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Abstract: This paper proposes, validates and analyzes the dynamics of the susceptible exposed
infectious recovered (SEIR) model for the propagation of COVID-19 in Saudi Arabia, which recorded
the largest number of cases in the Arab world. The model incorporates a saturated incidence rate, a
constant vaccination rate and a nonlinear treatment function. The rate of treatment is assumed to be
proportional to the number of infected persons when this number is low and reaches a fixed value
for large number of infected individuals. The expression of the basic reproduction number is derived,
and the model basic stability properties are studied. We show that when the basic reproduction
number is less than one the model can predict both a Hopf and backward bifurcations. Simulations
are also provided to fit the model to COVID-19 data in Saudi Arabia and to study the effects of the
parameters of the treatment function and vaccination rate on disease control.

Keywords: COVID-19; nonlinear incidence rate; treatment function; vaccination; backward bifurca-
tion; Saudi Arabia

1. Introduction

Multiple waves of COVID-19 are still attacking many countries around the world. The
severity of the pandemic is accentuated by the emergence of new and more contagious
strains of the virus. Many countries are still struggling to vaccinate their population in
order to curve the waves of infections and reduce the hospitalizations that have affected
their health systems. The use of mathematical models to predict disease transmission is
useful for analysis and prediction particularly when the model is validated against the
available disease data.

A mathematical model can predict future situations of the disease spread and evaluate
the best strategy to be invoked depending on the epidemiological situation. Since the
outbreak of the disease, there have been a large number of studies [1–9] that used com-
partment models based on SIR (susceptible (S), infectious (I) and recovered (R)) and SEIR
(susceptible (S), exposed (E), infectious (I) and recovered (R)) epidemic models to predict
the spread of the disease.

These models consist generally of deterministic ordinary differential equations or dif-
ference equations and are amenable sometimes to analytical manipulations that can extract
some important parameters, such as the basic reproduction number that can quantify the
spread of the disease. These models are also flexible. They can accommodate a variety
of expressions for incidence rate [1], can include the effect of a variable recovery rate [2]
and can simulate various scenarios of pandemic management, such as lockdown [3,4],
closure of sectors of the economy, compliance of people with protection measures [4], social
distancing [5], travel restrictions [6], media coverage [7], quarantine [8], super-spreaders
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individuals [9] and vaccination [10–12]. Once validated, these models can be used as a
public health decision support tool [4].

In this paper, we develop, validate and examine the dynamics of a SEIR model for
COVID-19. The proposed model includes a number of characteristics. In many epidemic
models, the bilinear incidence rate βSI is used. In this paper, we adopt a nonlinear ex-
pression of the incidence rate βSI/(1 + αI) that includes an inhibition 1/(1 + αI) effect
reflecting the behavior of susceptible persons as the infection spreads. This form of in-
cidence rate was shown to be more realistic than the bilinear incidence expression [1].
The proposed model also includes a treatment function. A number of epidemic models
considered the treatment rate to be proportional to the number of infected persons. How-
ever, the recovery rate is known to be strongly dependent on health resources and the
treatment efficiency. Since, generally, the treatment capacity of each country is limited,
it seems logical to consider a more realistic treatment function. Various expressions for
treatment functions have been proposed in the literature [13–17]. Here, we adopt the
saturated treatment cI/(1 + bI) function suggested by Zhang and Liu [17]. This form has
the advantage of producing a constant value when the number of infected persons (I) is
very low and reaches an asymptotic constant value if the number of infected individuals is
large. Furthermore, this form of treatment function has a finite and continuous value. The
model also includes a vaccination rate. Vaccine administration is a highly effective method
of preventing and reducing viral infections [18]. Vaccination and optimal control are the
key points to controlling an epidemic situation as discussed in [11,19–21], and the majority
of countries have embarked on aggressive vaccination campaigns against COVID-19.

