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Abstract: Deep Neural Networks (DNNs) have set state-of-the-art performance numbers in diverse
fields of electronics (computer vision, voice recognition), biology, bioinformatics, etc. However, the
process of learning (training) from the data and application of the learnt information (inference)
process requires huge computational resources. Approximate computing is a common method
to reduce computation cost, but it introduces loss in task accuracy, which limits their application.
Using an inherent property of Rectified Linear Unit (ReLU), a popular activation function, we
propose a mathematical model to perform MAC operation using reduced precision for predicting
negative values early. We also propose a method to perform hierarchical computation to achieve the
same results as IEEE754 full precision compute. Applying this method on ResNet50 and VGG16
shows that up to 80% of ReLU zeros (which is 50% of all ReLU outputs) can be predicted and
detected early by using just 3 out of 23 mantissa bits. This method is equally applicable to other
floating-point representations.

Keywords: DNN; ReLU; floating-point numbers; hardware acceleration

1. Introduction

Ever since its inception, deep learning has evolved into one of the most widely used
technique to solve problems in the area of speech recognition [1], pattern recognition [2],
and natural language processing [1]. The effectiveness of Deep Neural Networks (DNNs)
is pronounced when there is a huge amount of data with minimal features which are
not easily apparent to humans [2]. This makes DNNs valuable tools to meet future data
processing needs. However, producing accurate results using a large dataset comes at
a cost. DNN inference requires a huge amount of computing power, and, as a result,
consumes a large amount of energy. In a study by Strubell et al., it was estimated that
training a single deep learning model can emit the same amount of CO2 as five cars do
throughout their lifetime [3]. Due to this fact, optimizing DNN implementations has
become an urgent requirement, and has been receiving widespread attention from the
research community [4–6].

In their basic form, DNNs consist of simple mathematical operations like addition
and multiplication, which are combined together to form the multiply and accumulate
(MAC) operation. In fact, up to 95% of the computational workload of a DNN is due
to MAC operations [7]. In a typical DNN, about a billion MAC operations are required
to process each input sample [8]. This fact suggests that improving the efficiency of
the MAC operations would contribute significantly towards reducing the computational
requirement of DNNs. One way to do this is to reduce the number of bits used to perform
the MAC operations, an idea that has been widely explored in the field of approximate
computing [9]. Some studies have shown that using approximate computing techniques for
DNN implementation can reduce power consumption by as much as 88% [10]. However,
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the majority of the approximate computing techniques result in a decrease of accuracy,
which may not be acceptable for some applications. In particular, the training of DNNs,
which could take many days even using GPUs, require high-precision floating-point values
to achieve best results [11]. Hence, it is important to come up with methods that can make
computation of DNNs more efficient without reducing the accuracy of the output.

A typical DNN consists of many convolution and fully connected layers. Each of these
layers perform MAC operation on the input using weights that are trained to generate a
unique feature representation as the output [1]. Many such layers placed in succession
can be used to approximate a target function. While the convolution and fully-connected
layers alone are sufficient to represent linear functions, they cannot be used directly for
applications that need nonlinear representations. To introduce nonlinearity into the model,
the outputs of the convolution and fully-connected layers are passed through a nonlinear
operator called an activation function [12]. As every output value is required to pass
through an activation function, choosing the right activation function is an important factor
for the effectiveness of DNNs [13].

One of the most widely used activation function is the Rectified Linear Unit (ReLU) [14].
The simple, piece-wise linear nature of ReLU can enable faster learning, and maintain
stable values when using gradient-descent methods [12]. The output of a ReLU function
is the same as the input when the input is positive, and is zero for negative inputs. This
means that the precision of output is important only when the input is a positive value.
Input to a ReLU function is usually the output from a fully-connected or convolution layer
of the DNN which consist of a large number of MAC operations [8]. Studies have found
that between 50% to 95% of ReLU outputs in DNNs are zero [15]. Hence, a lot of high
precision compute in DNNs is wasted where output elements are reduced to zero after
ReLU function. Early detection of these negative values can result in reducing the energy
spent on high precision MAC operations, which would ultimately result in an efficient
DNN implementation.

