\right)$ or $\left\langle a^{r} b\right\rangle$, for every integer r such that $1 \leq r \leq 6$. If $|H|=3$, then $H=\left\{1, a^{2}, a^{4}\right\}$. If $|H|=4$, then $H=\left\{1, a^{3}, b, a^{3} b\right\},\left\{1, a^{3}, a b, a^{4} b\right\}$ or $\left\{1, a^{3}, a^{2} b, a^{5} b\right\}$. If $|H|=6$, then $H=$ $\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\},\left\{1, a^{2}, a^{4}, b, a^{2} b, a^{4} b\right\}$ or $\left\{1, a^{2}, a^{4}, a b, a^{3} b, a^{5} b\right\}$. Note that $\Delta_{H, D_{12}}^{g}$ is an empty graph if $H=Z\left(D_{12}\right)$. If $H=\left\langle a^{r} b\right\rangle$ (for $1 \leq r \leq 6$), $\left\{1, a^{2}, a^{4}\right\},\left\{1, a^{2}, a^{4}, b, a^{2} b, a^{4} b\right\}$ or $\left\{1, a^{2}, a^{4}, a b, a^{3} b, a^{5} b\right\}$, then, in each case, the vertex a^{3} is an isolated vertex in $G \backslash H$ (since $a^{3} \in Z\left(D_{12}\right)$) and hence $\Delta_{H, D_{12}}^{g}$ is disconnected. We have $[a, b]=\left[b, a^{5}\right]=[a, a b]=$ $\left[a^{4}, a^{4} b\right]=\left[a^{5} b, a^{2}\right]=\left[b, a^{2}\right]=\left[a^{2} b, a^{5}\right]=\left[a^{3} b, a^{2}\right]=\left[a^{3} b, a^{5}\right]=a^{4} \neq 1$ and $\left[a^{5}, a^{5} b\right]=$ $\left[a^{5} b, a\right]=\left[a b, a^{4}\right]=\left[a^{4} b, a\right]=\left[a^{2}, a^{2} b\right]=\left[a^{2} b, a\right]=a^{2} \neq 1$. Therefore, if $H=\left\{1, a^{3}, b, a^{3} b\right\}$, then the vertices $b, a^{2}, a^{3} b$ and a^{5} make a cycle; if $H=\left\{1, a^{3}, a b, a^{4} b\right\}$, then the vertices $a, a b$, a^{4} and $a^{4} b$ make a cycle; if $H=\left\{1, a^{3}, a^{2} b, a^{5} b\right\}$, then the vertices $a^{2}, a^{2} b, a^{5}$ and $a^{5} b$ make a cycle; and if $H=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$, then the vertices a, b, a^{2} and $a^{2} b$ make a cycle.
Case 6: $G \cong A_{4}=\left\langle a, b: a^{2}=b^{3}=(a b)^{3}=1\right\rangle$. If $|H|=2$, then $H=\langle a\rangle,\left\langle b a b^{2}\right\rangle$ or $\left\langle b^{2} a b\right\rangle$. Since the elements $a, b a b^{2}$ and $b^{2} a b$ commute among themselves, in each case the remaining two elements in $G \backslash H$ remain isolated and hence $\Delta_{H, A_{4}}^{g}$ is disconnected. If $|H|=3$, then $H=\langle x\rangle$, where $x=b, a b, b a, a b a$. In each case, the vertices x, a, x^{-1} and $b a b^{2}$ make a cycle.

If $|H|=4$, then $H=\left\{1, a, b a b^{2}, b^{2} a b\right\}$. In this case, the vertices $a, b, b a b^{2}$ and $a b$ make a cycle.
Case 7: $G \cong Q_{12}=\left\langle a, b: a^{6}=1, b^{2}=a^{3}\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$. If $|H|=2$, then $H=Z\left(Q_{12}\right)$ and so $\Delta_{H, Q_{12}}^{g}$ is an empty graph. If $|H|=3$, then $H=\left\{1, a^{2}, a^{4}\right\}$. In this case, a^{3} is an isolated vertex in $G \backslash H$ (since $\left.a^{3} \in Z\left(Q_{12}\right)\right)$ and so $\Delta_{H, Q_{12}}^{g}$ is disconnected. If $|H|=4$, then $H=\left\{1, a^{3}, b, a^{3} b\right\},\left\{1, a^{3}, a b, a^{4} b\right\}$ or $\left\{1, a^{3}, a^{2} b, a^{5} b\right\}$. If $|H|=6$, then $H=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$. We have $[a, b]=[a, a b]=\left[a^{4}, a^{4} b\right]=\left[a^{5} b, a^{2}\right]=\left[b, a^{2}\right]=\left[b, a^{5}\right]=$ $\left[a^{2} b, a^{5}\right]=\left[a^{3} b, a^{2}\right]=\left[a^{3} b, a^{5}\right]=a^{4} \neq 1$ and $\left[a^{5}, a^{5} b\right]=\left[a^{5} b, a\right]=\left[a b, a^{4}\right]=\left[a^{4} b, a\right]=$ $\left[a^{2}, a^{2} b\right]=\left[a^{2} b, a\right]=a^{2} \neq 1$. Therefore, if $H=\left\{1, a^{3}, b, a^{3} b\right\}$, then the vertices a^{2}, b, a^{5} and $a^{3} b$ make a cycle; if $H=\left\{1, a^{3}, a b, a^{4} b\right\}$, then the vertices $a, a b, a^{4}$ and $a^{4} b$ make a cycle; if $H=\left\{1, a^{3}, a^{2} b, a^{5} b\right\}$, then the vertices $a^{2}, a^{2} b, a^{5}$ and $a^{5} b$ make a cycle; and if $H=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$, then the vertices a, b, a^{2} and $a^{2} b$ make a cycle. This completes the proof.

Theorem 5. If G is a non-abelian group of order ≤ 12 and $g \neq 1$, then $\Delta_{H, G}^{g}$ is a tree if and only if $g^{2}=1, G \cong A_{4}$ and $|H|=2$ such that $H=\langle g\rangle$.

Proof. If H is the trivial subgroup of G, then $\Delta_{H, G}^{g}$ is an empty graph. If $H=G$, then, by (Theorem 2.5, [22]), we have $\Delta_{H, G}^{g}$ is not a tree. Thus, we examine only the proper subgroups of G, where $G \cong D_{6}, D_{8}, Q_{8}, D_{10}, D_{12}, Q_{12}$, or A_{4}. We consider the following two cases.
Case 1: $g^{2}=1$
In this case, $G \cong D_{8}, Q_{8}$ or A_{4}. If $G \cong D_{8}=\left\langle a, b: a^{4}=b^{2}=1\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$, then $g=a^{2}$ and $|H|=2,4$. If $|H|=2$, then $H=Z\left(D_{8}\right)$ or $\left\langle a^{r} b\right\rangle$, for every integer r such that $1 \leq r \leq 4$. For $H=Z\left(D_{8}\right), \Delta_{H, D_{8}}^{g}$ is an empty graph. For $H=\left\langle a^{r} b\right\rangle$, in each case, a is an isolated vertex in $G \backslash H$ (since $\left[a, a^{r} b\right]=a^{2}$) and hence $\Delta_{H, D_{8}}^{g}$ is disconnected. If $|H|=4$, then $H=\left\{1, a, a^{2}, a^{3}\right\},\left\{1, a^{2}, b, a^{2} b\right\}$ or $\left\{1, a^{2}, a b, a^{3} b\right\}$. For $H=\left\{1, a, a^{2}, a^{3}\right\}, b$ is an isolated vertex in $G \backslash H$ (since $[a, b]=a^{2}=\left[a^{3}, b\right]$) and hence $\Delta_{H, D_{8}}^{g}$ is disconnected. If $H=\left\{1, a^{2}, b, a^{2} b\right\}$ or $\left\{1, a^{2}, a b, a^{3} b\right\}$, then a is an isolated vertex in $G \backslash H$ (since $\left[a, a^{r} b\right]=a^{2}$ for every integer r such that $1 \leq r \leq 4$) and hence $\Delta_{H, D_{8}}^{g}$ is disconnected.