The novelty in the proposed SEIR model is that it includes a saturated incidence
rate and a saturated treatment function in addition to a vaccination rate. Some models
in the literature either included some of these elements or included all of these elements
but not in the current expressions adopted in this paper. Zhang et al. [16], for instance,
included, in their SEIR model, all the elements except the vaccination rate. Annas [10],
in their study of the spread of the disease in Indonesia included, in their SEIR model, all
the aforementioned elements except the treatment function. Deng et al. [22], proposed a
non-smooth Filippov epidemic system to examine the effects of some control strategies,
such as media coverage, treatment and vaccination. However, the authors considered only
a SIR and not a SEIR model.

In the first step of our analysis, the model is validated using real COVID-19 data in
Saudi Arabia. This allows the extraction of a number of model parameters. In the next step,
simulations are carried out to study the bifurcation behavior of the model using the basic
reproduction number as the main bifurcation parameter. A numerical sensitivity analysis
is also performed for the effect of model parameters associated with the treatment function
and the vaccination rate.

The organization of the rest of the paper is as follows. In Section 2, we present and
explain the model. Then, in Section 3, we prove the model positivity and boundedness of
its solutions and derive the expression of the basic reproduction number. In Section 4, the
backward bifurcation is examined. Section 5 of the paper includes numerical simulations
to support the theoretical proofs.

2. The Model

The proposed SEIR model for COVID-19 transmission is composed of four compartments—
namely, susceptible (S), exposed (E), infected (I) and recovered individuals (R). The changes
that occur in each compartment can be interpreted by Figure 1. The model consists of the
following ordinary differential equations,
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dS
dt

=A− µS− αIS
(1 + α1 I)

− vS (1)

dE
dt

=
αIS

(1 + α1 I)
− (β + µ)E; (2)

dI
dt

=βE− (ε + δ + µ)I − cI
(1 + bI)

(3)

dR
dt

=δI − µR +
cI

(1 + bI)
+ vS. (4)

A is the population recruitment rate, µ is the population natural death rate per time,
and α is the transmission rate. The term 1

1+α1 I reflects the inhibitory effect from the
behavioral change of the susceptible when the number of incidence increases. β is the
rate of transformation to infective persons, δ is the natural recovery rate of the infected
persons, ε is the mortality due to the disease, and v is the rate of vaccination of susceptible
population.

Figure 1. Block diagram of the model. The arrows show progression from one compartment to
the next.

The term T(I) = cI
(1+bI) represents the treatment function where b represents the

saturation factor measuring the effect of the infected individual when delayed for treatment,
and c is the maximal supplied medical resources. T(I) can be seen to approach cI when I
is small; On the other hand, T(I) approaches c/b when I is large. It should be noted that,
compared to other forms proposed in the literature [13–15], this form of treatment function
has also the advantage of being continuous and differential.

3. Model Analysis
3.1. Positivity of the Model Solutions

Theorem 1. Let S0, E0, I0, R0 ≥ 0. The solutions of Equations (1)–(4) with initial conditions (S(0), E(0),
I(0), R(0)) = (S0, E0, I0, R0) are non-negative for t > 0.

Proof. The proof follows the general approach used by a number of authors, including [23].
We have from (Equation (1)) that,

dS(t)
dt

= A− S(t)w(t), (5)

where

w(t) = µ + αI/(1 + α1 I) + v.
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Integrating Equation (5) yields

S(t) =
(∫ t

0
A e

∫ τ
0 w(u)du dτ + S0

)
e−
∫ t

0 w(τ)dτ > 0.

Thus, S(t) > 0 for all t.
For the proofs that E(t) and I(t) are positive, we divide this issue into four cases:

• E0 = I0 = 0. From Equations (2) and (3), we can see E(t) = I(t) = 0 for all t ≥ 0.
• E0 > 0 and I0 = 0. Since E(t) is continuous at t = 0 and since dI

dt (t = 0) = βE0 > 0,
we can conclude that E(t) > 0 and I(t) > 0 for all t ≥ 0. If this is not true, then we
can choose

t1 = inf{t : E(t) = 0 or I(t) = 0} ∈ (0, ∞).

