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Abstract: There is growing interest in analyzing human movement data for clinical, sport, and
ergonomic applications. Functional Data Analysis (FDA) has emerged as an advanced statistical
method for overcoming the shortcomings of traditional analytic methods, because the information
about continuous signals can be assessed over time. This paper takes the current literature a step
further by presenting a new time scale normalization method, based on the Hilbert transform, for the
analysis of functional data and the assessment of the effect on the variability of human movement
waveforms. Furthermore, a quantitative comparison of well-known methods for normalizing datasets
of temporal biomechanical waveforms using functional data is carried out, including the linear
normalization method and nonlinear registration methods of functional data. This is done using an
exhaustive database of human neck flexion-extension movements, which encompasses 423 complete
cycles of 31 healthy subjects measured in two trials of the experiment on different days. The results
show the advantages of the novel method compared to existing techniques in terms of computational
cost and the effectiveness of time-scale normalization on the phase differences of curves and on the
amplitude of means, which are assessed by Root Mean Square (RMS) values of functional means
of angles, angular velocities, and angular accelerations. Additionally, the confidence intervals are
obtained through a bootstrapping process.

Keywords: human movement analysis; Functional Data Analysis (FDA); nonlinear time normaliza-
tion; registration; warping function; Hilbert transform

1. Introduction

In recent years, the application of nonlinear techniques and advanced statistical
methods has received increasing attention for biomechanical analyses. Examples of such
biomechanical applications include gait analysis, sit-to-stand movement, sport movements,
rehabilitation therapies, and clinical applications, to name but a few (e.g., [1–3]). Nowadays,
it is easy to collect large amounts of kinematic or dynamic data with motion analysis
equipment and labs. In this regard, human movement analysis entails the use of time
series of data such as joint angles, velocities, accelerations, forces and moments, mechanical
power, landmark positions, etc.

These movement curves may present variations in amplitudes and temporal patterns
(phase differences) for different subjects or experimental trials [4,5]. This variability may
lead to the statistical cancellation effect related to the aggregation of data [6]. Therefore, the
main characteristics of each individual pattern may be hidden when obtaining averaged
patterns. Then, the analysis of such data requires some time-scale normalization so that
observational curves are comparable. This normalization is intended to match the duration
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of different registrations, preserve the main features of individual patterns, and reduce
variability in the timing of significant events [7].

The most widely used method to normalize time scales in clinical and biomechanical
applications is linear normalization, which converts them into a percentage of the duration
of the movement analyzed [8]. It is a simple method and can provide good results in many
applications [1]. However, it presents some problems that must be considered. On the one
hand, it depends on a good estimate of the initial and final moments of the movement,
which is not always evident [9]. On the other hand, it implicitly assumes that the duration
of the different phases of the movement is scaled to the total duration of the movement.
In [7], it is shown that this is not always true, which has important consequences for
reducing variability. In fact, it is possible that linear normalization not only does not reduce
temporal variability, but actually increases it in cases where there is not a high correlation
between the duration of the events and the total duration of the movement.

In the FDA context, other, much more efficient strategies have been developed to
reduce phase variability through different nonlinear registration procedures, as reviewed
in [10]. Nonlinear time-scale normalization techniques include landmark registration [11],
the sequence of states method [12], dynamic time warping [8,13], and curve registra-
tion based on correlation criteria [1,9,14] or on the Fisher–Rao Riemannian metric and
square-root velocity function (SRVF) [15,16]. Function registration methods could virtually
eliminate all phase variability so that the registered curves have the same shape, differing
only by the different amplitudes [11,15]. This makes it possible to obtain good estimates
of the average curves. However, the temporal information (which in linear normalization
is maintained in the lags between curves) does not disappear in this type of rescaling
but is maintained in the so-called time warping functions. These functions represent the
relationship between the modified time as a function of real time and make it possible to
analyze when the movement develops faster or slower than the reference motion.

Despite the attractiveness of these methods, they are not exempt from certain practical
limitations. First, their effectiveness in reducing variability depends on the type and
characteristics of the functions to be recorded. Thus, when applied to motion curves
that have many characteristic points (maxima, minima, inflection points), the reduction
in variability is much better than when applied to curves without the existence of such
points [1]. In addition, the registration process is complex from a mathematical point of
view and presents a high computational cost since the curves must be registered one by
one with respect to a reference. Moreover, the registration of curves that differ significantly
in the amplitude of their inflection points may distort the functions [17], the so-called
pinching effect [10], which causes important distortions in the shape of the curves. In
practice, this is equivalent to introducing discontinuities or sudden changes in the warping
functions, which is not consistent with the continuous nature of the speed of execution of
a movement.