To this end, our work proposes a method for early detection of negative input values to
the ReLU function, accounting for the maximum possible error while performing MAC with
reduced precision. Using these values, we develop a mathematical model that provides a
threshold below which a negative output value is guaranteed, irrespective of the remaining
bits to be computed. It is shown that a proposed model can detect up to 80% negative values
for popular CNN models using just three mantissa bits of floating-point number. This
mathematical model can be used as the basis to implement low-precision MAC operations
for DNNs adopting ReLU functions, which would result in efficient DNN implementation
without a loss in accuracy. In summary, our contributions are threefold:

• Study of the fraction of ReLU zeros in two popular CNN models—VGG16 [16] and
ResNet50 [17].

• A mathematical model that can accurately detect negative values based on the number
of mantissa bits used a low precision MAC operation.

• Implementation of the developed model to detect ReLU zeros early in the VGG16 [16]
and ResNet50 [17] inference stage.

2. Literature Review

The training and inference of DNNs is a compute intensive task, and has resulted in
the need for various hardware accelerators [18–23]. Memory performance can be optimized
through data locality by maximizing the reuse of data at buffers close to the compute
block, as shown by Chen et al. [20]. A bit serial approach was considered by Judd et al. to
reduce overall computations required by reducing activation precision [21]. Unnecessary
multiplication with zero values was eliminated in Cnvlutin, which resulted in improved
performance [19]. TETRIS used a high bandwidth 3D memory, which lead to reduced
internal buffer size, for dealing with the memory bottleneck issue and overcoming the
memory bottleneck [23]. Pruning techniques have also been studied to maximize compute
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saving by exploiting the sparsity in DNNs [24]. However, these methods are typically used
for very specific applications and are expensive to generalize.

Approximate computing has emerged as one of the most effective solutions for generic
DNNs, and it can exploit the inherent resilience of the CNN model (i.e., its ability to handle
variations in data and still be able to figure out the pattern) and reduce the computation
costs [25]. The level of approximation could be varied for different DNN models and
datasets, hence approximate computing gained popularity [9]. This has led many re-
searchers to investigate methods to perform low-precision computations in DNNs [26–33].

One of the most commonly applied technique is quantization, which is the process
of replacing floating point numbers by numbers with reduced bit width. A study by
Gupta et al. [26] demonstrated DNN training using 16-bit wide floating-point number with
a very small reduction in accuracy as compared to a 32-bit floating-point number. Another
study explored the effect of variable precision across different CNN layers, and demon-
strated accuracy close to the benchmarks [27]. Venkatesh et al. studied the possibility
of using 2-bit weights and space computing methods to produce state-of-the-art results.
The study employed few iterations of full-precision training, followed by reduced precision
training and inference [30]. The study on compute complexity is reduction using a 1D
kernel factorized network is presented in the work [34].

Another approach in approximate computing is the use of multipliers and adders that
compute results in a simplified manner. The work by Sarwar et al. [29] highlighted the use
of simplified add and shift operations for power savings in DNNs. Another study explored
the use of alternate full-adder implementation for efficient CNN hardware [28]. Stochastic
computing based circuits have also been studied as potential candidates to implement a
low-power DNN hardware accelerator [32].

Approximate computing has also been pursued at the software level, by simplifying
the DNN architectures to reduce compute. Pruning the synaptic weights, reducing bit
width of the synapse, and minimizing the number of hidden layers or neurons within these
layers were demonstrated as effective methods to develop energy efficient DNNs [29]. Wei
et al. came up with a more structured approach with pattern-based weight pruning for
real-time DNN execution [33].

While all these studies have highlighted the relevance and requirement of approximate
computing, they also mentioned that it comes at the cost of reduced accuracy. However,
DNNs often require high precision floating point values during training to achieve high
accuracy and reduced training time [35–37]. Such a reduction in accuracy may be unaccept-
able in real-life applications like self-driving cars [38] or medical diagnosis [39,40], where
errors could be life threatening. Hence, most commercial DNNs still use floating point
precision in their computations [41,42]. Hence, it is important to come up with a method to
perform low precision computations in DNNs without reducing the accuracy of the model.