If E(t1) = 0, then since dE
dt ≥ −(β + µ)E0 for 0 ≤ t ≤ t1, we conclude that

E(t1) ≥ E0e−(β+µ)t1 > 0, (6)

which contradicts the assumption that E(t1) = 0.
If, on the other hand, I(t1) = 0, then there exists θ such that t1 > θ and 0 < I(t) < ψ
on [t1 − θ, t1). Therefore, Equation (3) implies that

dI
dt
≥ −

(
(ε + δ + µ) +

c
1 + bI

)
I. (7)

This gives

I(t1) ≥ I(t1 − θ)e
−
∫ t1
(t1−θ)

(
(ε+δ+µ)+ c

1+bI(u)

)
du

> 0, (8)

which also contradicts the assumption that I(t1) = 0. The same analysis can be carried
out for the other cases: (E0 = 0, I0 > 0) and (E0 > 0, I0 > 0).

We conclude, therefore, that E(t) and I(t) are positive for all t ≥ 0.
Next, since we have shown that S(t) > 0 and I(t) > 0, we can deduce from

Equation (4) that

−dR(t)
dt
≤ µR(t). (9)

Applying Grönwall’s lemma [24] to Equation (9) with initial condition R0 yields,

−R(t) ≤ −R0e−
∫ t

0 (µ)dτ < 0.

This proves that R(t) > 0.

3.2. Boundedness

Theorem 2. The compact set Ψ defined by

Ψ ={(S(t), E(t), I(t), R(t)) ∈ IR4
+, S(t) + E(t) + I(t) + R(t) ≤ A

µ
}, (10)

where (S(t), E(t), I(t), R(t)) are the solutions of the model (Equations (1)–(4)) with initial condi-
tions (S0, E0, I0, R0) is a positively invariant region.
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Proof. Denote by N(t) = S(t) + E(t) + I(t) + R(t), and then we have

dN(t)
dt

=− N(t)µ− ε I + A, (11)

dN(t)
dt

≤− N(t)µ + A. (12)

Therefore,

N(t) ≤
(

N(0) exp(−µt) +
A
µ
(1− exp(−µt))

)
, (13)

where N(0) is the initial condition of N(t). Therefore, 0 < N(t) < A
µ as t goes to +∞ and

dN(t)
dt < 0 for N > A

µ . This shows that Ψ is positively invariant.

4. Existence of Equilibria, Stability and Bifurcation Analysis

In the rest of analysis, we consider only Equations (1)–(3), since they do not depend on
the variable R. The disease-free equilibrium E0(S, E, I) = ( A

µ+v , 0, 0) is always a solution
of the model. The non-trivial solutions are obtained by considering the steady state of
Equations (1)–(3), which yields:

S =
A

µ + v
− I
[

c (µ + β)

(I b + 1)β (µ + v)
+

(ε + δ + µ)(µ + β)

β (µ + v)

]
, (14)

E = I
[

c
β (I b + 1)

+
(ε + δ + µ)

β

]
. (15)

where I is the positive root of the quadratic equation,

E1(I) =a2 I2 + a1 I + a0 = 0, (16)

where a0, a1 and a2 are defined by

a2 = (µ + v)(ε + δ + µ)(µ + β)bα1 + b(ε + δ + µ)(µ + β)α > 0,

a1 = −α bβ A + (µ + v)(ε + δ + µ)(µ + β)b + (µ + β)(α1 µ + α1 v + α)(c + δ + µ + ε),

a0 = −− (µ + v)(µ + β)(R0 − 1)(c + δ + µ + ε).