Another drawback of these recording methods is that they are based on the comparison
of each curve with a reference standard, usually a mean. This means that they are based
on the geometric similarity between pairs of curves, without considering the dynamic
nature of the phenomenon they represent, the relationships between the variables and their
derivatives. In fact, the results of the registration process can change depending on the
order of the derivative used, which is not very consistent from a physical point of view.

This paper presents a novel time-scale normalization method, based on the Hilbert
transform (HT), for analyzing functional data and assessing the effect on variability of
human movement registrations. This method involves calculating the instantaneous phase
of a cyclical movement, which is a concept widely used in nonlinear dynamics. The
dynamics of movement are described in terms of the relationships between the variables
defining the position of the system and their derivatives, represented in the phase space.
Unlike nonlinear recording methods, which are based on comparing each curve with a
reference [10], the proposed method exclusively uses the information contained in the
curve to be adjusted, providing a generalized phase that varies between 0◦ and 360◦ during
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the execution of a cyclical movement. In this way, it provides a common scale of intrinsic
representation of each movement with a mechanical meaning.

Despite its widespread use for describing phases of motor coordination [18], as far as
we know, it has never been used as an alternative to time-scale normalization for reducing
the variability associated with phase differences. Hence, neither its effectiveness nor its
results when normalizing different types of periodic movements have been described.
Therefore, a quantitative comparison is made between the proposed method and the
two most widely used methods in the field of biomechanics: linear normalization and
continuous registration based on correlations [1,9,14]. For this, a comprehensive database
of flexion-extension movements of the human neck will be used. The results show the
usefulness of the proposed method relative to the current techniques in the literature.

The rest of the paper is organized as follows. Section 2 introduces the materials and
methods needed to compare the time-scale normalization methods applied to a human
movement database. The data structure is explained in Section 3, while Section 4 presents
and discusses the results. Finally, Section 5 draws conclusions from this research.

2. Materials and Methods

A database with flexion-extension movements of the neck will be used to assess the
effectiveness of the method. Three normalization procedures have been compared: (a) Lin-
ear normalization of the time scale, which is the technique widely used in biomechanical
applications; (b) A nonlinear registration method based on correlations; and (c) The method
based on the instantaneous phase obtained by the Hilbert transform.

As a nonlinear registration method, we have chosen the one proposed in [9,17]. Al-
though there are more recent alternatives, such as SRVF-based methods [15,16], we have
chosen this nonlinear registration method as it is the most widely used in the context of
human movement analysis. Since the state of motion of a dynamic system is defined by
position and velocity, we have considered two nonlinear registration methods: (b1) using
position curves (angles); and (b2) using velocity curves. The characteristics of each of the
normalization methods are described below.

2.1. Linear Normalization Method (Scale 0–100%)

Let us consider a set with N temporal functions xi(t) representing a position variable
associated with a cyclical movement, in our case, the angle of flexion-extension of the neck.

Each curve i can be expressed as a series of values xij, at times tij sampled in the
interval of duration of the movement, Ti. All curves are assumed to start at time t = 0,
although the durations Ti are different.

xij = xi
(
tij
)
; i = 1, 2, . . . , N; j = 1, 2, . . . , Mi; ti1 = 0; tiMi = Ti (1)

where Mi is the number of samples of the i-th curve. Note that the curves can be sampled
at different time intervals (tij can be different from tkj).

The normalization of the time scale from 0 to 100% of the execution time of the move-
ment is performed through a linear transformation, in which the percentage of execution
of the movement is calculated with respect to the total duration of the experiment (100% of
execution of the movement cycle) for each instant of time. Therefore, the normalized time
scale tn is obtained by means of Equation (2).

tn
ij =

tij

Ti
·100; tn

ij ∈ [0, 100] (2)

From the normalized times, the corresponding normalized functions over time, xn(tn)
are calculated as:

xn
i (t

n
ij) = xi

(
tij
)

(3)

All tn
ij are defined in the same interval, [0, 100], although they do not necessarily

correspond to the same instants. For the normalized curves to be comparable, the last step
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is to interpolate the xn
i curves to express them all in the same equispaced values of tn, with

a step equal to 1%. In this way, all functions are defined in the same normalized instants
[0, 1, 2 . . . 100]% of the duration of the movement.

It is important to note that linear normalization is performed independently for each
xi(t) curve. No comparison is made between the curves of the set since each curve only
uses a single parameter, the duration of that movement, Ti. Note also that the normalized
time is the same for the function xi(t) or for its first and second derivatives.

2.2. Nonlinear Registration Method of Functional Data Using Angles or Velocities

The procedure used for registering position or velocity curves is described in [9]. Let us
consider the set of N curves to be registered, xi(t), that correspond to the position variables
or their derivatives. In this work, flexion-extension angles and their first derivative have
been used. We will assume that all the curves are defined in the same time interval [0, T],
which implies a previous process of linear normalization of time.

