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Abstract: We consider the Benjamin–Bona–Mahony (BBM) equation of the form ut ` ux ` uux ´

uxxt “ 0, px, tq PMˆR where M “ T or R. We establish norm inflation (NI) with infinite loss of
regularity at general initial data in Fourier amalgam and Wiener amalgam spaces with negative
regularity. This strengthens several known NI results at zero initial data in HspTq established by Bona–
Dai (2017) and the ill-posedness result established by Bona–Tzvetkov (2008) and Panthee (2011) in
HspRq. Our result is sharp with respect to the local well-posedness result of Banquet–Villamizar–Roa
(2021) in modulation spaces M2,1

s pRq for s ě 0.

Keywords: BBM equation; ill-posedness; Fourier amalgam spaces; Wiener amalgam spaces; Fourier–
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1. Introduction

We study strong ill-posedness for the Benjamin–Bona–Mahony (BBM) equation of
the form

#

ut ` ux ` uux ´ uxxt “ 0
upx, 0q “ u0pxq

(1)

where u : MˆRÑ R unknown function and M “ T or R. The BBM (1) can be written as

iut “ ϕpDxqu`
1
2

ϕpDxqu2, upx, 0q “ u0pxq (2)

where ϕpξq “ ξ
1`ξ2 , Dx “

1
i Bx and ϕpDxq is the Fourier multiplier operator defined by

F rϕpDxquspξq “ ϕpξqpupξq.

This BBM (1) model is the regularized counterpart of the Korteweg–de Vries (KdV)
equation. This is extensively studied in the literature; see [1–5]. BBM equation (1) is well-
suited for modeling wave propagation on star graphs; see [6]. This model gave a good
description of the propagation of surface water waves in a channel; see [5].

The aim of this paper is to establish the following strong ill-posedness (norm inflation
at general initial data with infinite loss of regularity) for (1) in Fourier amalgam pwp,q

s pMq

and Wiener amalgam Wp,q
s pMq spaces (to be defined in Section 2). We recall that
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pwp,q
s pMq “
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%

FLq
spMq (Fourier–Lebesgue spaces) if p “ q

M2,q
s pMq (modulation spaces) if p “ 2

M2,2
s pMq “ W2,2

s pMq “ HspMq (Sobolev spaces) if p “ q “ 2
FLq

spMq “ Mp,q
s pMq “ Wp,q

s pMq if M “ Td.

These time–frequency spaces are proven to be very fruitful in handling various prob-
lems in analysis and have gained prominence in nonlinear dispersive PDEs, e.g., [7–15].
We now state our main theorem.

Theorem 1. Assume that 1 ď p, q ď 8, s ă 0 and let

Xp,q
s pMq “

#

pwp,q
s pRq or W2,q

s pRq for M “ R
FLq

spTq for M “ T.

Then, norm inflation with infinite loss of regularity occurs to (1) everywhere in Xp,q
s pMq,

i.e., for any u0 P Xp,q
s pMq, θ P R and ε ą 0, there exists a smooth u0,ε P Xp,q

s pMq and
T ą 0 satisfying

}u0 ´ u0,ε}Xp,q
s
ă ε, 0 ă T ă ε

such that the corresponding smooth solution uε to (1) with data u0,ε exists on r0, Ts and

}uεpTq}Xθ
ą

1
ε

.

In particular, for any T ą 0, the solution map Xp,q
s pMq Q u0 ÞÑ u P Cpr0, Ts, Xp,q

θ pMqq

for (1) is discontinuous everywhere in Xp,q
s pMq for all θ P R.

In [3], Bona and Tzvetkov proved that (1) is globally well-posed in HspRq for s ě 0.
Moreover, they also proved that (1) is ill-posed for s ă 0 in the sense that the solution map
u0 ÞÑ uptq is not C2 from HspRq to Cpr0, Ts, HspRqq. Later, in [16], Panthee proved that it is
discontinuous at the origin from HspRq to D1pRq. Recently, Bona and Dai, in [17], established
norm inflation for (1) at zero initial data in 9HspTq for s ă 0. We note that Theorem 1 also
holds for the corresponding homogeneous 9Xp,q

s pMq spaces; see Remark 1. The particular
case of Theorem 1 strengthens these results by establishing the infinite loss of regularity at
every initial datum in HspMq for s ă 0. In [18] (Theorem 1.7), Banquet and Villamizar-Roa
proved that (1) is locally well-posed in M2,1

s pRq for s ě 0. Thus, the particular case of
Theorem 1 complements this result by establishing sharp, strong ill-posedness in M2,1

s pRq
for s ă 0. To the best of the authors’ knowledge, there is no well-posedness result for (1) in
Fourier amalgam pwp,q

s pp ‰ 2q (except in FL1pMq; see Corollary 1) or in Wp,q (except in
Hs) spaces. The infinite loss of regularity for (1) is initiated in the present paper and thus
Theorem 1 is new.