In these equations,R0 is the basic reproduction number, obtained with the techniques
in [25]:

R0 =
A α β

(µ + v)(µ + β)(c + δ + µ + ε)
. (17)

Let ∆ be the discriminant of the quadratic Equation (16). Solving for ∆ = 0 in terms of
R0, we findR0 = Rc

0, where

Rc
0 = 1− 1/4

a1
2

b(ε + δ + µ)(µ + β)2(α1 µ + α1 v + α)(µ + v)(c + δ + µ + ε)
. (18)

Thus, we have ∆ < 0 ⇐⇒ R0 < Rc
0 < 1, ∆ = 0 ⇐⇒ R0 = Rc

0, ∆ > 0 ⇐⇒ R0 >
Rc

0.
The existence of the equilibrium can be analyzed by the following results:

1. Case b = 0: Equation (16) has a unique solution I = −a0/a1. In this case, the
Equations (1)–(3) has a unique steady state solution wheneverR0 > 1 and no steady
state solution ifR0 ≤ 1.

2. Case b > 0:
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(a) Equations (1)–(3) have a unique steady state solution wheneverR0 > 1;
(b) Equations (1)–(3) have a unique steady state solution ifR0 = 1 and a1 < 0;
(c) Equations (1)–(3) have a unique steady state solution of multiplicity 2 when

R0 = Rc
0 and a1 < 0;

(d) Equations (1)–(3) have two steady state solutions when Rc
0 < R0 < 1 and

a1 < 0.
(e) Equations (1)–(3) have no steady state solution wheneverR0 < Rc

0 and a1 < 0
or wheneverR0 ≤ 1 and a1 > 0.

4.1. Local Stability Analysis of the Disease-Free Solution

In this part of the paper, the local stability of the disease-free solution is studied using
the eigenvalues of the Jacobian matrices of (1)–(3) at the disease-free equilibrium E0. Thus,
we have

J(E0) =


−µ− v 0 − A α

µ+v

0 −β− µ A α
µ+v

0 β −ε− δ− µ− c

. (19)

The eigenvalues of Jacobian matrices J(E0) are:

λi =


−[µ + v]

λ2

λ3

, (20)

with

λ2 =
1

2(µ + v)

[
−(µ + v)(2 µ + c + β + δ + ε) +

√
Υ
]
,

λ3 =
1

2(µ + v)

[
−(µ + v)(2 µ + c + β + δ + ε)−

√
Υ
]
< 0,

Υ =4 (µ + v)2(µ + β)(ε + δ + µ + c)R0 + (µ + v)2(c− β + δ + ε)2 > 0.

By simple Algebraic calculation, we have λ2 = 0 when R0 = 1, λ2 < 0 for R0 < 1
and λ2 > 0 whenR0 > 1. Therefore, the following result is obtained:

Lemma 1. The disease-free equilibrium E0 is locally asymptotically stable ifR0 < 1 and unstable
ifR0 > 1.

4.2. Backward Bifurcation

Theorem 3. Equations (1)–(3) predict a backward bifurcation if b > b1,cr = (ε+δ+µ+c)α1
c +

(µ+β)(ε+δ+µ+c)2

β A c and no backward bifurcation otherwise.

Proof. We consider the methodology detailed in [26] to prove the existence of a back-
ward bifurcation. We define new variables: x1 = S, x2 = E, x3 = I. We can rewrite
Equations (1)–(3) as,

dx1

dt
= f1 =A− µx1 − αx3x1/(1 + α1x3)− vx1 (21)

dx2

dt
= f2 =αx3x1/(1 + α1x3)− (β + µ)x2 (22)

dx3

dt
= f3 =βx2 − (ε + δ + µ)x3 − cx3/(1 + bx3). (23)
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Let us assume α to be the bifurcation parameter. The conditionR0 = 1 leads to

α =
(ε + δ + µ + c)(µ + β)(µ + v)

A β
:= α∗. (24)

The Jacobian matrix of (21)–(23) at E0 when α = α∗ is

J =


−µ− v 0 − (ε+δ+µ+c)(µ+β)

β

0 −β− µ
(ε+δ+µ+c)(µ+β)

β

0 β −ε− δ− µ− c

. (25)

The right eigenvector of the Jacobian matrix for the zero eigenvalue is

(w1, w2, w3) =


− (ε+δ+µ+c)(µ+β)

β (µ+v)

ε+δ+µ+c
β

1

. (26)

The left eigenvector is (v1, v2, v3) = (0, β
µ+β , 1). The two stability parameters a and

b [26] that define the conditions for the appearance of a backward bifurcation are:

a =
3

∑
k,i,j=1

vkwiwj
∂2 fk

∂xi∂xj
, (27)

which yields

a = −2
(µ + β)(ε + δ + µ + c)2

β A
+ 2 cb− 2 (ε + δ + µ + c)α1.