Shormann et al. proposed a method to reduce convolution operations in CNNs by
dynamically predicting zero-valued outputs [43]. SnaPEA performs a reordering of weights
and keeps track of the partial sum to predict zero outputs early [44]. A similar method
was employed by Asadikouhanjani et al. to propose an efficient DNN accelerator [45].
By considering the spatial surroundings of an output feature map, Mosaic-CNN performs
reduced precision compute to predict zero values early [46]. Other studies have explored
methods to predict the zero values in an output feature map using the sign values [47–49].
Our study attempts further research in this direction by proposing a novel method to
predict ReLU zeros with reduced precision compute.

3. Background
3.1. Convolutional Neural Networks

Among the different types of DNNs, Convolutional Neural Networks (CNNs) are
extensively used in image processing, computer vision, and speech processing applications,
often resulting in superior performance [50]. The convolution layer, which converts the
input image into a form that is easier to process by the next layer, is at the heart of a CNN.
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Convolution is the application of a filter to an input to produce an output feature map to
indicate a detected feature in the input data. Both the input values and the filter values
are represented as matrices, with the filter dimensions typically being much smaller that
the input. The values in the filter matrix are multiplied with the corresponding values in
the input matrix, and the values are added to produce a single output value. This MAC
operation is repeated by shifting the filter by a fixed amount each time, resulting in an
output feature map. The number of element shifts by the weight matrix on the input matrix
is called the stride. This convolution process is demonstrated in Figure 1. As shown in
Figure 1, each term from the input layer is multiplied with every term in the filter matrix,
and these values are added together (accumulate) to generate one value in the output
feature map. This process is repeated by moving the filter matrix across the input matrix,
until it has been traversed completely. Once the output feature map is generated, it is
passed through an activation function (like ReLU) to introduce nonlinearity.

Figure 1. Example of the convolution operation. In this example, the stride is assumed to be 1.
A 5× 5 output is produced from the 7× 7 input when a 3× 3 weight matrix is considered.

3.2. ReLU Activation Function

The ReLU activation function is one of the most popular activation functions used in
DNNs today [14]. The function returns zero for all negative inputs, and returns the input if
it is a non-negative value. It can be written as:

f (x) = max(0, x) (1)

where max returns larger of the two inputs. The graphical representation is shown in Figure 2.
The success of ReLU can be attributed to its simple implementation, which in turn reduces
the computation time of the DNN model [51]. In addition, a majority of the ReLU outputs are
zero [15], which makes the output matrix sparse and results in better prediction and reduced
chances of overfitting [52]. Both the ReLU function and its derivative are monotonic, which
ensures that the vanishing gradient problem is avoided when the gradient-descent training
process is employed [53]. These factors have contributed to the widespread use of ReLU
activation function in DNNs. Hence, the study of the ReLU activation function is important
to implement DNNs more efficiently.
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Figure 2. Graphical representation of the ReLU function. If x is the input and y is the output, then
y = 0 for x < 0, and y = x for x ≥ 0.

3.3. Floating Point Number Representation

In any typical DNN, the input, output, and intermediate values are stored in the
floating-point format. The standard format used in a majority of applications is the IEEE-
754 floating point number format [54]. In this format, the Most Significant Bit (MSB) is the
Sign bit (S) which is 0 for positive numbers, and 1 for negative numbers. This is followed by
a fixed number of bits assigned to store the Exponent E, and the remaining bits are allotted
to the Mantissa M. The fractional part is stored in the normalized form—i.e., the actual
values in binary is 1 plus the fractional value represented by M. In order to accommodate
negative exponent values, 127 is added (called excess-127). Hence, the actual exponent
is E–127. Based on these rules, the floating point value represented using the S, E and M
values in the IEEE-754 format is:

F = (−1)S × 2(E−127) × (1 + M) (2)

The two commonly used forms of the IEEE-754 format are the single and double precision
format. In the single precision representation, there are 8 exponent bits and 23 mantissa bits
to make a total of 32 bits. The double precision is a 64-bit representation with 11 exponents
and 52 mantissa bits [54]. Figure 3 graphically depicts both the single and double preci-
sion representations.