We use a Fourier analytic approach to prove Theorem 1. This approach dates back to
Bejenaru and Tao [19] to obtain ill-posedness for quadratic NLS and further developed by
Iwabuchi in [20]. Later, Kishimoto [21] established norm inflation (NI) for NLS on a special
domain (special domain: Rd1 ˆTd2 , d “ d1 ` d2 and with non-linearity:

řn
j“1 νju

ρjpūqσj´ρj

where νj P C, σj P N, ρj P NY t0u with σj ě maxpρj, 2q) and Oh [22] established NI at
general initial data for cubic NLS. Recently, this approach has been used to obtain strong
ill-posedness for NLW in [15,23]. We refer to [21] (Section 2) for a detailed discussion of
this approach.

We now briefly comment on and outline the proof of Theorem 1. We first justify the
convergence of a series of Picard terms, the smooth solutions to (1), in Wiener algebra
FL1 (see Corollary 1). This is possible since the linear BBM propagator is unitary on FL1

and the bilinear operator for the nonlinearity in (2) is bounded (see Lemma 1). Then, (1)
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experiences NI at general initial data because (with appropriately chosen initial data close
to the given data) one Picard term dominates, in Xp,q

s ´norm, the rest of the Picard iterate
terms in the series for s ă 0 and also this term becomes arbitrarily large (see (16)–(18)). To
this end, we perturb general initial data u0 by φ0,N . Here, φ0,N is defined on the Fourier
side by a scalar (depends on N) multiplication of the characteristic function on the union
of two intervals obtained by translation of r´1, 1s by ˘N and so the size of support of φ0,N
remains uniform. Specifically, we set

Fφ0,N “ RχIN ,

where IN “ r´N ´ 1,´N ` 1s Y rN ´ 1, N ` 1s with N " 1, R “ RpNq " 1 (to be chosen
later) and

u0,N “ u0 ` φ0,N .

Eventually, this u0,N will play the role of u0,ε in Theorem 1. Similarly, φ0,N was used
by Bona and Tzvetkov to establish that the solution map fails to become C2 in [3] and
also by Panthee [16] to conclude that, in fact, the solution map is discontinuous. In [3],
the size of the support of φ0,N on the Fourier side was allowed to vary as N Ñ 8 with a
normalizing constant to ensure that }φ0,N}Hs „ 1, whereas in [16], Fφ0,N is taken as χIN ,
which implies }φ0,N}Hs Ñ 0 as N Ñ8. To establish NI with infinite loss of regularity, we
multiply R “ RpNq " 1 with Panthee’s choice of φ0,N to ensure that the second Picard
iterates U2ptqru0,Ns have the desired property (as mentioned above) and reduce the analysis
when considering a single term on the `q´norm:

}xnyθ f pnq}`q
npn“1q “ 2ps´θq{2}xnys f pnq}`q

npn“1q for all θ P R.

as done in NLW case in [23]. We note that finite loss of regularity of NLW was initiated by
Lebeau in [24] and infinite loss of regularity for NLS, via a geometric optics approach, by
Carles et al. in [25].

The rest of the paper is organized as follows. In Section 2, we recall the definitions
of the time–frequency spaces. In Section 3, we establish power series expansion of the
solution in FL1, by establishing pwp,q

s -estimates of the Picard terms for general data. In
Section 4, we first prove various estimates of the Picard terms with particular choices of
data, and this enables us to conclude the proof of Theorem 1.