If $G \cong Q_{8}=\left\langle a, b: a^{4}=1, b^{2}=a^{2}\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$, then $g=a^{2}$ and $|H|=2,4$. If $|H|=2$, then $H=Z\left(Q_{8}\right)$ and hence $\Delta_{H, Q_{8}}^{g}$ is an empty graph. If $|H|=4$, then $H=\left\{1, a, a^{2}, a^{3}\right\},\left\{1, a^{2}, b, a^{2} b\right\}$ or $\left\{1, a^{2}, a b, a^{3} b\right\}$. In each case, vertices of $H \backslash Z(H, G)$ commute with each other and commutator of these vertices and those of $G \backslash H$ equals a^{2}. Hence, the vertices in $G \backslash H$ remain isolated and so $\Delta_{H, Q_{8}}^{g}$ is disconnected.

If $G \cong A_{4}=\left\langle a, b: a^{2}=b^{3}=(a b)^{3}=1\right\rangle$, then $g \in\left\{a, b a b^{2}, b^{2} a b\right\}$ and $|H|=2,3,4$. If $|H|=2$, then $H=\langle a\rangle,\left\langle b a b^{2}\right\rangle$ or $\left\langle b^{2} a b\right\rangle$. If $H=\langle g\rangle$, then $\Delta_{H, A_{4}}^{g}$ is a star graph because $[g, x] \neq g$ for all $x \in G \backslash H$ and hence a tree; otherwise, $\Delta_{H, A_{4}}^{g}$ is not a tree as shown in Figures 1-6. If $|H|=3$, then $H=\langle x\rangle$, where $x=b, a b, b a, a b a$ or their inverses. We have $\left[x, x^{-1}\right]=1,[x, g] \neq g$ and $\left[x^{-1}, g\right] \neq g$. Therefore, x, x^{-1} and g make a triangle for each such subgroup in the graph $\Delta_{H, A_{4}}^{g}$. If $|H|=4$, then $H=\left\{1, a, b a b^{2}, b^{2} a b\right\}$. Since H is abelian, the vertices $a, b a b^{2}$ and $b^{2} a b$ make a triangle in the graph $\Delta_{H, A_{4}}^{g}$.
Case 2: $g^{2} \neq 1$
In this case, $G \cong D_{6}, D_{10}, D_{12}$ or Q_{12}.
If $G \cong D_{6}=\left\langle a, b: a^{3}=b^{2}=1\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$, then $g \in\left\{a, a^{2}\right\}$ and $|H|=2,3$. We have $\Delta_{H, D_{6}}^{a}=\Delta_{H, D_{6}}^{a^{2}}$ since $a^{-1}=a^{2}$. If $|H|=2$, then $H=\langle x\rangle$, where $x=b, a b$ and $a^{2} b$. We have $[x, y] \in\left\{g, g^{-1}\right\}$ for all $y \in G \backslash H$ and so $\Delta_{H, D_{6}}^{g}$ is an empty graph. If $|H|=3$, then $H=\left\{1, a, a^{2}\right\}$. In this case, the vertices of $G \backslash H$ remain isolated since, for $y \in G \backslash H$, we have $[a, y],\left[a^{2}, y\right] \in\left\{g, g^{-1}\right\}$.

If $G \cong D_{10}=\left\langle a, b: a^{5}=b^{2}=1\right.$ and $\left.b a b^{-1}=a^{-1}\right\rangle$, then $g \in\left\{a, a^{2}, a^{3}, a^{4}\right\}$ and $|H|=2,5$. We have $\Delta_{H, D_{10}}^{a}=\Delta_{H, D_{10}}^{a^{4}}$ and $\Delta_{H, D_{10}}^{a^{2}}=\Delta_{H, D_{10}}^{a^{3}}$ since $a^{-1}=a^{4}$ and $\left(a^{2}\right)^{-1}=a^{3}$.

Suppose that $|H|=2$. Then, $H=\left\langle a^{r} b\right\rangle$, for every integer r such that $1 \leq r \leq 5$. If $g=a$, then for each subgroup H, a^{2} is an isolated vertex in $\Delta_{H, D_{10}}^{8}$ (since $\left[a^{2}, a^{r} b\right]=a^{4}$ for every integer r such that $1 \leq r \leq 5$). If $g=a^{2}$, then for each subgroup H, a is an isolated vertex in $\Delta_{H, D_{10}}^{g}$ (since $\left[a, a^{r} b\right]=a^{2}$ for every integer r such that $1 \leq r \leq 5$). Hence, $\Delta_{H, D_{10}}^{g}$ is disconnected for each g and each subgroup H of order 2. Now, suppose that $|H|=5$. Then, we have $H=\left\{1, a, a^{2}, a^{3}, a^{4}\right\}$. In this case, the vertices a, a^{2}, a^{3} and a^{4} make a cycle in $\Delta_{H, D_{10}}^{g}$ for each g as they commute among themselves.

If $G \cong D_{12}=\langle a, b| a^{6}=b^{2}=1$ and $\left.b a b^{-1}=a^{-1}\right\rangle$, then $g \in\left\{a^{2}, a^{4}\right\}$ and $|H|=$ $2,3,4,6$. We have $\Delta_{H, D_{12}}^{a^{2}}=\Delta_{H, D_{12}}^{a^{4}}$ since $\left(a^{2}\right)^{-1}=a^{4}$. Suppose that $|H|=2$, then $H=$ $Z\left(D_{12}\right)$ or $\left\langle a^{r} b\right\rangle$, for every integer r such that $1 \leq r \leq 6$. For $H=Z\left(D_{12}\right), \Delta_{H, D_{12}}^{g}$ is an empty graph. For $H=\left\langle a^{r} b\right\rangle$, in each case, a is an isolated vertex in $G \backslash H$ (since $\left[a, a^{r} b\right]=a^{2}$ for every integer r such that $1 \leq r \leq 6$) and hence $\Delta_{H, D_{12}}^{g}$ is disconnected. If $|H|=3$, then $H=\left\{1, a^{2}, a^{4}\right\}$. In this case, the vertices a, a^{2} and a^{4} make a triangle in $\Delta_{H, D_{12}}^{g}$ since they commute among themselves. If $|H|=4$, then $H=\left\{1, a^{3}, b, a^{3} b\right\},\left\{1, a^{3}, a b, a^{4} b\right\}$ or $\left\{1, a^{3}, a^{2} b, a^{5} b\right\}$. For all these H, a is an isolated vertex in $G \backslash H$ (since $\left[a, a^{r} b\right]=a^{2}$ for every integer r such that $1 \leq r \leq 6$) and hence $\Delta_{H, D_{12}}^{g}$ is disconnected. If $|H|=6$, then $H=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\},\left\{1, a^{2}, a^{4}, b, a^{2} b, a^{4} b\right\}$ or $\left\{1, a^{2}, a^{4}, a b, a^{3} b, a^{5} b\right\}$. For all these H, the vertices a, a^{2}, a^{4} and a^{5} make a cycle in $\Delta_{H, D_{12}}^{g}$ since they commute among themselves.