The other parameter b is:

b =
3

∑
k,i=1

vkwi
∂2 fk

∂xi∂α
, (28)

which is reduced to

b =
βA

(µ + β)(µ + v)
> 0. (29)

Since b is always positive, a backward bifurcation exists when

a > 0→ b > bcr =
(ε + δ + µ + c)α1

c
+

(µ + β)(ε + δ + µ + c)2

β A c
. (30)

5. Numerical Simulations

The first step in numerical simulations is to extract fitted values of model parameters
using COVID-19 data for Saudi Arabia, a country with a population of 34,800,000 that
reported 543,000 cases by the first of September 2021 [27]. The following model parameters
were assumed to have constant and known values. These are the recruitment rate A = 1252
and the natural death rate µ = 4.21× 10−5 [28]. The death rate due to the disease is taken
to be ε = 0.012 [27]. The other model parameters (α1, β, δ, b, c) were fitted to the COVID-19
data, which are freely available on the Saudi Ministry of Health website [27].
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The fitting task was achieved using (FMINCON), a MATLAB optimization software.
FMINCON is used to find minimum of a constrained nonlinear multivariable function
using a sequential quadratic programming (SQP) method. The fitting was done for a six
month period starting from 24 March 2020. During this period, the vaccination campaign
had not started yet, and thus the vaccination rate was taken to be zero. Figure 2 shows
the results of fitting both infectious cases (I) and recovered cases (R). The fitting seems
reasonable especially after an initial period of time. Table 1 summarizes the obtained values
of the fitted parameters. Using the fitted values (Table 1), we obtain a basic reproduction
number of 1.87.

0 20 40 60 80 100 120 140 160 180

Time (day)

104

106

C
a
s
e
s
 (

I)

(a)

0 20 40 60 80 100 120 140 160 180

Time (day)

102

104

106

R
e
c
o

v
e

re
d
 (

R
)

(b)

Figure 2. Validation of the model using COVID-19 data in Saudi Arabia for a period of 180 days starting from 24 March
2021. Red line (actual data); Blue solid line (model predictions). (a) Infected cases; (b) Recovered cases.

Next, numerical results are shown for the bifurcation behavior of the model using
R0 as the main bifurcation parameter. The numerical analysis of the model is carried out
using the software AUTO [29]. AUTO can be used to solve continuation and bifurcation
problems in ordinary differential equations. These include continuation of equilibria and
periodic orbits. First, it can be noted that using the values of Table 1 yields the following
condition b > bcr = 0.0186 (Equation (30)) for the emergence of a backward bifurcation.

Figure 3a illustrates the bifurcation behavior for b = 0.0376, which is the actual fitted
value and which is larger than the critical value. On the diagram, the occurrence of a static
limit point is at R0 = 0.62721, and a Hopf point is at R0 = 0.62722. The limit point and
Hopf point are very close to each other. Normally (not shown in the figure), an unstable
periodic branch would bifurcate from the subcritical Hopf point and collide homoclinically
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with the static branch. However, the details are too small to have a practical impact given
the closeness of the Hopf and limit points.

Table 1. Parameters of the model.