2. Function Spaces

The notation A À B means A ď cB for some constant c ą 0, whereas A — B
means c´1 A ď B ď cA for some c ě 1. Let F denote the Fourier transform and x¨ys “
p1` | ¨ |2qs{2, s P R. Here, xM denotes the Pontryagin dual of M, i.e., xM “ R if M “ R and
xM “ Z if M “ T. S 1pMq denotes the space of tempered distributions; see, e.g., [26] (Part

II) for details. The Fourier–Lebesgue space FLq
spMq p1 ď q ď 8, s P Rq is defined by

FLq
spMq “

!

f P S 1pMq : F f x¨ys P LqpxMq

)

.

In the 1980s, Feichtinger [27] introduced the modulation spaces Mp,q
s pMq and Wiener

amalgam spaces Wp,q
s pMq using shrot-time Fourier transform (STFT) (STFT is also known

as windowed Fourier transform and is closely related to Fourier–Wigner and Bargmann
transform. See, e.g., [28] (Lemma 3.1.1) and [28] (Proposition 3.4.1)). The STFT of a
f P S 1pMqwith respect to a window function 0 ‰ g P SpMq is defined by

Vg f px, yq “
ż

M
f ptqTxgptqe´2πiy¨tdt, px, yq PMˆ xM
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whenever the integral exists. Here, Txgptq “ gptx´1q is the translation operator on M. We
define modulation Mp,q

s pMq and Wiener amalgam spaces Wp,q
s pMq, for 1 ď p, q ď 8, s P R,

by the norms:

} f }Mp,q
s
“

›

›

›
}Vg f px, yq}LppMqxyy

s
›

›

›

LqpxMq
and } f }Wp,q

s pMq
“

›

›

›
}Vg f px, yqxyys}LqpxMq

›

›

›

LppMq
.

The definition of the modulation space is independent of the choice of the particular
window function; see [28] (Proposition 11.3.2(c)). There is also equivalent characterization
of these spaces via frequency uniform decomposition (which is quite similar to Besov
spaces—where decomposition is dyadic). To do this, let ρ P SpRq, ρ : R Ñ r0, 1s be a
smooth function satisfying ρpξq “ 1 if |ξ| ď 1

2 and ρpξq “ 0 if |ξ| ě 1. Set ρnpξq “ ρpξ ´ nq

and σnpξq “
ρnpξq

ř

`PZd ρ`pξq
, n P Z. Then, define the frequency-uniform decomposition operators

by
�n “ F´1σnF .

It is known [7] (Proposition 2.1), [27] that

} f }Mp,q
s pMq

—

›

›

›
‖�n f ‖Lp

xpMq
xnys

›

›

›

`
q
npZq

and } f }Wp,q
s pMq

—

›

›

›
‖�n f ¨ xnys}`q

npZq

∥∥∥
Lp

xpMq
.

Recently, in [29], Oh and Forlano introduced Fourier amalgam spaces pwp,q
s pMq p1 ď

p, q ď 8, s P Rq :

pwp,q
s pMq “

#

f P S 1pMq : } f }
pwp,q

s
“

›

›

›

›

∥∥χn`Q1pξqF f pξq
∥∥

Lp
ξ p

xMq
xnys

›

›

›

›

`
q
npZq

ă 8

+

,

where Q1 “ p´
1
2 , 1

2 s. The homogeneous spaces 9Xp,q
s pMq corresponding to the above spaces

can be defined by replacing the Japanese brackets x¨ys with | ¨ |s in their definitions.

3. Local Well-Posedness in Wiener Algebra FL1

The integral version of (2) is given by

uptq “ Uptqu0 ´
i
2

ż t

0
Upt´ τqϕpDxqu2pτqdτ (3)

where FUptqϕpDxqupξq “ eitϕpξqϕpξqFupξq and Uptqu0pxq “ F´1peitϕpξqFu0pξqqpxq is the
unique solution to the linear problem

iut “ ϕpDxqu, upx, 0q “ u0pxq; px, tq PMˆR.

Let us define the operator N given by

N pu, vqptq “
ż t

0
Upt´ τqϕpDxqpuvqpτqdτ.

Definition 1 (Picard iteration). For u0 P L2pRdq, define U1ru0sptq “ Uptqu0 and for k ě 2

Ukru0sptq “ ´
i
2

ÿ

k1,k2ě1
k1`k2“k

N
`

Uk1ru0s, Uk2ru0s
˘

ptq.