If $G \cong Q_{12}=\langle a, b| a^{6}=1, b^{2}=a^{3}$ and $\left.b a b^{-1}=a^{-1}\right\rangle$, then $g \in\left\{a^{2}, a^{4}\right\}$ and $|H|=2,3,4,6$. We have $\Delta_{H, Q_{12}}^{a^{2}}=\Delta_{H, Q_{12}}^{a^{4}}$ since $\left(a^{2}\right)^{-1}=a^{4}$. If $|H|=2$, then $H=Z\left(Q_{12}\right)$ and so $\Delta_{H, Q_{12}}^{g}$ is an empty graph. If $|H|=3$, then $H=\left\{1, a^{2}, a^{4}\right\}$. In this case, the vertices a, a^{2} and a^{4} make a triangle in $\Delta_{H, Q_{12}}^{g}$ since they commute among themselves. If $|H|=4$, then $H=\left\{1, a^{3}, b, a^{3} b\right\},\left\{1, a^{3}, a b, a^{4} b\right\}$ or $\left\{1, a^{3}, a^{2} b, a^{5} b\right\}$. For all these H, a is an isolated vertex in $G \backslash H$ (since $\left[a, a^{r} b\right]=a^{2}$ for every integer r such that $1 \leq r \leq 6$) and hence $\Delta_{H, Q_{12}}^{g}$ is disconnected. If $|H|=6$, then $H=\left\{1, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$. In this case, the vertices a, a^{2}, a^{4} and a^{5} make a cycle in $\Delta_{H, Q_{12}}^{g}$ since they commute among themselves.

3. Connectivity and Diameter

Connectivity of Δ_{G}^{g} was studied in [19-21]. It was conjectured that the diameter of Δ_{G}^{g} is equal to 2 if Δ_{G}^{g} is connected. In this section, we discuss the connectivity of $\Delta_{H, G}^{g}$. In general, $\Delta_{H, G}^{g}$ is not connected. For any two vertices x and y, we write $x \sim y$ and $x \nsim y$ respectively to mean that they are adjacent or not. We write $d(x, y)$ and $\operatorname{diam}\left(\Delta_{H, G}^{g}\right)$ to denote the distance between the vertices x, y and diameter of $\Delta_{H, G}^{g}$, respectively.

Theorem 6. If $g \in H \backslash Z(G)$ and $g^{2}=1$, then $\operatorname{diam}\left(\Delta_{H, G}^{g}\right)=2$.
Proof. Let $x \neq g$ be any vertex of $\Delta_{H, G}^{g}$. Then, $[x, g] \neq g$ which implies $[x, g] \neq g^{-1}$ since $g^{2}=1$. Since $g \in H$, it follows that $x \sim g$. Therefore, $d(x, g)=2$ and hence $\operatorname{diam}\left(\Delta_{H, G}^{g}\right)=2$.

Lemma 1. Let $g \in H \backslash Z(H, G)$ such that $g^{2} \neq 1$ and $o(g) \neq 3$, where $o(g)$ is the order of g. If $x \in G \backslash Z(H, G)$ and $x \nsim g$, then $x \sim g^{2}$.

Proof. Since $g \neq 1$ and $x \nsim g$, it follows that $[x, g]=g^{-1}$. We have

$$
\begin{equation*}
\left[x, g^{2}\right]=[x, g][x, g]^{g}=g^{-2} \neq g, g^{-1} \tag{5}
\end{equation*}
$$

If $g^{2} \in Z(H, G)$, then, by (5), we have $g^{-2}=\left[x, g^{2}\right]=1$, a contradiction. Therefore, $g^{2} \in H \backslash Z(H, G)$. Hence, $x \sim g^{2}$.

Theorem 7. Let $g \in H \backslash Z(H, G)$ and $o(g) \neq 3$. Then, $\operatorname{diam}\left(\Delta_{H, G}^{g}\right) \leq 3$.

Proof. If $g^{2}=1$, then, by Theorem 6, we have $\operatorname{diam}\left(\Delta_{H, G}^{g}\right)=2$. Therefore, we assume that $g^{2} \neq 1$. Let x, y be any two vertices of $\Delta_{H, G}^{g}$ such that $x \nsim y$. Therefore, $[x, y]=g$ or g^{-1}. If $x \sim g$ and $y \sim g$, then $x \sim g \sim y$ and so $d(x, y)=2$. If $x \nsim g$ and $y \nsim g$, then, by Lemma 1, we have $x \sim g^{2} \sim y$ and so $d(x, y)=2$. Therefore, we shall not consider these two situations in the following cases.
Case 1: $x, y \in H$
Suppose that one of x, y is adjacent to g and the other is not. Without any loss, we assume that $x \nsim g$ and $y \sim g$. Then, $[x, g]=g^{-1}$ and $[y, g] \neq g, g^{-1}$. By Lemma 1, we have $x \sim g^{2}$.

Consider the element $y g \in H$. If $y g \in Z(H, G)$, then $\left[y, g^{2}\right]=1 \neq g, g^{-1}$. Therefore, $x \sim g^{2} \sim y$ and so $d(x, y)=2$.

If $y g \notin Z(H, G)$, then we have $[x, y g]=[x, g][x, y]^{g}=g^{-1}[x, y]^{g} \neq g, g^{-1}$. In addition, $[y, y g]=[y, g] \neq g, g^{-1}$. Hence, $x \sim y g \sim y$ and so $d(x, y)=2$.
Case 2: One of x, y belongs to H and the other does not.
Without any loss, assume that $x \in H$ and $y \notin H$. If $x \nsim g$ and $y \sim g$, then, by Lemma 1, we have $x \sim g^{2}$. In addition, $\left[g, g^{2}\right]=1 \neq g, g^{-1}$ and so $g^{2} \sim g$. Therefore, $x \sim g^{2} \sim g \sim y$ and hence $d(x, y) \leq 3$. If $x \sim g$ and $y \nsim g$, then $[x, g] \neq g, g^{-1}$ and $[y, g]=g^{-1}$. By Lemma 1, we have $y \sim g^{2}$. Consider the element $x g \in H$. If $x g \in Z(H, G)$, then $\left[x, g^{2}\right]=1 \neq g, g^{-1}$. Therefore, $x \sim g^{2}$ and so $y \sim g^{2} \sim x$. Thus, $d(x, y)=2$.

If $x g \notin Z(H, G)$, then we have $[y, x g]=[y, g][y, x]^{g}=g^{-1}[y, x]^{g} \neq g, g^{-1}$. In addition, $[x, x g]=[x, g] \neq g, g^{-1}$. Hence, $y \sim x g \sim x$ and so $d(x, y)=2$.

Case 3: $x, y \notin H$.

Suppose that one of x, y is adjacent to g and the other is not. Without any loss, we assume that $x \nsim g$ and $y \sim g$. Then, by Lemma 1, we have $x \sim g^{2}$. In addition, $\left[g, g^{2}\right]=1 \neq g, g^{-1}$ and so $g^{2} \sim g$. Therefore, $x \sim g^{2} \sim g \sim y$ and hence $d(x, y) \leq 3$.