Figure 3. IEEE 754 floating point representation [54]. The total bits are divided into sign, exponent,
and mantissa. The single precision format has 1 sign, 8 exponents, and 23 mantissa bits, while the
double precision has 1 sign, 11 exponents, and 52 mantissa bits.

4. Methodology
4.1. Dataset and Framework

As image recognition is one of the most widely used and researched applications of
CNNs, we focus our analysis on models within this domain. VGG-16 is one of the pioneer
CNN models for large scale image recognition tasks [16]. It takes a 224 × 224 RGB image
as input and passes it through different convolution, max-pooling, and fully connected
layers. The final classification is implemented using a softmax layer. Figure 4 describes the
VGG-16 architecture. As evident from the figure, there are 13 convolution layers, and each
convolution layer is followed by a ReLU activation layer. A set of convolution layers are
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followed by pooling layers to reduce the dimensions of the input before sending it to the
next convolution sets. Finally, a set of fully-connected layers are added to produce the
output classification probability.

As DNNs like VGG16 became difficult to train, Residual Networks (ResNets) emerged
as improved alternatives. In ResNets, shortcut (or identity) connections were introduced
between different layers to perform quick identity mapping with no additional model pa-
rameters [17]. One such ResNet model is the ResNet-50, which has 50 different convolution
and fully-connected layers along the path from input to output. Like VGG-16, ResNet-50
also takes 224 × 224 RGB images as its input. The ResNet50 architecture is shown in
Figure 5. A convolution operation that is applied on the input and the layer size is reduced
before it is sent to the residual layers. Each of the residual layers is comprised of three sets,
each with a convolution layer followed by a ReLU activation layer. Before the last ReLU
operation, an identity connection is added to train identity mappings in some of the layers.
The Res 2–1, Res 3–1, and Res 4–1 groups shown in Figure 5 have a convolution layer in the
identity path. These residual layers are followed by a pooling and fully-connected layer,
which give the classification probabilities as the output.

Figure 4. VGG-16 CNN architecture. There are 16 computation layers (13 convolution −3× 3 kernel
and three fully connected layers without dropout). Pooling layers are present in the intermediate
stages to reduce the layer size as the network gets deeper. Regularization, normalization, and other
layers may be present but have not been shown in this figure for simplicity.

Figure 5. ResNet-50 Architecture. There are 50 computations layers (excluding convolution layers
in the identity path) between the input and output. This includes 49 convolution layers and the
fully-connected layer at the end. Res 2–1 (conv with 1 × 1, 64; 3 × 3, 64; 1 × 1, 256), Res 3–1 (1 × 1,
128; 3 × 3, 128; 1 × 1, 512) and Res 4–1 (1 × 1, 256; 3 × 3, 256; 1 × 1, 1024) are shown with a dotted
boundary to indicate that they include a convolution layer along their identity path (also shown with
a dotted boundary in the elaboration below without dropout). Regularization, normalization, and
other layers may be present but have not been shown in this figure for simplicity.
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These models were tested using the ImageNet Large Scale Visual Recognition Chal-
lenge 2012 (ILSVRC2012) inference dataset, which includes 50,000 images belonging to
1000 different classes [55]. These images were converted to the 224 × 224 RGB format,
and the pixel values were normalized. To ensure that the training methods were standard,
the pretrained models of ResNet-50 and VGG-16 were used from the Keras library [56]
running on top of the TensorFlow [57] backend.

4.2. Proposed Hierarchical Computation

It is evident that each convolution layer involves MAC operations between the input
values and a filter with the trained weight values. The result of this MAC operation is
passed through the ReLU activation function and negative values are made zero. Our
implementation includes an intermediate step that predicts negative values early using
a reduced number of mantissa bits. The MAC operation is performed using reduced
mantissa bits, and the output is obtained. Then, based on the number of mantissa bits used
for the computation, the proposed model predicts whether a value estimated is definitely
negative or not. If the value is determined to be negative, the output is made to be zero.
For the other values, we perform MAC using the full precision and obtain the output like
in typical implementations. Hence, we reduce the total number of cases for which the
expensive full precision compute must be performed, while simultaneously ensuring no
loss in accuracy.