Lemma 1. Let 1 ď p, q ď 8, s, t P R. Then, we have

(1) }Uptqu0}
pwp,q

s
“ }u0}

pwp,q
s

(2) }N pu, vqptq}
pwp,q

s
ď

şt
0}upτq}FL1}vpτq}

pwp,q
s

dτ ď t}u}L8pp0,tq,FL1q}v}L8pp0,tq,pwp,q
s q

.
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Proof. Note that

}Uptqu0}
pwp,q

s
“

›

›

›

›

›

∥∥∥χn`Q1pξqe
itϕpξqFu0pξq

∥∥∥
Lp

ξ p
xMq
p1` |n|2qs{2

›

›

›

›

›

`
q
npZq

“ }u0}
pwp,q

s
.

Using the fact that |ϕ| ď 1, we have

}N pu, vqptq}
pwp,q

s
“

›

›

›

›

›

∥∥∥∥χn`Q1pξq

ż t

0
eipt´τqϕpξqϕpξqpFu ˚Fvqpξqpτqdτ

∥∥∥∥
Lp

ξ p
xMq

xnys
›

›

›

›

›

`
q
npZq

ď

›

›

›

›

›

ż t

0

∥∥∥χn`Q1pξqe
ipt´τqϕpξqϕpξqpFu ˚Fvqpξqpτq

∥∥∥
Lp

ξ p
xMq

dτxnys
›

›

›

›

›

`
q
npZq

ď

›

›

›

›

ż t

0

∥∥χn`Q1pξqpFu ˚Fvqpξqpτq
∥∥

Lp
ξ p

xMq
dτxnys

›

›

›

›

`
q
npZq

ď

ż t

0

›

›

›

›

}Fupξqpτq}L1
ξp

xMq

∥∥χn`Q1pξqFvpξqpτq
∥∥

Lp
ξ p

xMq
xnys

›

›

›

›

`
q
npZq

dτ

“

ż t

0
}upτq}FL1}vpτq}

pwp,q
s

dτ.

Lemma 2 (See [21]). Let tbku
8
k“1 be a sequence of nonnegative real numbers such that

bk ď C
ÿ

k1,k2ě1
k1`k2“k

bk1 bk2 @ k ě 2.

Then, we have bk ď b1Ck´1
0 , for all k ě 1, where C0 “

2π2

3 Cb1.

Lemma 3. There exists c ą 0 such that for all t ą 0 and k ě 2, we have

}Ukru0sptq}
pwp,q

s
ď pctqk´1}u0}

k´1
FL1}u0}

pwp,q
s

.

Proof. Let tbku be a sequence of nonnegative real numbers such that

b1 “ 1 and bk “
1

k´ 1

ÿ

k1,k2ě1
k1`k2“k

bk1 bk2 @ k ě 2.

By Lemma 2, we have bk ď ck´1
0 for some c0 ą 0. In view of this, it is enough to prove

the following claim:

}Ukru0sptq}
pwp,q

s
ď bktk´1}u0}

k´1
FL1}u0}

pwp,q
s

.

By Definition 1, Lemma 1 and using the fact that |ξ|
1`ξ2 ď 1, we have

}Ukru0sptq}
pwp,q

s
ď

ÿ

k1,k2ě1
k1`k2“k

ż t

0

›

›Uk1ru0spτq
›

›

FL1

›

›Uk2ru0spτq
›

›

pwp,q
s

dτ (4)

Thus, we have

}U2ru0sptq}
pwp,q

s
ď t}Uru0s}L8pp0,tq,FL1q}Uru0s}L8pp0,tq,pwp,q

s q
“ t}u0}FL1}u0}

pwp,q
s
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Hence, the claim is true for k “ 2 as b2 “ 1. Assume that the result is true up to the
label pk´ 1q. Then, from (4), we obtain

}Ukru0sptq}
pwp,q

s
ď

ÿ

k1,k2ě1
k1`k2“k

bk1 bk2

ż t

0
τk1´1}u0}

k1
FL1 ˆ τk2´1}u0}

k2´1
FL1 }u0}

pwp,q
s

dτ

“ bktk´1}u0}
k´1
FL1}u0}

pwp,q
s

.

Thus, the claim is true at the level k. This completes the proof.

Corollary 1. If 0 ă T ! M´1, then for any u0 P FL1 with }u0}FL1 ď M, there exists a unique
solution u P Cpr0, Ts,FL1pMqq to the integral equation (3) associated with (2), given by

u “
8
ÿ

k“1

Ukru0s (5)

which converges absolutely in Cpr0, Ts,FL1pMqq.