The registered curves are a new set of curves x∗i (t) = xi(hi(t)), where hi(t) functions
are a nonlinear transformation of the time scale called a warping function. The warping
functions must minimize the phase differences between each curve, x∗i (t), and a reference
curve xo(t). Note that the nonlinear registration process involves comparing each curve in
the set with a reference curve, usually the functional mean of the set, x(t) [17]:

x0(t) = x(t) =
1
N

N

∑
i=1

xi(t) (4)

Since functional averages are affected by the cancellation effect, the adjustment process
cannot be done all at once, but rather, through a Procrustes process, as discussed later.

The calculation of hi(t) is associated with an optimization process where the variability
associated with the amplitude must be maximized, and the variability associated with
the phase differences must be minimized. This cannot be done directly on the differences
between a curve before and after the registration procedure because in such a case, the
method tries to compress the regions where amplitudes differ [17]. It distorts the shape
and temporal patterns of functions since a function minimizes the variability and perfectly
fits another function, except in the vicinity of the maxima and minima. Another more
rigorous method has been used to overcome this shortcoming, based on some ideas from
principal component analysis (PCA) [9]. The method used is based on minimizing the
second eigenvalue of the cross-product matrix L given by Equation (5).

L =

( ∫
x2

0(t)dt
∫

x0(t)xi(hi(t))dt∫
x0(t)xi(hi(t))dt

∫
x2

i (t)dt

)
(5)

This matrix is symmetric, and hence, has two real eigenvalues. The largest of them (µ1)
corresponds to the variance associated with the amplitude differences, while the second
(µ2) is associated with the phase differences [17]. Therefore, the best fit between x0(t) and
xi(t) is obtained by means of a function hi(t) that minimizes the smallest eigenvalue of
the matrix. In practice, this value is not used directly but rather its logarithm. So that the
objective function to optimize is F(hi) = log µ2.

The warping functions are required to have an integrable second derivative and also
to be strictly increasing. As explained in [17], such functions can be described by the
homogeneous linear differential Equation (6)

D2hi = wiDhi (6)

where D and D2 denote the first and second derivatives, respectively, and wi(t) is any
unconstrained function. This equation is also subject to the constraints h(0) = 0 and
h(T) = T, which makes it possible to obtain its solution as presented in [9].



Mathematics 2021, 9, 3138 5 of 16

Then Equation (6) has the solution

hi(t) = Ci

∫ t

0
exp (

∫ u

0
wi(v)dv)du (7)

where Ci = T/[
∫ T

o exp{
∫ u

0 wi(v)dv}du].
Note that Equation (6) and the function wi(t) are introduced to calculate the function

hi that minimizes F(hi) = log µ2, under the constraint that it is strictly increasing. In this
way, the optimization problem is carried out through wi.

As mentioned before, the nonlinear registration is performed by comparing each
function xi(t) with the functional mean of the set, x0(t). Since the original functions are
not aligned, the mean x0 will be affected by the cancellation process, which can distort
the results. A Procrustes method is used to avoid this. It consists of an iterative process
in which the registration of the set of curves is repeated several times so that a new x0
is obtained in each iteration, serving as a reference for the next registration. The process
converges in a few iterations. In this work, we have used three iterations [9].

The registration process involves making a comparison of the reference curve with
each of the sets, which implies the nonlinear optimization of N functions hi(t). Also, it must
be repeated three times in the Procrustes process, which means performing 3N nonlinear
optimizations. This involves a much longer computation time than methods where curves
are not compared, such as nonlinear normalization or the Hilbert transform-based method
described in the next subsection.

2.3. Nonlinear Hilbert Transform (HT) Method

The idea of obtaining an instantaneous phase of a movement comes from the descrip-
tion of the dynamics of an oscillatory system through phase portraits, in which velocity ver-
sus position is represented. In the case of harmonic motion of amplitude A and angular fre-
quency w, that diagram is a centered ellipse. If the motion begins at the point of maximum
elongation, then the x and y components are: x = A cos(wt); y = v = −Aw sin(wt).
Normalizing by the amplitudes, the instantaneous phase can be calculated as:

φ(t) = arctan
(
−y
wx

)
= wt (8)

This approach can be extended to the calculation of the phase in other cyclical move-
ments, in which case a phase is obtained that does not depend linearly on time, that is,
with a variable angular frequency, w(t). This approach has been widely used in movement
analysis to describe the coordination between the movements of different joints. It is very
consistent when it comes to quasi-harmonic periodic signals but offers debatable results in
other cases; for example, when there are several relative maxima or minima in each cycle,
which lead to a change of direction of the phase velocity. Therefore, we propose to use the
Hilbert transform (HT) as a way of obtaining a smoothed phase diagram in the analysis of
human movements. HT has been widely used in different engineering applications, mainly
in signal analysis [19]. However, its use in Biomechanics is scarce and has been related to
the study of motor coordination rather than normalizing the phase of the curves associated
with human movement [18,20].