Thus, $d(x, y) \leq 3$ for all $x, y \in G \backslash Z(H, G)$. Hence, the result follows.
The rest part of this paper is devoted to the study of connectivity of $\Delta_{H, D_{2 n}}^{g}$, where $D_{2 n}=\left\langle a, b: a^{n}=b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$ is the dihedral group of order $2 n$. It is well known that $Z\left(D_{2 n}\right)=\{1\}$, the commutator subgroup $D_{2 n}^{\prime}=\langle a\rangle$ if n is odd and $Z\left(D_{2 n}\right)=\left\{1, a^{\frac{n}{2}}\right\}$ and $D_{2 n}^{\prime}=\left\langle a^{2}\right\rangle$ if n is even. By (Theorem 4, [19]), it follows that $\Delta_{D_{2 n}}^{g}$ is disconnected if $n=3,4,6$. Therefore, we consider $n \geq 8$ and $n \geq 5$ accordingly, as n is even or odd in the following results.

Theorem 8. Consider the graph $\Delta_{H, D_{2 n}}^{g}$, where $n(\geq 8)$ is even.
(a) If $H=\langle a\rangle$, then $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
(b) Let $H=\left\langle a^{\frac{n}{2}}, a^{r} b\right\rangle$ for $0 \leq r<\frac{n}{2}$. Then, $\Delta_{H, D_{2 n}}^{g}$ is connected with diameter 2 if $g=1$ and $\Delta_{H, D_{2 n}}^{g}$ is not connected if $g \neq 1$.
(c) If $H=\left\langle a^{r} b\right\rangle$ for $1 \leq r \leq n$, then $\Delta_{H, D_{2 n}}^{g}$ is not connected.

Proof. Since n is even, we have $g=a^{2 i}$ for $1 \leq i \leq \frac{n}{2}$.
(a) Case 1: $g=1$

Since H is abelian, the induced subgraph of $\Delta_{H, D_{2 n}}^{g}$ on $H \backslash Z\left(H, D_{2 n}\right)$ is empty. Thus, we need to see the adjacency of these vertices with those in $D_{2 n} \backslash H$. Suppose that $\left[a^{r} b, a^{j}\right]=$ 1 and $\left[b, a^{j}\right]=1$ for every integer r, j such that $1 \leq r, j \leq n-1$. Then, $a^{2 j}=a^{0}$ or a^{n} and so $j=0$ or $j=\frac{n}{2}$. Therefore, every vertex in $H \backslash Z\left(H, D_{2 n}\right)$ is adjacent to all the vertices in $D_{2 n} \backslash H$. Thus, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
Case 2: $g \neq 1$
Since H is abelian, the induced subgraph of $\Delta_{H, D_{2 n}}^{g}$ on $H \backslash Z\left(H, D_{2 n}\right)$ is a complete graph. Therefore, it is sufficient to prove that no vertex in $D_{2 n} \backslash H$ is isolated. If $g \neq g^{-1}$, then $g \neq a^{\frac{n}{2}}$. Suppose that $\left[a^{r} b, a^{j}\right]=g$ and $\left[b, a^{j}\right]=g$ for every integer r, j such that
$1 \leq r, j \leq n-1$. Then, $a^{2 j}=a^{2 i}$ and so $j=i$ or $j=\frac{n}{2}+i$. If $\left[a^{r} b, a^{j}\right]=g^{-1}$ and $\left[b, a^{j}\right]=g^{-1}$ for every integer r, j such that $1 \leq r, j \leq n-1$, then $a^{2 j}=a^{n-2 i}$ and so $j=n-i$ or $j=\frac{n}{2}-i$. Therefore, there exists an integer j such that $1 \leq j \leq n-1$ and $j \neq i, \frac{n}{2}+i, n-i$ and $\frac{n}{2}-i$ for which a^{j} is adjacent to all the vertices in $D_{2 n} \backslash H$. If $g=g^{-1}$, then $g=a^{\frac{n}{2}}$. Suppose that $\left[a^{r} b, a^{j}\right]=g$ and $\left[b, a^{j}\right]=g$ for every integer r, j such that $1 \leq r, j \leq n-1$, then $a^{2 j}=a^{\frac{n}{2}}$ and so $j=\frac{n}{4}$ or $j=\frac{3 n}{4}$. Therefore, there exists an integer j such that $1 \leq j \leq n-1$ and $j \neq \frac{n}{4}$ and $\frac{3 n}{4}$ for which a^{j} is adjacent to all the vertices in $D_{2 n} \backslash H$. Thus, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
(b) Case 1: $g=1$

We have $\left[a^{\frac{n}{2}+r} b, a^{r} b\right]=1$ for every integer r such that $1 \leq r \leq n$. Therefore, the induced subgraph of $\Delta_{H, D_{2 n}}^{g}$ on $H \backslash Z\left(H, D_{2 n}\right)$ is empty. Thus, we need to see the adjacency of these vertices with those in $D_{2 n} \backslash H$. Suppose $\left[a^{r} b, a^{i}\right]=1$ and $\left[a^{\frac{n}{2}+r} b, a^{i}\right]=1$ for every integer i such that $1 \leq i \leq n-1$. Then, $a^{2 i}=a^{n}$ and so $i=\frac{n}{2}$. Therefore, for every integer i such that $1 \leq i \leq n-1$ and $i \neq \frac{n}{2}, a^{i}$ is adjacent to both $a^{r} b$ and $a^{\frac{n}{2}+r} b$. In addition, we have $\left[a^{s} b, a^{r} b\right]=a^{2(s-r)}$ and $\left[a^{\frac{n}{2}+r} b, a^{s} b\right]=a^{2\left(\frac{n}{2}+r-s\right)}$ for every integer s such that $1 \leq s \leq n$. Suppose $\left[a^{s} b, a^{r} b\right]=1$ and $\left[a^{\frac{n}{2}+r} b, a^{s} b\right]=1$. Then, $s=r$ or $s=\frac{n}{2}+r$. Therefore, for every integer s such that $1 \leq s \leq n$ and $s \neq r, \frac{n}{2}+r, a^{s} b$ is adjacent to both $a^{r} b$ and $a^{\frac{n}{2}+r} b$. Thus, $\Delta_{H, D_{2 n}}^{g}$ is connected and diam $\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
Case 2: $g \neq 1$
If $H=\left\langle a^{\frac{n}{2}}, a^{r} b\right\rangle=\left\{1, a^{\frac{n}{2}}, a^{r} b, a^{\frac{n}{2}+r} b\right\}$ for $0 \leq r<\frac{n}{2}$, then $H \backslash Z\left(H, D_{2 n}\right)=\left\{a^{r} b, a^{\frac{n}{2}+r} b\right\}$. We have $\left[a^{r} b, a^{i}\right]=a^{2 i}=\left[a^{\frac{n}{2}+r} b, a^{i}\right]$ for every integer i such that $1 \leq i \leq \frac{n}{2}-1$. That is, $\left[a^{r} b, a^{i}\right]=g$ and $\left[a^{\frac{n}{2}+r} b, a^{i}\right]=g$ for every integer i such that $1 \leq i \leq \frac{n}{2}-1$. Thus, a^{i} is an isolated vertex in $D_{2 n} \backslash H$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.
(c) Case 1: $g=1$

We have $\left[a^{\frac{n}{2}+r} b, a^{r} b\right]=1$ for every integer r such that $1 \leq r \leq n$. Thus, $a^{\frac{n}{2}+r} b$ is an isolated vertex in $D_{2 n} \backslash H$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.
Case 2: $g \neq 1$
If $H=\left\langle a^{r} b\right\rangle=\left\{1, a^{r} b\right\}$ for $1 \leq r \leq n$, then $H \backslash Z\left(H, D_{2 n}\right)=\left\{a^{r} b\right\}$. We have $\left[a^{r} b, a^{i}\right]=a^{2 i}=g$ for every integer i such that $1 \leq i \leq \frac{n}{2}-1$. Thus, a^{i} is an isolated vertex in $D_{2 n} \backslash H$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.