Proof. Define
Ψpuqptq “ Uptqu0 ´

i
2
N pu, uqptq.

By Lemma 1, we have

}Ψpuq}Cpr0,Ts,FL1q ď }u0}FL1 ` T}u}2Cpr0,Ts,FL1q,

}Ψpuq ´Ψpvq}Cpr0,Ts,FL1q À T max
´

}u}Cpr0,Ts,FL1q, }v}Cpr0,Ts,FL1q

¯

}u´ v}Cpr0,Ts,FL1q.

Then, considering the ball

BT
2M “

!

φ P Cpr0, Ts,FL1q : }φ}Cpr0,Ts,FL1q ď 2M
)

with TM ! 1, we find a fixed point of Ψ in BT
2M and hence a solution to (3). This completes

the proof of the first part of the lemma. For the second part, we note that in view of
Lemma 3, the series (5) converges absolutely if 0 ă T ! M´1. Then, for ε ą 0, there exists
j1 such that for all j ě j1, one has

›

›u´ uj
›

›

Cpr0,Ts,FL1q
ă ε (6)

where

u “
8
ÿ

k“1

Ukru0s, and uj “

j
ÿ

k“1

Ukru0s.

Note that u, uj P BT
2M for all j as 0 ă T ! M´1. Using the continuity of Ψ on BT

2M, we
find j2 such that for all j ě j2

›

›Ψpuq ´Ψpujq
›

›

Cpr0,Ts,FL1q
ă ε. (7)
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Note that

uj ´Ψpujq “

j
ÿ

k“1

Ukru0s ´Uptqu0 `
i
2
N puj, ujq

“

j
ÿ

k“2

Ukru0s `
i
2

ÿ

1ďk1,k2ďj

N pUk1ru0s, Uk2ru0sq

“
i
2

2j
ÿ

k“j`1

ÿ

1ďk1,k2ďj
k1`k2“k

N pUk1ru0s, Uk2ru0sq “ ´

2j
ÿ

k“j`1

Uk,jru0s

where we set
Uk,jru0s “ ´

i
2

ÿ

1ďk1,k2ďj
k1`k2“k

N pUk1ru0s, Uk2ru0sq.

Note that Uk,j has a lower number of terms in the sum above compared to that of Uk.
Hence, proceeding as in the proof of Lemma 3, one achieves the same estimates for Uk,j.
Thus, using 0 ă T ! M´1,

›

›uj ´Ψpujq
›

›

Cpr0,Ts,FL1q
ď

2j
ÿ

k“j`1

›

›

›
Uk,jru0s

›

›

›

Cpr0,Ts,FL1q

ď

2j
ÿ

k“j`1

ck´1Tk´1}u0}
k
FL1

ď M
8
ÿ

k“j`1

pcTMqk´1 ď 2MpcMTqj.

Then, there exists j3 such that for j ě j3, one has
›

›uj ´Ψpujq
›

›

Cpr0,Ts,FL1q
ă ε. (8)

Therefore, from (6)–(8), one has

}u´Ψpuq}Cpr0,Ts,FL1q ă 3ε.

Thus, u is the required fixed point for Ψ.

4. Proof of Theorem 1

We first prove NI with infinite loss of regularity at general data in FL1pMqXXp,q
s pMq.

Subsequently, for general data in Xp,q
s pMq, we use the density of FL1pMq X Xp,q

s pMq in
X p,q

s pMq (s ă 0). Thus, let us begin with u0 P FL1pMq X Xp,q
s pMq. Now, define φ0,N on

M via the following relation

Fφ0,Npξq “ RχIN pξq pξ P xMq (9)

where IN “ r´N ´ 1,´N ` 1s Y rN ´ 1, N ` 1s and N " 1, R " 1 to be chosen later. Note
that

}φ0,N}
pwp,q

s
„ RNs. (10)

Let us set
u0,N “ u0 ` φ0,N (11)
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Lemma 4 (See Lemma 3.6. in [21]). There exists C ą 0 such that for u0 satisfying (9) and k ě 1,
we have

|suppFUkrφ0,Nsptq| ď Ck, @t ě 0.