Given that the HT is applied to each curve separately, regardless of the rest of the
set, in this section, we will dispense with the subscripts, explaining how the HT of an
individual curve is obtained.

The HT is a specific linear operator that takes a function, x(t), of a real variable and
provides another function of a real variable, x̂(t) = H[x(t)]. This linear operator is
given by convolution with the function 1/(πt), i.e., the HT of x can be considered as the
convolution of x(t) with the function g(t) = 1/(πt), which is referred to as the Cauchy
kernel. Since 1/t is not integrable across t = 0, the integral defining the convolution
does not always converge. Therefore, the HT is defined using the Cauchy principal value
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(P). The HT of a function x(t) is traditionally defined by means of an improper integral
(Equation (9)), provided this integral exists as a principal value.

x̂(t) = H[x(t)] =
1
π

P
∫ +∞

−∞
x(τ) ∗ 1

t− τ
dτ (9)

The Hilbert transform allows the transformation of any real signal into a complex,
analytic signal X(t) defined as

X(t) = x(t) + jx̂(t) = A(t)ejφ(t) (10)

From Equation (10), the instantaneous phase, φ(t), is defined as

φ(t) = arctan
(

x̂(t)
x(t)

)
(11)

Subsequently, the derivative of φ(t) is the angular frequency, ω(t) = dφ/dt, which can
be interpreted as the instantaneous velocity of the execution of the movement, in terms of
phase velocity. In this work, the HT has been computed by means of the MATLAB function
“hilbert.m”. This function returns the analytic signal X(t) in Equation (10).

The HT is not directly applied to the x(t) functions, but rather they must be centered
to avoid distortions in the phase associated with a continuous offset between functions.
The centering of each curve is calculated by subtracting a certain parameter from each
curve, as shown in Equation (12).

xcentered(t) = x(t) − [max(x(t)) + min(x(t))]
2

(12)

2.4. Procedure to Measure the Effectiveness of Each Time-Scale Normalization Method

Four comparisons are carried out among different normalization methods of functions.
The first one is based on the comparison of warping functions, hi(t) for nonlinear registra-
tion or φ(t) in the case of HT. We analyzed their continuity, absence of singularities, and
coherence with the dynamics of the movement. It is assumed that the warping functions
must be smooth and must not present discontinuities.

The second one uses the amplitude of the functional mean obtained with each type
of normalization. It is assumed that higher RMS (root mean square) values are associated
with better control of phase differences by avoiding the cancellation effect associated with
the lags between curves, which translates into a flattening of the maxima and minima.
There is only one data set and, consequently, a single mean function for the angle, velocity,
and acceleration. In order to test the significance of the differences in the RMS values of the
means obtained with the different normalization methods, a bootstrap method has been
followed to establish the confidence intervals of the means for α = 0.05 (those shown in
the Table 1), but also for α = 0.01 and α = 0.005, which allows us to estimate whether the
differences correspond to p < 0.05, p < 0.01, or p < 0.005, respectively [21].

Thirdly, the phase differences between the individual signals and the ensemble mean
signal for each normalization method are measured directly using the procedure described
in [17]. It consists of defining two time series, x and y, which are considered as vectors of
an n-dimensional space so that the angle they form is obtained through Equation (13).

cos θ =
dot(x, y)

norm(x)·norm(y)
(13)

where dot(x, y) is the dot product of x and y (Euclidean inner product) and norm(x) is the
L2 norm (norm(x) =

√
dot(x, x)).
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Table 1. Root Mean Square (RMS) values of the functional means of angles, angular velocities, and angular accelerations as
a function of the time-scale normalization method. In parentheses, the 95% confidence interval.

Function Linear Normalization Registration Using
Angles

Registration Using
Velocities Hilbert Transform

RMS value of the
functional mean of the

angle (◦)

45.8
[42.8, 48.6]

45.8
[42.8, 48.6]

45.4
[42.3, 48.3]

45.3
[43.6, 46.9]

RMS value of the
functional mean of the
angular velocity (◦/s)

89.7 *
[81.9, 97.1]

94.2
[86.3, 102.1]

95.0
[87.3, 103.5]

95.6
[91.5, 99.8]

RMS value of the
functional mean of the

angular acceleration (◦/s2)

203.8 **
[187.5, 221.6]

218.4
[202.2, 235.6]

237.0 ***
[222.6, 253.0]

219.3
[210.4, 228.9]

Differences with respect to the HT method: * p < 0.05; ** p < 0.01; *** p < 0.005 The significance levels have been obtained from confidence
intervals of 0.005, 0.01, and 0.05, calculated through a bootstrapping process.