Theorem 9. Consider the graph $\Delta_{H, D_{2 n}}^{g}$, where $n(\geq 8)$ and $\frac{n}{2}$ are even.
(a) If $H=\left\langle a^{2}\right\rangle$, then $\Delta_{H, D_{2 n}}^{g}$ is connected with diameter 2 if and only if $g \notin\left\langle a^{4}\right\rangle$.
(b) If $H=\left\langle a^{2}, b\right\rangle$ or $\left\langle a^{2}, a b\right\rangle$, then $\Delta_{H, D_{2 n}}^{g}$ is connected and diam $\left(\Delta_{H, D_{2 n}}^{g}\right) \leq 3$.

Proof. Since n is even, we have $g=a^{2 i}$ for $1 \leq i \leq \frac{n}{2}$.
(a) Case 1: $g=1$

We know that the vertices in H commutes with all the odd powers of a. That is, any vertex in $\Delta_{H, D_{2 n}}^{g}$ of the form a^{i}, where i is an odd integer and $1 \leq i \leq n-1$, is not adjacent with any vertex. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.
Case 2: $g \neq 1$
Since H is abelian, the induced subgraph of $\Delta_{H, D_{2 n}}^{g}$ on $H \backslash Z\left(H, D_{2 n}\right)$ is a complete graph. In addition, the vertices in H commutes with all the odd powers of a. That is, a vertex of the form a^{i}, where i is an odd integer, in $\Delta_{H, D_{2 n}}^{g}$ is adjacent with all the vertices in H. We have $\left[a^{r} b, a^{2 i}\right]=a^{4 i}$ and $\left[b, a^{2 i}\right]=a^{4 i}$ for every integer r, i such that $1 \leq r \leq n-1$ and $1 \leq i \leq \frac{n}{2}-1$. Thus, for $g \notin\left\langle a^{4}\right\rangle$, every vertex of H is adjacent to the vertices of the form $a^{r} b$, where $1 \leq r \leq n$. Therefore, $\Delta_{H, D_{2 n}}^{g}$ is connected and diam $\left(\Delta_{H, D_{2 n}}^{g}\right)=2$. In addition, if $g=a^{4 i}$ for some integer i where $1 \leq i \leq \frac{n}{4}-1$ (i,e., $g \in\left\langle a^{4}\right\rangle$), then the vertices $a^{r} b \in D_{2 n} \backslash H$, where $1 \leq r \leq n$, will remain isolated. Hence, $\Delta_{H, D_{2 n}}^{g}$ is disconnected in this case. This completes the proof of part (a).
(b) Case 1: $g=1$

Suppose that $H=\left\langle a^{2}, b\right\rangle$. Then, $a^{2 i} \nsim a^{j}$ but $a^{2 i} \sim a^{r} b$ for all i, j, r such that $1 \leq i \leq$ $\frac{n}{2}-1, i \neq \frac{n}{4} ; 1 \leq j \leq n-1$ is an odd number and $1 \leq r \leq n$ because $\left[a^{2 i}, a^{j}\right]=1$ and $\left[a^{2 i}, a^{r} b\right]=a^{4 i}$. We shall find a path to a^{j}, where $1 \leq j \leq n-1$ is an odd number. We have $\left[a^{j}, b\right]=a^{2 j} \neq 1$ and $a^{j} \in G \backslash H$ for all j such that $1 \leq j \leq n-1$ is an odd number. Therefore, $a^{2 i} \sim b \sim a^{j}$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right) \leq 3$.

If $H=\left\langle a^{2}, a b\right\rangle$, then $a^{2 i} \nsim a^{j}$ but $a^{2 i} \sim a^{r} b$ for all i, j, r such that $1 \leq i \leq \frac{n}{2}-1, i \neq \frac{n}{4}$; $1 \leq j \leq n-1$ is an odd number and $1 \leq r \leq n$ because $\left[a^{2 i}, a^{j}\right]=1$ and $\left[a^{2 i}, a^{r} b\right]=a^{4 i}$. We shall find a path to a^{j}, where $1 \leq j \leq n-1$ is an odd number. We have $\left[a^{j}, a b\right]=a^{2 j} \neq 1$ and $a^{j} \in G \backslash H$ for all j such that $1 \leq j \leq n-1$ is an odd number. Therefore, $a^{2 i} \sim a b \sim a^{j}$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right) \leq 3$.
Case 2: $g \neq 1$
We have $\left\langle a^{2}\right\rangle \subset H$. Therefore, if $g \notin\left\langle a^{4}\right\rangle$, then every vertex in $\left\langle a^{2}\right\rangle$ is adjacent to all other vertices in both cases (as discussed in part (a)). Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$. Suppose that $g=a^{4 i}$ for some integer i, where $1 \leq i \leq \frac{n}{4}-1$.

Suppose that $H=\left\langle a^{2}, b\right\rangle$. Then, $a^{2 i} \sim a^{j}$ but $a^{2 i} \nsim a^{r} b$ for all j, r such that $1 \leq j \leq n-1$ is an odd number and $1 \leq r \leq n$ because $\left[a^{2 i}, a^{j}\right]=1$ and $\left[a^{2 i}, a^{r} b\right]=a^{4 i}$. We shall find a path between $a^{2 i}$ and $a^{r} b$ for all i, r such that $1 \leq i \leq \frac{n}{2}-1$ and $1 \leq r \leq n$. We have $\left[a^{j}, b\right]=a^{2 j} \neq a^{4 i}$ and $a^{j} \in G \backslash H$ for all j such that $1 \leq j \leq n-1$ is an odd number. Therefore, $a^{2 i} \sim a^{j} \sim b$. Consider the vertices of the form $a^{r} b$, where $1 \leq r \leq n-1$. We have $\left[a^{r} b, b\right]=a^{2 r}$. Suppose $\left[a^{r} b, b\right]=g$, then it gives $a^{2 r}=a^{4 i}$, which implies $r=2 i$ or $r=\frac{n}{2}+2 i$. Therefore, $b \sim a^{r} b$ if and only if $r \neq 2 i$ and $r \neq \frac{n}{2}+2 i$. Thus, we have $a^{2 i} \sim a^{j} \sim b \sim a^{r} b$, where $1 \leq r \leq n-1$ and $r \neq 2 i$ and $r \neq \frac{n}{2}+2 i$. Again, we know that $a^{\frac{n}{2}+2 i} b, a^{2 i} b \in H$ and $\left[a^{\frac{n}{2}+2 i} b, a^{2 i} b\right]=1$, so $a^{\frac{n}{2}+2 i} b \sim a^{2 i} b$. If we are able to find a path between a^{j} and any one of $a^{\frac{n}{2}+2 i} b$ and $a^{2 i} b$, then we are done. Now, $\left[a^{2 i} b, a^{j}\right] \neq a^{4 i}$ and $\left[a^{\frac{n}{2}+2 i} b, a^{j}\right] \neq a^{4 i}$ for any odd number j such that $1 \leq j \leq n-1$ so we have $a^{\frac{n}{2}+2 i} b \sim a^{j} \sim a^{2 i} b$. Thus, $a^{2 i} \sim a^{j} \sim a^{2 i} b, a^{2 i} \sim a^{j} \sim a^{\frac{n}{2}+2 i} b, a^{r} b \sim b \sim a^{j} \sim a^{2 i} b$ and $a^{r} b \sim b \sim a^{j} \sim a^{\frac{n}{2}+2 i} b$, where $1 \leq r \leq n-1$ and $r \neq 2 i$ and $r \neq \frac{n}{2}+2 i$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right) \leq 3$.