4.1. Estimates in pwp,q
s pMq

Lemma 5. Let u0 be given by (9), s ď 0 and 1 ď p, q ď 8. Then, there exists C such that

(1) }u0,N ´ u0}
pwp,q

s
À RNs

(2) }U1ru0,Nsptq}
pwp,q

s
À 1` RNs

(3) }U2ru0,Nsptq ´U2rφ0,Nsptq}
pwp,q

s
À tR

(4) }Ukr~u0,Nsptq}
pwp,q

s
À CkRktk´1.

Proof. (1) follows from (10). By Lemma 1 and (10), we have }U1rφ0,Nsptq}
pwp,q

s
“ }φ0,N}

pwp,q
s
„

RNs. Then, (2) follows by using triangle inequality. By Lemma 3 and (10), we obtain

}Ukrφ0,Nsptq}
pwp,q

s
ď sup

ξPxM
|FUkrφ0,Nspt, ξq|µ

xMpsuppFUkrφ0,Nsptqq1{p
›

›xnys
›

›

`qpnPsupp FUkrφ0,Nsptqq

À pctqk´1Rk›
›xnys

›

›

`qpnPsupp FUkrφ0,Nsptqq

where µ
xMpAq denotes the xM-measure of the set A. Since s ď 0, for any bounded set

D Ă R, we have
}xnys}`qpnPDq ď }xny

s}`qpnPBDq

where BD Ă R is the interval centered at the origin with |D| “ |BD|. In view of this and
Lemma 4, we obtain

}xnys}
`qpsupp xUkrφ0,Nsptqq

ď }xnys}`qpt|n|ďCk{duq À Ck{q.

Therefore,

}Ukrφ0,Nsptq}
pwp,q

s
ď Cktk´1Rk. (12)

Now, observe that

Ikptq :“Ukru0,Nsptq ´Ukrφ0,Nsptq

“
ÿ

k1,k2ě1
k1`k2“k

N pUk1ru0 ` φ0,Ns, Uk2ru0 ` φ0,Nsq ´N pUk1rφ0,Ns, Uk2rφ0,Nsq

“
ÿ

k1,k2ě1
k1`k2“k

ÿ

pψ1,ψ2qPC
N pUk1rψ1s, Uk2rψ2σ`1sq

where C “ tu0, φ0,Nu
2ztpφ0,N , φ0,Nqu. Observe that C has atleast one coordinate as ~u0. Using

Lemma 1 and the proof of Lemma 3, it follows that

}Ikptq}
pwp,q

s
À

ÿ

k1,k2ě1
k1`k2“k

ÿ

pv1,v2qPC

ż t

0
}Uk1rv1spτq}

pwp,q
s
}Uk2rv2spτq}FL1 dτ

ď p22 ´ 1q2}u0}
pwp,q

s
p}u0}

k´1
FL1 ` }φ0,N}

k´1
FL1q

ż t

0
τk´2dτ

ÿ

k1,k2ě1
k1`k2“k

bk1 bk2

ď 12bktk´1Rk´1}u0}
pwp,q

s
ď Cktk´1Rk´1}u0}

pwp,q
s

as R " 1. Note that (3) is the particular case k “ 2 and (4) follows using the above
and (12).
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Lemma 6. Let u0 be given by (9), 1 ď p ď 8, s P R and 0 ă T ! 1, and then we have

}U2rφ0,NspTq}
pwp,q

s
ě

›

›

›

›

∥∥χn`Q1pξqFU2rφ0,NspTqpξq
∥∥

Lp
ξ
xnys

›

›

›

›

`qpn“1q
Á R2T.

Proof. For notational convenience, we write

Γξ “ tpξ1, ξ2q : ξ1 ` ξ2 “ ξu and Φ “ cp´ϕpξq ` ϕpξ1q ` ϕpξ2qq.

Using the symmetry of set Γξ , we have

FU2ru0spTqpξq “
ż T

0
eicpT´tqϕpξqϕpξqpFU1ptqu0 ˚FU1ptqu0qdt

“

ż T

0
eicpT´tqϕpξqϕpξq

”

eictϕFu0 ˚ eictϕFu0

ı

pξqdt (13)

“ eicTϕpξqϕpξqR2
ż T

0

ż

Γξ

eitΦχIN pξ1qχIN pξ2qdΓξ dt.