When this procedure is applied to harmonic functions, it results in the lag between
them. In other types of signals, it is a measure of the phase difference. When the cos θ
is 1, then the functions are in phase. On the contrary, a null value of (13) represents two
orthogonal functions with a phase shift of 90◦.

Subsequently, the mean of each variable is calculated for each normalization method,
and the phase difference of each curve with respect to that mean is calculated. The
discrepancies are generally small since the curves are approximately harmonic, beginning
and ending in the same place. This leads to clearly asymmetric distributions, in which the
differences are analyzed using the Friedman test [22].

Finally, we measured the computational cost of the four normalization procedures on
the same computer.

3. Application to a Case Study. Data Structure

A quantitative comparison of different methods for normalizing temporal patterns
using registration of functional data is performed based on an exhaustive database of neck
flexion-extension movements. The database corresponds to 31 subjects, each of whom
was measured in two different trials, executing between 7 and 10 complete cycles of neck
flexion-extension movements in each trial. The subjects were informed regarding the aim
of the experiment, and they signed the corresponding informed consent.

The Kinescan/IBV® v.5.5 photogrammetry system was used to record and analyze
the motion data captured using a helmet with eight reflective markers, according to the
procedure described in [23]. The movement was recorded at 200 frames per second. The
experimental setup is shown in Figure 1. The flexion-extension angles were measured and
the angular velocities and accelerations were calculated using the procedures described
in [23,24].

The start and end points of each extension-flexion cycle are determined using the
procedure described in [23], so that each cycle begins at a point of zero velocity and
minimum angle and ends at the next minimum angle. Obviously, each cycle has a different
duration due to the differences between subjects and within each subject in different
repetitions.

Consequently, the database is made up of matrices with a size of 1254 × 423 for the
variables related to angles (phi), angular velocities (Dphi), angular accelerations (D2phi),
and absolute times sampled at a frequency of 200 Hz. That is, matrices with dimensions
equal to the length required for the longest registration.

The normalized curves are expressed in two different formats. On the one hand, in
the case of linear normalization and nonlinear registration (from angles or velocities), the
normalized curves are represented with 101 observations, on a time scale between 0 and 1
for each cycle, at intervals of 0.01 steps. On the other hand, for recording using the phase
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obtained from the Hilbert transform, the X-axis uses a scale between 0 and 360◦, at 1◦

intervals. However, in the figures presented in the following sections, the scale for the
continuous phase is divided by 360 in order to compare the results with those obtained
with the normalized times, so the scale of the X-axis goes from 0 to 1 in all cases.

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 1. Experimental setup. 

The start and end points of each extension-flexion cycle are determined using the 
procedure described in [23], so that each cycle begins at a point of zero velocity and 
minimum angle and ends at the next minimum angle. Obviously, each cycle has a 
different duration due to the differences between subjects and within each subject in 
different repetitions. 

Consequently, the database is made up of matrices with a size of 1254 × 423 for the 
variables related to angles (phi), angular velocities (Dphi), angular accelerations (D2phi), 
and absolute times sampled at a frequency of 200 Hz. That is, matrices with dimensions 
equal to the length required for the longest registration.  

The normalized curves are expressed in two different formats. On the one hand, in 
the case of linear normalization and nonlinear registration (from angles or velocities), the 
normalized curves are represented with 101 observations, on a time scale between 0 and 
1 for each cycle, at intervals of 0.01 steps. On the other hand, for recording using the phase 
obtained from the Hilbert transform, the X-axis uses a scale between 0 and 360°, at 1° 
intervals. However, in the figures presented in the following sections, the scale for the 
continuous phase is divided by 360 in order to compare the results with those obtained 
with the normalized times, so the scale of the X-axis goes from 0 to 1 in all cases. 

As a result, the database is made up of 423 complete cycles, which have been used to 
perform the quantitative comparison of the different methods. 

The database encompasses the following variables: 
• philn: angle with linearly normalized time. 
• Dphiln: angular velocity with linearly normalized time. 
• D2philn: angular acceleration with linearly normalized time. 
• phiR0: angle with time registered using angle curves. 
• DphiR0: angular velocity with time registered using angle curves. 
• D2phiR0: angular acceleration with time registered using angle curves. 
• phiR1: angle with time registered using the angular velocity curves. 
• DphiR1: angular velocity with time registered using the angular velocity curves. 
• D2phiR1: angular acceleration with time registered using the angular velocity curves. 
• phiH: angle using the phase obtained with the Hilbert transform (HT). 
• DphiH: angular velocity using the phase obtained with the Hilbert transform. 
• D2phiH: angular acceleration using the phase obtained with the Hilbert transform. 
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As a result, the database is made up of 423 complete cycles, which have been used to
perform the quantitative comparison of the different methods.