The steps are described using a flowchart in Figure 6. In the case presented, for every
workload, we first perform computation without any mantissa bits. Since only exponent
values are present, this can be achieved directly by adding the exponent bits. If output
can be predicted to be negative at this step, then set the output as zero and move on to the
next set of element of the input workload. If inconclusive, the first 8 MSB mantissa bits
(bits 23 to 16) are considered for further computation. Once again, predict the accumulated
negative value, and set those outputs to zero. For cases where the accumulated element
sign is still ambiguous, the remaining mantissa bits (bits 15 to 0) are also used and the
full precision compute is performed. The remaining outputs are obtained after this step,
and this whole cycle is repeated for the other input workloads. This way, the total compute
can be split into multiple levels by adding additional mantissa bits. At each level, some
negative values can be detected with reduced precision compute. At the same time, full
precision compute can be performed for all positive outputs, ensuring no loss in accuracy.
The selection of levels of compute and bits selection for each level can be determined
based on model, workload, and underlying compute hardware availability. The impact
of selected mantissa bits on correctly predicted negative values is described later in the
Results section.

Figure 7 intuitively describes the proposed hierarchical computation approach to
estimate ReLU output with reduced precision compute. Here, the “Ideal” is the value
that is computed with full precision, while “Reduced” is the output with only a few
MSB mantissa bits considered. If “Reduced” is a large negative value, the output can be
estimated to be negative irrespective of the mantissa bits. Our model detects such values
until it reaches a threshold, where “Reduced” is negative but close to zero. To estimate
these values correctly, more mantissa bits (next set of MSB bits) need to be considered.
Similarly, when “Reduced” is a large positive value, it can be estimated to be positive
without using the mantissa bits. However, as the value approaches zero, more mantissa bits
are required to correctly estimate the sign of the element. A threshold is estimated along
the positive axis too, beyond which values are always positive. Our model determines
both the positive and negative thresholds, which gives rise to the region of interest where
full precision compute needs to be performed, as shown in Figure 7. These thresholds
are obtained by considering the maximum error contribution from each mantissa bit of
a floating point number. As shown in Figure 7, the error is inversely proportional to the
number of mantissa bits “n”, which means that the region of interest gets smaller as the
value of “n” increases.



Mathematics 2021, 9, 3130 8 of 18

The next section derives a mathematical model that can perform the ReLU checks
shown in Figure 6, based on the intuitive model proposed in Figure 7. We use error
calculations to prove that the model can determine ReLU zeros with no loss in accuracy.

Figure 6. Flow chart depicting the steps to perform hierarchical compute (three steps) and detect
ReLU zeros with reduced precision. The first step is to perform MAC using exponent and predict
ReLU output; if undetermined, compute most significant 8-bits of mantissa and check ReLU again if
still not conclusive perform compute using remaining mantissa bits (every next step uses previously
computed values). Here, the red arrows depict writing to the memory, and blue arrows indicate read
from memory. Black arrows indicate that the computation has been completed for the given input.

Figure 7. Intuition behind estimating ReLU zeros based on reduced precision compute. In the
hierarchical compute method, the value of “n” (number of MSB mantissa bits) is increased at each
step, resulting in a decrease in the region of interest, until only positive values are remaining.

4.3. Mathematical Model

In this section, the mathematical model of the proposed solution is presented. There
are three theorems, which cover all scenarios of the proposed solution. Theorem 1 presents
an important scenario where errors due to addition of positive values are the main contrib-
utors for a sign change of resultant from positive to negative, which impacts the threshold
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calculation. Theorem 2 describes the max error that is needed to detect negative values
out of MAC operations, and Theorem 3 talks about the major condition that needs to be
satisfied for predicting the ReLu output.

Theorem 1. Let

XS(a) =
n

∑
k=−n

(i f m(k) ∗ wt(a− k)) (3)

where a = number of terms involved in the convolution, if m(k) and wt(k) are input feature map
and weight kernel in single precision floating point representation (FP32) with a reduced number of
mantissa bits (number of mantissa bits after reduction = m).

XSPOS(n) =
n

∑
k=0

(i f m(k) ∗ wt(n− k)) (4)

is responsible to convert a positive XS(n) with m = 23 (FP32) to negative XS(n) with m < 23.