Note that, with ξ1 ` ξ2 “ ξ, one has

Φpξ, ξ1, ξ2q “ c
ξξ1ξ2pξ

2 ´ ξ1ξ2 ` 3q
p1` ξ2

1qp1` ξ2
2qp1` ξ2q

and so for ξ P r 1
2 , 1s and ξ1, ξ2 P IN , we have |Φ| „ 1. Hence, |tΦ| ! 1 for 0 ă t ! 1. Thus,

Re
ż T

0
eitΦdt ě

T
2

.

Moreover, note that |ϕpξq| Á 1 for ξ P r 1
2 , 1s. Thus, we have for ξ P r 1

2 , 1s Ă IN ` IN

|FU2ru0spTqpξq| Á R2T
ż

Γξ

χIN pξ1qχIN pξ2qdΓξ “ R2TχIN ˚ χIN pξq ě R2Tχr´1,1s (14)

as χa`r´1,1s ˚ χb`r´1,1s ě χa`b`r´1,1s. The above pointwise estimate immediately gives the
desired estimate:

}U2rφ0,NspTq}
pwp,q

s
ě

›

›

›

›

∥∥χn`Q1pξqFU2r~φ0,NspTqpξq
∥∥

Lp
ξ pr

1
2 ,1sXxMq

xnys
›

›

›

›

`qpn“1q
Á TR2

provided 0 ă T ! 1.

4.2. Estimates in W2,q
s pRq

Lemma 7 (inclusion). Let p, q, q1, q2 P r1,8s and s P R. Then,

(1) } f }
W2,q

s
ď } f }

pw2,q
s

if q ď 2

(2) } f }Wp,q1
s

À } f }Wp,q2
s

if q1 ě q2

Proof. (1) is a consequence of Minkowski inequality and Plancherel theorem, whereas (2)
follows from the fact that `q2 ãÑ `q1 if q1 ě q2.

Lemma 8. Let u0 be given by (9), s ď 0 and 1 ď p ď 8. Then, there exists C such that

(1) }u0,N ´ u0}W2,q
s
À RNs

(2) }U1ru0,Nsptq}W2,q
s
À 1` RNs

(3) }U2ru0,Nsptq ´U2rφ0,Nsptq}W2,q
s
À tR



Mathematics 2021, 9, 3145 10 of 13

(4) }Ukr~u0,Nsptq}W2,q
s
À CkRktk´1

Proof. By Lemma 7, we have

}~u0,N ´~u0}W2,q
s
À

$

&

%

}~u0,N ´~u0}
pw2,q

s
À RNs for q P r1, 2s

}~u0,N ´~u0}W2,2
s
À RNs for q P p2,8s

using Lemma 5 (1). Similarly, the other estimates also follow from Lemmata 5.

Lemma 9. Let u0 be given by (9), 1 ď p ď 8, s P R and 0 ă T ! 1, then we have

}U2rφ0,NspTq}W2,q
s
ě

›

›

›

›

∥∥∥F´1σnFU2rφ0,NspTqpξqxny
s
∥∥∥
`qpn“1q

›

›

›

›

L2
ξ

Á R2T.

Proof. Note that using Plancherel theorem and (14), we have

}U2rφ0,NspTq}W2,q
s
ě

›

›

›
‖F´1σnFU2rφ0,NspTqpxqxny

s‖`qpn“e1q

›

›

›

L2
x

“ 2s{2›
›σe1FU2r~φ0,NspTqpξq

›

›

L2
ξ
Á R2T.

This completes the proof.

Proof of Theorem 1. We first consider the case X p,q
s “ pwp,q

s . If the initial data u0,N sat-
isfy (11), Corollary 1 guarantees the existence of the solution to (3) and the power series
expansion in FL1 up to time TR ! 1 (as R " 1). By Lemma 5, we obtain

8
ÿ

k“3

}Ukru0,NspTq}
pwp,q

s
À T2R3 (15)

provided TR ! 1. Note that

}uNpTq}
pwp,q

θ
ě }

›

›χn`Q1FuNpTq
›

›

Lpxnyθ}`qpn“1q „θ,s
›

›

›

›χn`Q1FuNpTq
›

›

Lpxnys
›

›

`qpn“1q

Using Corollary 1 and triangle inequality, we have

}uNpTq}
pwp,q

θ

Á
›

›

›

›χn`Q1FU2ru0,NspTq
›

›

Lpxnys
›

›

`qpn“1q ´ c
ˆ

›

›

›

›χn`Q1FU1ru0,NspTq
›

›

Lpxnys
›

›

`qpn“1q

`

8
ÿ

k“3

›

›

›

›χn`Q1FUkru0,NspTq
›

›

Lpxnys
›

›

`qpn“1q

˙

Á
›

›

›

›χn`Q1FU2ru0,NspTq
›

›

Lpxnys
›

›

`qpn“1q ´ c}U1r~u0,NspTq}
pwp,q

s
´ c

8
ÿ

k“3

}Ukr~u0,NspTq}
pwp,q

s
.