Parameter Value Source

δ 0.0078 fitted
β 0.998 fitted
A 1252 [28]
α1 0.0179 fitted
ε 0.0012 [27]
µ 4.21× 10−5 [27]
b 0.0376 fitted
c 0.4127 fitted

It can be concluded from the diagram that the disease-free solution coexists with the
stable endemic solution for R0 extending from HB (R0 = 0.62722) to (R0 = 1). This
diagram shows how important the role the parameter b of the treatment function is in
controlling the disease (b accounts for the infected individuals when their treatment is
delayed). For values of b larger than the critical value, the eradication of the disease does
not happen when the reproduction number is reduced below one, rather it is necessary to
reduce it to values below theR0 value corresponding to the Hopf point.

Figure 3b shows the bifurcation behavior when b is chosen smaller than the critical
value, i.e., b = 0.018. The backward bifurcation no longer exists and, instead, there is the
appearance of a forward bifurcation, and the disease-free equilibrium is the only stable
solution forR0 < 1. The disease can be suppressed if the basic reproduction number falls
below the value of one.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R0

-1

0

1

2

3

4

5

6

7

8

9

10

R

10
5

LP-HB

(a)

(a) b = 0.0376 > bcr = 0.0186
Figure 3. Cont.
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0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R0

-1

0

1

2

3

4

5

6

7

8

9

10

R

10
5

(b)

(b) b = 0.018 < bcr = 0.0186

Figure 3. (a) Backward bifurcation. (b) Forward bifurcation. Solid line (stable branch); dashed line
(unstable branch); LP (static limit point); HB (Hopf point); blue line (endemic equilibrium); and red
line (disease free equilibrium).

Next, we show how the model parameters affect the range of the backward bifurcation.
This can be illustrated by showing the locus of the Hopf point as a function of the selected
model parameters. Our numerical simulations showed that, other than b and c, which are
the parameters associated with the treatment function, the change in the locus of the Hopf
point was very small even when the values of model parameters were changed over a
wide range.

The effects of b and c on the locus of the Hopf point are shown in Figure 4. It can be
observed that a decrease of either b and c would increase the value ofR0 at which the Hopf
point occurs, and this would reduce the range of the backward bifurcation since the Hopf
point would occur at large values of R0.

The vaccination rate does not greatly affect the backward bifurcation, but it does affect
the time evolution of the disease. Figure 5 shows the effect of the vaccination rate v taking
the values of 0, 0.0003, 0.0006, 0.0012 to 0.0024. It can be observed that, in the window
of one year, the effect of doubling the vaccination rate each year has a highly nonlinear
effect on the number of susceptible and recovered individuals. This shows that the giving
of vaccines to the susceptible group is influential in increasing the total population of
recovered COVID-19 patients. These results are pertinent to the vaccination rate and
in line with previous work carried out in Indonesia using a simpler model that did not
consider a treatment function [10].
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0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

R0

0.02
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0.08

0.1

b

(a)

0.585 0.59 0.595 0.6 0.605 0.61 0.615 0.62 0.625 0.63
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0.4

0.6

0.8

1

c

(b)

Figure 4: Effect of model parameters on location of Hopf point.

17

Figure 4. Effect of the model parameters on the location of the Hopf point. (a) Effect of saturation factor (b); (b) Effect of
maximal supplied medical resources (c).

(a)
Figure 5. Cont.
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(b)
Figure 5. Effect of vaccination rate on the number of: (a) recovered cases and (b) susceptible cases.

6. Conclusions

This paper studied the dynamical behavior of a SEIR model for the propagation of
COVID-19. The model included a constant vaccination rate and a nonlinear treatment
function in addition to a saturated incidence rate. The dynamics of the model were
analyzed, and the basic reproduction number was derived. The model was fitted to the
COVID-19 data of Saudi Arabia.

The main behavior found in the model was Hopf and backward bifurcations. The
analysis also showed that the capacity of the treatment and the saturation factor measuring
the effect of the infected individual, when delayed for treatment, played important roles
in the existence of backward bifurcation. The remaining model parameters, including the
vaccination rate, had a minimal effect on the occurrence of backward bifurcation. The
vaccination rate, on the other hand, had an important effect on the time evolution of
the disease.
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