If $H=\left\langle a^{2}, a b\right\rangle$, then $a^{2 i} \sim a^{j}$ but $a^{2 i} \nsim a^{r} b$ for all j, r such that $1 \leq j \leq n-1$ is an odd number and $1 \leq r \leq n$ because $\left[a^{2 i}, a^{j}\right]=1$ and $\left[a^{2 i}, a^{r} b\right]=a^{4 i}$. We shall find a path between $a^{2 i}$ and $\overline{a^{r}} b$ for all i, r such that $1 \leq i \leq \frac{n}{2}-1$ and $1 \leq r \leq n$. We have $\left[a^{j}, a b\right]=a^{2 j} \neq a^{4 i}$ and $a^{j} \in G \backslash H$ for all j such that $1 \leq j \leq n-1$ is an odd number. Thus, we have $a^{2 i} \sim a^{j} \sim a b$. Consider the vertices of the form $a^{r} b$, where $2 \leq r \leq n$. We have $\left[a^{r} b, a b\right]=a^{2(r-1)}$. Suppose $\left[a^{r} b, a b\right]=g$, then it gives $a^{2(r-1)}=a^{4 i}$ which implies $r=2 i+1$ or $r=\frac{n}{2}+2 i+1$. Therefore, $a b \sim a^{r} b$ if and only if $r \neq 2 i+1$ and $r \neq \frac{n}{2}+2 i+1$. Thus, we have $a^{2 i} \sim a^{j} \sim a b \sim a^{r} b$, where $2 \leq r \leq n$ and $r \neq 2 i+1$ and $r \neq \frac{n}{2}+2 i+1$. Again, we know that $a^{\frac{n}{2}+2 i+1} b, a^{2 i+1} b \in H$ and $\left[a^{\frac{n}{2}+2 i+1} b, a^{2 i+1} b\right]=1$, so $a^{\frac{n}{2}+2 i+1} b \sim a^{2 i+1} b$. If we are able to find a path between a^{j} and any one of $a^{\frac{n}{2}+2 i+1} b$ and $a^{2 i+1} b$, then we are done. Now, $\left[a^{2 i+1} b, a^{j}\right] \neq a^{4 i}$ and $\left[a^{\frac{n}{2}+2 i+1} b, a^{j}\right] \neq a^{4 i}$ for any odd number j such that $1 \leq j \leq n-1$ so we have $a^{\frac{n}{2}+2 i+1} b \sim a^{j} \sim a^{2 i+1} b$. Thus, $a^{2 i} \sim a^{j} \sim a^{2 i+1} b, a^{2 i} \sim a^{j} \sim a^{\frac{n}{2}+2 i+1} b$, $a^{r} b \sim a b \sim a^{j} \sim a^{2 i+1} b$ and $a^{r} b \sim a b \sim a^{j} \sim a^{\frac{n}{2}+2 i+1} b$, where $2 \leq r \leq n$ and $r \neq 2 i+1$ and $r \neq \frac{n}{2}+2 i+1$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right) \leq 3$.

Theorem 10. Consider the graph $\Delta_{H, D_{2 n}}^{g}$, where $n(\geq 8)$ is even and $\frac{n}{2}$ is odd.
(a) If $H=\left\langle a^{2}\right\rangle$, then $\Delta_{H, D_{2 n}}^{g}$ is not connected if $g=1$ and $\Delta_{H, D_{2 n}}^{g}$ is connected with $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$ if $g \neq 1$.
(b) If $H=\left\langle a^{2}, b\right\rangle$ or $\left\langle a^{2}, a b\right\rangle$, then $\Delta_{H, D_{2 n}}^{g}$ is not connected if $g=1$ and $\Delta_{H, D_{2 n}}^{g}$ is connected with $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$ if $g \neq 1$.

Proof. Since n is even, we have $g=a^{2 i}$ for $1 \leq i \leq \frac{n}{2}$.
(a) Case 1: $g=1$

We know that the vertices in H commute with all the odd powers of a. That is, any vertex of the form $a^{i} \in D_{2 n} \backslash H$, where i is an odd integer, is not adjacent with any vertex in $\Delta_{H, D_{2 n}}^{g}$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.
Case 2: $g \neq 1$
Since H is abelian, the induced subgraph of $\Delta_{H, D_{2 n}}^{g}$ on $H \backslash Z\left(H, D_{2 n}\right)$ is a complete graph. In addition, the vertices in H commute with all the odd powers of a. That is, a vertex of the form a^{i}, where i is an odd integer, in $\Delta_{H, D_{2 n}}^{g}$ is adjacent with all the vertices in H. We claim that at least one element of $H \backslash Z\left(H, D_{2 n}\right)$ is adjacent to all $a^{r} b^{\prime}$ s such that $1 \leq r \leq n$. Consider the following cases.
Subcase 1: $g^{3} \neq 1$
If $\left[g, a^{r} b\right]=g$, i.e., $\left[a^{2 i}, a^{r} b\right]=a^{2 i}$ for all $1 \leq i \leq \frac{n}{2}-1$ and $1 \leq r \leq n$, then we get $g=a^{2 i}=1$, a contradiction. If $\left[g, a^{r} b\right]=g^{-1}$, i.e., $\left[a^{2 i}, a^{r} b\right]=a^{n-2 i}$ for all $1 \leq i \leq \frac{n}{2}-1$ and $1 \leq r \leq n$, then we get $g^{3}=\left(a^{2 i}\right)^{3}=a^{6 i}=1$, a contradiction. Therefore, g is adjacent to all other vertices of the form $a^{r} b$ such that $1 \leq r \leq n$.
Subcase 2: $g^{3}=1$
If $\left[g, a^{r} b\right]=g^{-1}$, i.e., $\left[a^{2 i}, a^{r} b\right]=a^{2 i}$, then $\left[g a^{2}, a^{r} b\right]=g^{-1} a^{4}$ for all $1 \leq i \leq \frac{n}{2}-1$ and $1 \leq r \leq n$. Now, if $g^{-1} a^{4}=g^{-1}$, then $a^{4}=1$, a contradiction since $a^{n}=1$ for $n \geq 8$. If $g^{-1} a^{4}=g$, then $a^{n-2 i-4}=1$ for all $1 \leq i \leq \frac{n}{2}-1$, which is a contradiction since $1 \leq i \leq \frac{n}{2}-1$. Therefore, $g a^{2}$ is adjacent to all other vertices of the form $a^{r} b$ such that $1 \leq r \leq n$.