The database encompasses the following variables:

• philn: angle with linearly normalized time.
• Dphiln: angular velocity with linearly normalized time.
• D2philn: angular acceleration with linearly normalized time.
• phiR0: angle with time registered using angle curves.
• DphiR0: angular velocity with time registered using angle curves.
• D2phiR0: angular acceleration with time registered using angle curves.
• phiR1: angle with time registered using the angular velocity curves.
• DphiR1: angular velocity with time registered using the angular velocity curves.
• D2phiR1: angular acceleration with time registered using the angular velocity curves.
• phiH: angle using the phase obtained with the Hilbert transform (HT).
• DphiH: angular velocity using the phase obtained with the Hilbert transform.
• D2phiH: angular acceleration using the phase obtained with the Hilbert transform.

4. Results and Discussion

Figure 2 shows the absolute time-scale curves for angles (phi), velocities (Dphi), and
accelerations (D2phi), which exhibit a large dispersion and show the need for normalizing
the temporal patterns.

Figure 3 presents the normalized angle (phi) curves obtained by means of the four
normalization methods compared, together with their functional means (solid black line)
and functional standard deviations (dashed black line). Figures 4 and 5 do the same for
the normalized velocities (Dphi) and accelerations (D2phi), respectively. These figures
also show the large amplitude dispersion of the human neck flexion-extension movements
measured for 31 healthy subjects in the two trials of the experiment. Note that for this
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figure and the following ones, the phase is divided by 360, so the X-axis scale ranges from
0 to 1, thus making the results comparable among the four methods.
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results, several conclusions can be drawn:
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Figure 6. Time warping functions for the four methods compared. To better appreciate the detail of
the warping functions, only a quarter of the curves used in the analysis have been drawn (the same
ones represented in Figure 2).

• On the one hand, for the linear normalization method, the warping functions are
straight lines, as expected. On the other hand, for the nonlinear methods (registration
of functions and HT method), nonlinear warping functions are achieved.

• The registration of functions method leads to different warping function curves when
angles or velocities are used as the registration source.

• Registration using angles tends to present significant variations in the time recorded
in the vicinity of the central zone (which corresponds to the maximum angle). This can
be observed around the time of 0.5 s in the normalized time (Y-axis of Figure 6), where
there are curves in which the absolute time advances but the recorded time does not.
This distortion in the shape of the warping functions can appear when the differences
in amplitude are optimized at the expense of unnatural alterations over time [17]. In
practice, this is equivalent to introducing discontinuities or sudden changes in the
warping functions, which is not consistent with the continuous nature of the speed of
execution of human neck movements.

• Registration using velocities also leads to distortions in the warping function curves,
although to a lesser extent.
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• Consequently, these two characteristics (i.e., obtaining different results according to
the order of the derivative used for registration; and the existence of singularities in
the warping functions) reveal that although it is an effective technique, it is purely
geometric and unrelated to the dynamics of the functions.

• The HT method provides nonlinear curves, but they are smoother and without sudden
changes. Hence, the differences between the normalized and the absolute times are
not significant but have consequences for the mean, phase differences, and dispersion
values. Note that we are analyzing a cyclical movement similar to a harmonic one.

Such differences can be better appreciated in Figure 7, which compares the warping
functions of the four methods for a certain registration curve (register number #345). Again,
it can be observed that the HT method provides a smooth and nonlinear recording, while
the registration of functions methods using either angles or velocities present singularities
and give rise to different curves. It is worth mentioning that although the R0 and R1
warping functions are quite similar in this case, in other cases, they may differ substantially.
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4.1. Comparison of the Effect of Time-Scale Normalization on the Amplitude of the Means

Table 1 presents the Root Mean Square (RMS) values of the functional means of angles,
angular velocities, and angular accelerations for the time-scale normalization methods
compared. The results illustrate that when comparing the different time scale normalization
methods, there is hardly any difference for angles because the phase differences are small
and do not affect the mean or the RMS values.

However, for the angular velocities, the HT method improves the results provided
by the linear normalization method since it leads to 6.6% higher RMS values. Conversely,
there are no significant differences regarding the RMS values provided by the nonlinear
registration method.

With regard to angular accelerations, HT-based normalization is significantly better
than the linear normalization method (a 7.6% higher RMS value) and similar to the non-
linear registration method using angles. However, the RMS values obtained when using
velocity curves outperform those provided by the HT method. In fact, an improvement of
8% is achieved.

4.2. Comparison of the Effect of Time-Scale Normalization on the Phase Difference

Table 2 shows the medians and interquartile ranges (IQR) of the phase difference for
each time-scale normalization method. IQR is used as a measure of the statistical dispersion,
which is equal to the difference between the 75th and 25th percentiles or between the upper
and lower quartiles.
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Table 2. Distribution of the phase difference between the individual curves of angles (phi), angular velocities (Dphi), and
angular accelerations (D2phi), and their corresponding functional means, for each time-scale normalization method. The
median and interquartile range are measured in degrees. The level of significance of the comparison of each normalization
method with the Hilbert transform, using Friedman’s test, is presented in brackets.