Let m P N. In order to ensure }uNpTq}
pwp,q

θ
Á }U2r~u0,NspTq}

pwp,q
s
" m, we rely on

the conditions

›

›

›

›χn`Q1FU2ru0,NspTq
›

›

L2xny
s›
›

`qpn“1q "

$

’

’

’

’

&

’

’

’

’

%

}U1r~u0,NspTq}
pwp,q

s
, (16)

8
ÿ

k“2

}Ukr~u0,NspTq}
pwp,q

s
, (17)

m. (18)

Thus, to establish NI with infinite loss of regularity at u0 in pwp,q
s , we claim that it is

enough to have the following:
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(1) CRNs ă 1{m
(2) TR ! 1
(3) TR2 " m
(4) TR2 " T2R3 ô (2)
(5) 0 ă T ! 1

as N Ñ 8. Note that (1) ensures }u0 ´ u0,N}
pwp,q

s
ă 1{m, whereas (2) ensures the conver-

gence of the infinite series in view of Lemma 5. In order to use Lemma 6, we need (4). In
order to prove (17), in view of Lemma 6 and (15), we need (4). Condition (3) implies (18)
using Lemma 5 (3) and Lemma 6. In order to prove (16), we need (1) and (3) by using
Lemma 5 (2) and Lemma 6. Thus, it follows that

}u0 ´ u0,N}
pwp,q

s
ă 1{m and }uNpTq}

pwp,q
θ
ą m.

Hence, the result is established. We shall now choose R and T as follows:

R “ Nr and T “ N´ε.

where r, ε are to be chosen below. Therefore, it is enough to check

CRNs “ CNr`s ă 1{m, TR “ N´ε`r ! 1, TR2 “ N´ε`2r " m, T “ N´ε ! 1.

Thus, we only need to achieve:

• r` s ă 0
• ´ε` r ă 0
• ´ε` 2r ą 0
• ε ą 0

and take N large enough. Let us concentrate on the choice of ε ą 0 first. Note that the
second and third conditions in the above are equivalent to

r ă ε ă 2r.

To make room for ε, we must have r ą 0. Thus, r must satisfy

0 ă r ă ´s

where the latter condition comes from the first condition. Thus, it is enough to choose

r “ ´
s
3

, ε “ ´
s
2

which will satisfy all the above four conditions. Hence, the result follows.
For the case X p,q

s “ W2,q
s , we use same argument as above. Note that using Lemmata 8

and 9, we have

}uNpTq}W2,q
θ

ě

›

›

›

›

›�nuNpTqxny
σ
›

›

`qpn“1q

›

›

›

L2
„θ,s

›

›

›

›

›�nuNpTqxny
s›
›

`qpn“1q

›

›

›

L2

Á

›

›

›

›

›�nU2ru0,NspTqxny
s›
›

`qpn“1q

›

›

›

L2
´ c}U1ru0,NspTq}W2,q

s
´ c

8
ÿ

k“3

}Ukr~u0,NspTq}W2,q
s

Á

›

›

›

›

›�nU2ru0,NspTqxny
s›
›

`qpn“1q

›

›

›

L2
" m.

and }~u0,N ´~u0}W2,q
s
ă 1{m provided that we choose R, N, T as in the case of pwp,q

s
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Remark 1. It is easy to check that our proof of the main results will work even if we replace the
weight x¨ys by | ¨ |s in the function spaces involved. Since the analysis will be similar, we omit the
details. We simply note that as xnys — |n|s for large n, we have }φ0,N} 9

pwp,q
s
— RNs, where φ0,N is

as in (9). Moreover, it should work with any weight n ÞÑ pωpnqqsps ă 0q that is decreasing in |n|
and behaves as |n|s as n Ñ8.
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