Thus, there exists a vertex in $H \backslash Z\left(H, D_{2 n}\right)$, which is adjacent to all other vertices in $D_{2 n}$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
(b) Case 1: $g=1$

We know that the vertices in H commute with the vertex $a^{\frac{n}{2}}$. That is, the vertex $a^{\frac{n}{2}} \in D_{2 n} \backslash H$ is not adjacent with any vertex in $\Delta_{H, D_{2 n}}^{g}$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.
Case 2: $g \neq 1$
As shown in Case 2 of part (a), it can be seen that either g or $g a^{2}$ is adjacent to all other vertices. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.

Theorem 11. Consider the graph $\Delta_{H, D_{2 n}}^{g}$, where $n(\geq 5)$ is odd.
(a) If $H=\langle a\rangle$, then $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
(b) If $H=\left\langle a^{r} b\right\rangle$, where $1 \leq r \leq n$, then $\Delta_{H, D_{2 n}}^{g}$ is connected with $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$ if $g=1$ and $\Delta_{H, D_{2 n}}^{g}$ is not connected if $g \neq 1$.

Proof. Since n is odd, we have $g=a^{i}$ for $1 \leq i \leq n$.
(a) Case 1: $g=1$

Since H is abelian, the induced subgraph of $\Delta_{H, D_{2 n}}^{g}$ on $H \backslash Z\left(H, D_{2 n}\right)$ is empty. Therefore, we need to see the adjacency of these vertices with those in $D_{2 n} \backslash H$. Suppose that $\left[a^{r} b, a^{j}\right]=1$ and $\left[b, a^{j}\right]=1$ for every integer r, j such that $1 \leq r, j \leq n-1$. Then, $a^{2 j}=a^{n}$ and so $j=\frac{n}{2}$, a contradiction. Therefore, for every integer j such that $1 \leq j \leq n-1$, a^{j} is adjacent to all the vertices in $D_{2 n} \backslash H$. Thus, $\Delta_{H, D_{2 n}}^{g}$ is connected and diam $\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
Case 2: $g \neq 1$
Since H is abelian, the induced subgraph of $\Delta_{H, D_{2 n}}^{g}$ on $H \backslash Z\left(H, D_{2 n}\right)$ is a complete graph. Therefore, it is sufficient to prove that no vertex in $D_{2 n} \backslash H$ is isolated. Since n is odd, we have $g \neq g^{-1}$. If $\left[a^{r} b, a^{j}\right]=g$ and $\left[b, a^{j}\right]=g$ for every integer r, j such that $1 \leq r, j \leq n-1$, then $j=\frac{i}{2}$ or $j=\frac{n+i}{2}$. If $\left[a^{r} b, a^{j}\right]=g^{-1}$ and $\left[b, a^{j}\right]=g^{-1}$ for every integer r, j such that $1 \leq r, j \leq n-1$, then $j=\frac{n-i}{2}$ or $j=n-\frac{i}{2}$. Therefore, there exists an integer j such that $1 \leq j \leq n-1$ and $j \neq \frac{i}{2}, \frac{n+i}{2}, \frac{n-i}{2}$ and $n-\frac{i}{2}$ for which a^{j} is adjacent to all other vertices in $D_{2 n} \backslash H$. Thus, $\Delta_{H, D_{2 n}}^{g}$ is connected and diam $\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
(b) Case 1: $g=1$

We have $\left[a^{r} b, a^{j}\right] \neq 1$ and $\left[b, a^{j}\right] \neq 1$ for every integer r, j such that $1 \leq r, j \leq n-1$. Thus, $a^{r} b$ is adjacent to a^{j} for every integer j such that $1 \leq j \leq n-1$. In addition, we have $\left[a^{s} b, a^{r} b\right]=a^{2(s-r)}$ for every integer r, s such that $1 \leq r, s \leq n$. Supposing that $\left[a^{s} b, a^{r} b\right]=1$, then $s=r$ as $s=\frac{n}{2}+r$ is not possible. Therefore, for every integer r, s such that $1 \leq r, s \leq n$ and $s \neq r, a^{s} b$ is adjacent to $a^{r} b$. Thus, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
Case 2: $g \neq 1$
If i is even, then $\left[a^{\frac{i}{2}}, a^{r} b\right]=a^{i}=g$ and so the vertex $a^{\frac{i}{2}}$ remains isolated. If i is odd, then $n-i$ is even and we have $\left[a^{\frac{n-i}{2}}, a^{r} b\right]=a^{n-i}=g^{-1}$. Therefore, the vertex $a^{\frac{n-i}{2}}$ remains isolated. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.

Theorem 12. Consider the graph $\Delta_{H, D_{2 n}}^{g}$, where $n(\geq 5)$ is odd.
(a) If $H=\left\langle a^{d}\right\rangle$, where $d \mid$ n and $o\left(a^{d}\right)=3$, then $\Delta_{H, D_{2 n}}^{g}$ is not connected.
(b) If $H=\left\langle a^{d}, b\right\rangle,\left\langle a^{d}, a b\right\rangle$ or $\left\langle a^{d}, a^{2} b\right\rangle$, where $d \mid n$ and $o\left(a^{d}\right)=3$, then $\Delta_{H, D_{2 n}}^{g}$ is connected with diameter 2 if $g \neq 1, a^{d}, a^{2 d}$.
(c) If $H=\left\langle a^{d}, b\right\rangle$, where $d \mid n$ and $o\left(a^{d}\right)=3$, then $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=$ $\begin{cases}2, & \text { if } g=1 \\ 3, & \text { if } g=a^{d} \text { or } a^{2 d} .\end{cases}$

Proof. (a) Given $H=\left\{1, a^{d}, a^{2 d}\right\}$. We have $\left[a^{d}, a^{2 d}\right]=1,\left[a^{d}, a^{r} b\right]=a^{2 d}$ and $\left[a^{2 d}, a^{r} b\right]=$ $a^{4 d}=a^{d}$ for all r such that $1 \leq r \leq n$. Therefore, $g=1, a^{d}$ or $a^{2 d}$. If $g=a^{d}$ or $a^{2 d}$, then $a^{d} \nsim a^{r} b$ and $a^{2 d} \nsim a^{r} b$ for all r such that $1 \leq r \leq n$. Thus, $\Delta_{H, D_{2 n}}^{g}$ is disconnected. If $g=1$, then the vertex $a \in D_{2 n} \backslash H$ remains isolated because $\left[a^{d}, a\right]=1=\left[a^{2 d}, a\right]$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is not connected.
(b) If $g \neq 1, a^{d}, a^{2 d}$, then a^{d} is adjacent to all other vertices, as discussed in part (a). Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.
(c) Case 1: $g=1$

Since n is odd, we have $2 i \neq n$ for all integers i such that $1 \leq i \leq n-1$. Therefore, if $g=1$, then b is adjacent to all other vertices because $\left[a^{i}, b\right]=a^{2 i}$ and $\left[a^{r} b, b\right]=a^{2 r}$ for all integers i, r such that $1 \leq i, r \leq n-1$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and diam $\left(\Delta_{H, D_{2 n}}^{g}\right)=2$.