Variable
Linear Normalization

Median (iqr)
[p-Value]

Registration Using Angles
Median (IQR)

[p-Value]

Registration Using Velocities
Median (IQR)

[p-Value]

Hilbert Transform
Median (IQR)

phi 10.7 (8.0)
[0.0000]

4.2 (7.5)
[0.0000]

9.1 (7.1)
[0.0000] 5.5 (6.5)

Dphi 11.0 (6.7)
[0.0000]

7.0 (3.4)
[0.0000]

4.5 (5.4)
[0.000] 7.8 (4.3)

D2phi 23.5 (12.9)
[0.0000]

19.4 (8.9)
[0.05779]

15.4 (5.7)
[0.0000] 19.3 (10.0)

The worst results for the three variables are obtained for linear normalization. This is
because this process leads to higher phase differences for such variables, which are repre-
sented by the median and interquartile range (Table 2). Furthermore, the phase difference
presents much worse results for velocities, and even more so for accelerations. This calls
into question the usefulness of linear normalization for an adequate representation of the
kinematics and dynamics of human movements. Note that we are analyzing a cyclical
movement where all cycles start and end at the same values. In contrast, the HT method
obtains much better results than the linear normalization method for angles (the phase
difference is reduced to almost half). The reductions of the lags in velocities are somewhat
smaller but are still important, 29% in the velocities and 18% for the accelerations.

The nonlinear registration method is also clearly better than the linear normalization
method, although it provides different results depending on whether position or velocity
registration curves are used. Angular curves return the best results with the R0 registration,
while the R1 registration, using velocity curves, is better for velocities and accelerations.
The fact that the results differ according to the registration curves used for normalization,
both in phase differences and in the warping functions, suggests that nonlinear registration
is an inconsistent method. That is, the function registration method provides different
results for the same data depending on the order of the derivative used in the registration
curves. Although this method provides formally suitable results (for both angles and
velocities if registration using angles or velocities are used, respectively), it entails a purely
geometric adjustment. Therefore, it is questionable that it fulfills the characteristics of the
dynamics of the movement. To overcome this drawback [17] proposed to use higher-order
derivatives for the registration of functions, assuming that by using more maxima and
minima, more temporal information is retained. Unfortunately, this is not true in our case,
since the registration using velocities is worse than using angles if we measure the phase
angle difference, although better if the phase velocity difference is considered. We have not
calculated the registration using accelerations.

Regarding the method of representing kinematic variables as a function of the phase
obtained by means of the Hilbert transform, the results exceed those obtained with the
linear normalization method in the variables of position, velocity, and acceleration. Never-
theless, the comparison of the Hilbert transform method with the nonlinear registration
method leads to somewhat contradictory results. In this sense, the Hilbert transform
provides better results than the R1 registration for position and worse for velocity and
acceleration curves. When the HT method is compared with the R0 registration, it presents
results that are worse for angular curves, slightly worse for velocity curves, and similar
for acceleration curves. However, the differences between the HT method and the reg-
istration of functions method are considerably smaller than those between HT and the
linear normalization method. It is worth mentioning that the HT method involves a lower
computational cost than the nonlinear registration method. Furthermore, HT does not alter
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the dynamic relationships between the angles and their derivatives since the time scale is
not changed. Instead, it is replaced by another variable, the phase of the movement, which
is related to the relative velocity of execution within the cycle of movement.

As a summary, for the three variables analyzed, the following conclusions can be drawn:

• Phase angle difference (phi): the best method is the registration method using angles.
The HT method is much better than linear normalization and nonlinear registration
using velocities.

• Angular velocities (Dphi): the smallest lags are obtained with nonlinear registration
using velocities. Nonlinear registration using angles and the HT method offer similar
values, although slightly better in the former. The worst result is obtained for the
linear normalization method.

• Angular accelerations (D2phi): the pattern is repeated for the case of accelerations.
That is, the worst method is linear normalization, and the best is registration of
functions using velocities. Nonlinear registration using angles and the HT method
provide very similar results.

4.3. Comparison of Computational Efficiency

Although the computational cost is not a limiting factor for applying any of the
normalization methods, significant differences are appreciated in terms of execution times.
The linear normalization method has the lowest computational cost, with an execution time
of only 0.21 s. The Hilbert transform method entails a simulation time of 0.61 s (2.9 times
higher than linear normalization). Finally, the nonlinear registration method using angles
requires a running-time cost of 968.3 s (16.1 min), while registration using velocities takes
1230 s (20.5 min). That is, nonlinear registration reports execution times around 4610.9
and 5857 times higher than the linear normalization method, respectively. As mentioned
above, the high computational cost of nonlinear registration methods is due to the fact that
in each iteration of the Procrustes process, they must perform a nonlinear optimization
for each hi. Linear and HT methods perform normalization only once per curve using fast
calculation procedures.