Proof of Theorem 1. Let Xs(b) where b < a, with m < 23. Let XReduced and XIdeal be the
values of the next term to be added to the convolution sum, with m = 23 and m < 23,
respectively. When this term is added to the existing sum, two different sums are obtained
depending on the presence or absence of all mantissa bits. Let these be called X Ideal

S and
XReduced

S , respectively. That is,
X Ideal

S = XS + XIdeal (5)

XReduced
S = XS + XReduced (6)

It is evident that reducing the number of mantissa bits in a floating point number results in
a number having lower magnitude. However, the sign remains unaffected as the sign bit is
unchanged. Hence, if

XIdeal < 0

=⇒ XReduced > XIdeal

=⇒ XS + XReduced > XS + XIdeal

From (5) and (6), we have
XReduced

S > X Ideal
S (7)

From (7), it is evident that, if XReduced
S < 0, it can be concluded that X Ideal

S < 0. In other
words, error due to addition of a negative value cannot alter the sign of the sum from
positive to negative. On the contrary, if

XIdeal < 0

=⇒ XReduced < XIdeal

=⇒ XS + XReduced < XS + XIdeal

From (5) and (6), we have
XReduced

S < X Ideal
S (8)

In the case of (8), XReduced
S < 0 does not guarantee that X Ideal

S < 0. Hence, errors due to
the addition of positive values contribute towards sign change from positive to negative,
and are important in determining the threshold to conclude that the convolution sum is
negative when reduced-mantissa is considered.

Theorem 2. If a positive term in the convolution sum is given by CMul = 2EMul ×MMul , where
EMul and MMul are the unbiased exponent and mantissa value of the term, the maximum error that is
possible when the number of mantissa bits is reduced to n is given by CErrMax = 2EMul−n+1×MMul .
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Proof of Theorem 2. For any floating point number given by

N = (−1)S × 2E ×M

where S, E, M represent the sign, unbiased exponent, and mantissa value, the maximum
possible error when only n mantissa bits are included is given by

EMax = −2(E−n) × (−1)S (9)

Consider an activation input (I) and weight (W) of a convolution layer. They are represented as

I = (−1)SI × 2EI ×MI (10)

W = (−1)SW × 2EW ×MW (11)

From (9), the most erroneous values that could result from reducing the number of mantissa
bits to n in I (10) and W (11) are given by

IReduced = (−1)SI × 2EI ×MI − 2(EI−n) × (−1)S
I (12)

WReduced = (−1)SW × 2EW ×MW − 2(EW−n) × (−1)S
W (13)

The convolution term when I (10) and W (10) are multiplied is given by

CIdeal = (−1)SI+SW × 2EI+EW × (MI ×MW) (14)

With reduced mantissa in the convolution step, (12) and (13) give

CReduced = IReduced ×WReduced

= (−1)SI+SW × 2EI+EW × (MI ×MW)

− (−1)SI+SW × 2EI+EW−n × (MI + MW)

+ 2EI+EW−2n

Hence,
CReduced = 2EI+EW × (MI ×MW − (2−n × (MI + MW − 2−n)) (15)

The error in convolution terms due to reduced mantissa can be obtained from (14) and (15)

CError = CIdeal − CReduced

= 2EI+EW−n × (MI + MW + 2−n)

As 2−n is always positive,

CError ≤ 2EI+EW−n × (MI + MW). (16)

Since MI and MW represent the mantissa values,

1 ≤ MI , MW ≤ 2

=⇒ MI + MW ≤ 2×MI ×MW

Hence, (16) can be rewritten as

CError ≤ 2EI+EW−n × (2×MI ×MW)

= 2EI+EW−n+1 × (MI ×MW)

From (14), we get
CError ≤ 2−n+1 × CIdeal (17)
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It is evident from Theorem 1 that only positive terms will contribute to errors that can
contribute to incorrectly identifying a negative value. Hence, SI + SW = 0 (Either both I
and W are positive or both are negative). Including this in (14), we can rewrite CIdeal as

CIdeal = 2EMul ×MMul (18)

where EMul = EI + EW and MMul = MI ×MW . Hence, the maximum error in a positive
term in the convolution sum is

CErrMax = 2EMul−n+1 ×MMul (19)

Hence, we obtain the maximum error, which is needed to detect negative values from
a MAC operation.