Case 2: $g=a^{d}$ or $a^{2 d}$
Since $\left[a^{d}, a^{2 d}\right]=1$, we have $a^{d} \sim a^{2 d}$. In addition, all the vertices of the form a^{i} commute among themselves, where $1 \leq i \leq n-1$. Therefore, $a^{d} \sim a^{i} \sim a^{2 d}$ for all $1 \leq i \leq n-1$ such that $i \neq d, 2 d$. Again, $\left[a^{i}, a^{r} b\right]=a^{2 i}=\left[a^{i}, b\right]$ for all $1 \leq i, r \leq n-1$. If $\left[a^{i}, a^{r} b\right]=a^{d}$ or $a^{2 d}$ for all $1 \leq r \leq n$, then $i=2 d$ or d respectively. Therefore, $a^{d} \sim a^{i} \sim b$, $a^{d} \sim a^{i} \sim a^{d} b, a^{d} \sim a^{i} \sim a^{2 d} b, a^{2 d} \sim a^{i} \sim b, a^{2 d} \sim a^{i} \sim a^{d} b$ and $a^{2 d} \sim a^{i} \sim a^{2 d} b$ for all $1 \leq i \leq n-1$ such that $i \neq d, 2 d$. If $\left[a^{r} b, b\right]=a^{d}$ or $a^{2 d}$ for all $1 \leq r \leq n-1$, then $a^{2 r}=a^{d}$ or $a^{2 d}$, which gives $r=2 d$ or d, respectively. Therefore, $a^{d} \sim a^{i} \sim b \sim a^{r} b, a^{2 d} \sim a^{i} \sim b \sim a^{r} b$, $a^{d} b \sim a^{i} \sim b \sim a^{r} b$ and $a^{2 d} b \sim a^{i} \sim b \sim a^{r} b$ for all $1 \leq i, r \leq n-1$ such that $i, r \neq d, 2 d$. Hence, $\Delta_{H, D_{2 n}}^{g}$ is connected and $\operatorname{diam}\left(\Delta_{H, D_{2 n}}^{g}\right)=3$.

4. Conclusions

In this paper, we generalize the induced g-noncommuting graph of a finite group G by introducing the graph $\Delta_{H, G}^{g}$, where H is a subgroup of G. We generalize certain results, namely (Lemma 2.4, [20]), (Lemma 3.1, [20]) and (Theorem 2.1, [21]) in Theorems 1, 6 and 7. In (Theorem 2.5, [22]), it was shown that $\Delta_{G, G}^{g}$ is not a tree. In Section 2, we consider the question whether $\Delta_{H, G}^{g}$ is a tree or not and we show that $\Delta_{H, G}^{g}$ is not a tree in general. In [21], Nasiri et al. showed that $\operatorname{diam}\left(\Delta_{G, G}^{g}\right) \leq 4$ if $\Delta_{G, G}^{g}$ is connected. Furthermore, they conjectured that $\operatorname{diam}\left(\Delta_{G, G}^{g}\right) \leq 2$ if $\Delta_{G, G}^{g}$ is connected. In Section 3, we show that this is not true in case of the graph $\Delta_{H, G}^{g}$, where H is a proper subgroup of G. In particular, we
identify a subgroup H of $D_{2 n}$ in Theorem 12 such that diam $\left(\Delta_{H, D_{2 n}}^{g}\right)=3$ while discussing connectivity and diameter of $\Delta_{H, D_{2 n}}^{g}$. It will be interesting to consider other families of finite groups (e.g., semidihedral groups and generalized quaternion groups) and find $\operatorname{diam}\left(\Delta_{H, G}^{g}\right)$.

Author Contributions: Investigation, M.S., R.K.N., Y.S.; writing-original draft preparation, M.S., R.K.N., Y.S.; writing-review and editing, M.S., R.K.N., Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The first author would like to thank DST for the INSPIRE Fellowship. The authors are grateful to the referees for their valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abdollahi, A.; Akbari, S.; Maimani, H.R. Non-commuting graph of a group. J. Algebra 2006, 298, 468-492. [CrossRef]
2. Afkhami, M.; Farrokhi, D.G.M.; Khashyarmanesh, K. Planar, toroidal and projective commuting and non-commuting graphs. Comm. Algebra 2015, 43, 2964-2970. [CrossRef]
3. Ahanjideh, N.; Iranmanesh, A. On the relation between the non-commuting graph and the prime graph. Int. J. Group Theory 2012, 1, 25-28.
4. Darafsheh, M.R. Groups with the same non-commuting graph. Discret. Appl. Math. 2009, 157, 833-837. [CrossRef]
5. Darafsheh, M.R.; Bigdely, H.; Bahrami, A.; Monfared, M.D. Some results on non-commuting graph of a finite group. Ital. J. Pure Appl. Math. 2010, 27, 107-118.
6. Dutta, P.; Nath, R.K. On Laplacian energy of non-commuting graphs of finite groups. J. Linear Top. Algebra 2018, 7, 121-132.
7. Dutta, P.; Dutta, J.; Nath, R.K. On Laplacian spectrum of non-commuting graphs of finite groups. Indian J. Pure Appl. Math. 2018, 49, 205-216. [CrossRef]
8. Jahandideh, M.; Darafsheh, M.R.; Sarmin, N.H.; Omer, S.M.S. Conditions on the edges and vertices of non-commuting graph. J. Tech. 2015, 74, 73-76. [CrossRef]
9. Jahandideh, M.; Darafsheh, M.R.; Shirali, N. Computation of topological indices of non-commuting graphs. Ital. J. Pure Appl. Math. 2015, 34, 299-310.
10. Jahandideh, M.; Modabernia, R.; Shokrolahi, S. Non-commuting graphs of certain almost simple groups. Asian-Eur. J. Math. 2019, 12, 1950081. [CrossRef]
11. Jahandideh, M.; Sarmin, N.H.; Omer, S.M.S. The topological indices of non-commuting graph of a finite group. Int. J. Pure Appl. Math. 2015, 105, 27-38. [CrossRef]
12. Moghaddamfar, A.R. About non-commuting graphs. Sib. Math. J. 2005, 47, 1112-1116.
13. Moghaddamfar, A.R.; Shi, W.J.; Zhou, W.; Zokayi, A.R. On the non-commuting graph associated with a finite group. Sib. Math. J. 2005, 46, 325-332. [CrossRef]
14. Nath, R.K.; Sharma, M.; Dutta, P.; Shang, Y. On r-noncommuting graph of finite rings. Axioms 2021, 10, 233. [CrossRef]
15. Talebi, A.A. On the non-commuting graphs of group $D_{2 n}$. Int. J. Algebra 2008, 2, 957-961.
16. Vatandoost, E.; Khalili, M. Domination number of the non-commuting graph of finite groups. Electron. J. Graph Theory Appl. 2018, 6, 228-237. [CrossRef]
17. Neumann, B.H. A problem of Paul Erdös on groups. J. Aust. Math. Soc. 1976, 21, 467-472. [CrossRef]
18. Sharma, M.; Nath, R.K. Relative g-Noncommuting Graph of Finite Groups. Available online: https:/ /arxiv.org/pdf/2008.04123 .pdf (accessed on 10 September 2020).
19. Nasiri, M.; Erfanian, A.; Ganjali, M.; Jafarzadeh, A. g-noncommuting graph of some finite groups. J. Prime Res. Math. 2016, 12, 16-23.
20. Nasiri, M.; Erfanian, A.; Ganjali, M.; Jafarzadeh, A. Isomorphic g-noncommuting graphs of finite groups. Pub. Math. Deb. 2017, 91,33-42. [CrossRef]
21. Nasiri, M.; Erfanian, A.; Mohammadian, A. Connectivity and planarity of g-noncommuting graphs of finite groups. J. Agebra Appl. 2018, 16, 1850107. [CrossRef]
22. Tolue, B.; Erfanian, A.; Jafarzadeh, A. A kind of non-commuting graph of finite groups. J. Sci. Islam. Repub. Iran 2014, 25, 379-384.