These values reinforce the idea that the HT method provides excellent results with a
low computational cost compared to the other time-scale normalization methods.

5. Conclusions

This paper presents a novel method for normalizing human movement patterns using
functional data analysis with key applications in the fields of biomechanics and ergonomics.
The method is based on the Hilbert transform, and is very useful for the normalization
of human movement curves due to its enormous potential in reducing variability among
registrations. Furthermore, a quantitative comparison of methods for normalizing time-
series data has been carried out based on an exhaustive database of neck flexion-extension
movements. It is noteworthy that time-scale normalization methods play a major role in
functional averages, since they affect the lag between curves. Moreover, they can alter the
shape of the ensemble mean of individual curves and reduce its amplitude. This raises the
need to develop appropriate methods to deal with such issues.

The linear normalization method has traditionally been used for reducing phase lags
because of its simplicity and low computational cost. However, the results have shown
that linear methods do not allow us to fully control phase differences, even in apparently
harmonic cyclical movements, such as neck flexion-extension movements. Therefore, the
worst of the four methods compared is, by far, linear normalization in terms of reducing
phase lags and cancellation effect. The worse behavior of the linear normalization method
implies a reduction in the amplitude of the averaged curves, which has been measured
through RMS values. Although the differences in angular curves are negligible, they are
significant for velocity and acceleration curves. Consequently, the use of linear methods
must be avoided.
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Several nonlinear registration methods have been proposed in the literature to over-
come these drawbacks. However, our results show that these methods can present some
problems. Firstly, their results differ depending on the order of the derivative used as the
reference for the record. That is, different rescaled times appear for the same dynamic
system depending on the order of the derivative of the functions. This does not make much
sense from a mechanical point of view, as the position and velocity variables correspond
to the same movement, contradicting the assumption that such methods are capable of
identifying “system time” from the absolute clock time [10]. In addition, some inconsisten-
cies may arise, such as singularities at certain points, which, although they limit the phase
differences, give rise to curves without any physical sense. Finally, nonlinear registration
methods are computationally expensive compared to linear or HT methods.

The results have also shown that the proposed method to normalize temporal pat-
terns can improve on the current techniques in the literature in terms of reducing phase
differences with good computational efficiency. It consists of replacing the time scale with
the instantaneous phase of the movement obtained from the Hilbert transform. We have
verified the following advantages of the presented methodology:

• It provides a single result (angle and velocity are used at the same time).
• The results are clearly better than those of the linear time base regarding velocities and

accelerations and similar to the nonlinear registration method in terms of velocities.
Regarding accelerations, it is similar to registration using angle curves and somewhat
worse than registration using velocities.

• From a computational point of view, it is much faster than nonlinear registration by
three orders of magnitude.

• It does not give rise to warping functions with singularities, but rather the phase
curves are smoother.

• The proposed method uses the information of the movement of each individual curve,
obtaining an instantaneous phase with mechanical meaning. Its derivative is an
instantaneous angular frequency representing a phase velocity, and it is independent
of the curve amplitude.

The results shown here correspond to a relatively harmonic type of cyclical movement,
although less harmonic than others described in the literature [1]. To generalize the
conclusions on the performance of HT, it would be necessary to compare the methods
using other more complex cyclical movements, such as human gait.

On the other hand, we have used the nonlinear registration method proposed in [17],
as it is the most widely used in the field of Biomechanics. As indicated above, there are
other more recent alternatives, such as those based on SRVF [15], whose application in the
field of human movement analysis is limited so far [16], but which should provide better
results than those based on correlations.

As further research, the HT method could be applied to movements that are highly
sensitive to variability, such as the instantaneous axes of rotation of joints. In addition,
the velocity of execution of the movement is currently tackled using parameters such as
cadence, frequency of movement, period between cycles, etc., which do not offer continuous
information on the instantaneous velocity of execution of the movement. Conversely,
this novel normalization technique could lead to new functional assessment systems
for analyzing this type of movement through phase velocity and quantifying harmonic
motions. Phase velocity could be used for detecting abnormal behaviors associated with
acute pain or simulation, which are currently analyzed through other parameters such as
the correlation between position and acceleration, jerk, etc. However, these parameters
depend on second or third derivatives and are quite sensitive to the derivation method
used. We consider that the amplitude of phase velocity is a much simpler indicator for
quantifying the deviation between a harmonic movement (with constant phase velocity)
and a nonharmonic one (with important oscillations in the phase velocity).
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