Theorem 3. If the convolution sum before the ReLU activation layer is given by CTot = (−1)STot ×
2ETot ×MTot, and the sum of positive terms in the summation (including the bias value) is given
by CPos = 2EPos ×MPos, then the value of CTot can be concluded to be negative if STot = 1 and
ETot > EPos − n, where n is the number of mantissa bits used in the computation.

Proof of Theorem 3. Let the sum of all product terms in the convolution be given by

CTot = ∑
i
(−1)Si × 2Ei ×Mi = (−1)STot × 2ETot ×MTot (20)

From (19) in Theorem 2, the maximum error due positive terms in the convolution is given
by Ci

ErrMax = 2Ei−n+1 × Mi. Hence, when these errors are accumulated for all positive
terms (including bias), we get

CErrTot = ∑
i:Si=0

Ci
ErrMax = ∑

i:Si=0
2Ei−n+1 ×Mi (21)

Note that, unlike other terms in the convolution sum, the bias does not involve multiplica-
tion of reduced mantissa numbers. Hence, the maximum error for bias values will be lower.
However, the same error has been considered (as an upper bound) to simplify calculations.

We can represent the sum of positive terms (including bias) in the convolution sum as

CPos = ∑
i:Si=0

2Ei ×Mi = 2EPos ×MPos (22)

Using (22), the total error in (21) can be rewritten as

CErrTot = 2−n × CPos (23)

To conclude that a convolution sum is zero/negative, the following two conditions should hold:

|CTot| ≥ |CPos| (24)

STot = 1 (25)

(24) can be expanded using (20) and (22) to give

2ETot ×MTot ≥ 2EPos−n+1 ×MPos (26)

Note that, if ETot = EPos − n + 1, then the condition MTot ≥ MPos must hold (as the total
convolution sum (CTot) must be greater than or equal to the sum of positive convolution
terms and bias (CPos)) As a consequence, (26) now becomes

ETot ≥ EPos − n + 1 (27)
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=⇒ ETot > EPos − n (28)

Hence, from (25) and (28), we can conclusively say that a convolution sum computed using
reduced-mantissa bits is negative (In addition, its ReLU output is zero) if STot = 1 and
ETot > EPos − n.

4.4. Early Negative Value Prediction

The theorems derived above can be used to implement the proposed model for
hierarchical computation. The steps to find out if a reduced precision value is a ReLU zero
can be represented as an algorithm, as shown here:

1. Consider inputs and weights of convolution with reduced “n” mantissa bits
2. Compute CPos, the sum of positive convolution terms, as per (22)
3. Obtain EPos, the exponent value of CPos, as per (22)
4. Compute CTot = CPos + CNeg, where CNeg is the sum of negative convolution terms
5. Obtain ETot, the exponent value of Ctot, as per (20)
6. If ETot > (EPos − n), then assign the ReLU output as zero. The computation is complete.
7. If ReLU zero is not assigned, repeat steps 1–6 for higher values of “n”.

5. Results

In order to motivate the use of the hierarchical compute method to detect ReLU
zeros early, we first identify the number of ReLU zeros that are present when a typical
image is processed using the ResNet-50 and VGG-16 CNN models; findings are shown in
Figure 8. It is evident from the figure that, in a majority of the layers, more than 50% of
the ReLU outputs are zero, with many of the deeper layers having up to 90% ReLU zeros.
Considering all the layers, we found that, on an average, 61.77% of the ReLU outputs were
zeros in VGG-16, while 61.24% ReLU zeros were seen for ResNet-50. These results indicate
that a large portion of compute is wasted on computing ReLU zeros, which can be avoided
using the proposed method.

Figure 8. Percentage of ReLU zeros present in (a) VGG16; (b) ResNet50 when a typical image is
processed through the models. Only a few layers of ResNet-50 are shown for clarity—a similar trend
is observed in all the layers.

In addition to the percentage of ReLU zeros, it is also important to understand the
distribution of values seen by the ReLU layer. The results from ResNet-50 layers are shown
in Figure 9. A total of 10 bins were chosen—values below −8, −8 to −4, −4 to −2, −2 to
−1,−1 to 0, 0 to 1, 1 to 2, 2 to 4, 4 to 8 and values above 8. We notice that, in all layers, about
50% of the values fall between −1 to 1, and more than 80% between −2 and 2. This implies
that the majority of the values are close to zero. As a result, it is not practical to use a fixed
threshold value along with reduced precision compute. A large negative threshold (say
−2) can ensure that a value computed with reduced precision will have the correct sign.
However, we can see from the distribution that only very few values (under 20%) can be
detected with such a fixed threshold. If the threshold is pushed closer to zero, the chances
of incorrectly detecting ReLU zeros increase. This study demonstrates the importance of
the variable threshold derived using our model.
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Figure 9. Distribution of ReLU inputs in different layers of ResNet-50. Here, Val is the input to the
ReLU function. A total of 10 bins have been considered, and the range in each bin in mentioned in
the figure. The different layers shown in the figure are: (a) first convolution layer from the input
image (b) first convolution layer in the Res 1-1 block; (c) first convolution layer in the Res 2-1 block;
(d) first convolution layer in the Res 3-1 block.

The proposed model was tested by evaluating the ReLU output values at different lay-
ers of both the VGG-16 and ResNet-50 CNN implementation. This was done by comparing
the outputs from the convolution layer using (25) and (28). The total number of negative
values that were detected using our model were noted and compared with the total number
of output values to provide the percentage of negative values that are detected early. This
was repeated for different layers, with different numbers of mantissa bits. Figure 10 shows
the percentage of ReLU zeros detected by our model across different layers of ResNet-50
with different numbers of mantissa bits. It is evident that, as the number of mantissa bits
considered increases, our model is able to detect the majority of ReLU zeros in all layers.

Figure 10. Percentage of ReLU values detected using our model across different ResNet-50 layers.
The first 33 convolution layers are shown in the figure. The number of MSB mantissa bits used were
(a) 0; (b) 1; (c) 2; and (d) 3.
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To get a closer look at the impact of increasing the number of mantissa bits, we plotted
the percentage of ReLU zeros detected with 0, 1, 2, and 3 mantissa bits for randomly chosen
layers in VGG-16 and ResNet-50. This is shown in Figure 11. As expected, the fraction of
negative values detected increases as the number of mantissa bits used for computation is
increased. Close to 80% of negative values can be detected early using just three mantissa
bits, which can result in a significant increase in the efficiency of the network. Due to the
nature of weights, range of values, and so on, we observe that the results across different
layers vary. However, as seen in Figure 10, the amount of variation decreases as we use
more mantissa bits. Additionally, we note similar effectiveness of our model for both
VGG-16 and ResNet-50, which shows that the model does not depend on the type of CNN
implementation—it works based on the fundamental characteristics of MAC operations
and floating-point numbers, which makes it a generalized solution for any CNN layer with
a ReLU activation function.

From the results presented, we see that about 60% of the outputs of the ReLU activation
function are zero values in CNNs like VGG-16 and ResNet-50. If three mantissa bits are
used for computation and our model is deployed, 80% of these ReLU zeros can be detected.
Hence, we can expect about 50% of the all ReLU outputs to be estimated early. This way,
almost half of the total computations can be carried out in low precision and the other half
can be computed in full precision, while ensuring no loss in accuracy.

Figure 11. Percentage of ReLU zeros identified by our model when different mantissa bits were considered. The figure
shows the results in (a) Conv 1-2; (b) Conv 3-3; and (c) Conv 5-3 layers of VGG-16, and (d) second convolution layer of Res
1-1 block; (e) first convolution layer of Res 2-4 block; and (f) third convolution layer of Res 3-5 block. Similar results were
observed in other layers of both ResNet-50 and VGG-16.

6. Discussion
6.1. Generalization to Other DNNs

The results presented in this work utilize CNNs as the end application due to their
ubiquitous nature and applicability to various fields. However, the model we have pro-
posed is built on fundamental properties of floating-point numbers, MAC operations,
and the ReLU activation function. Hence, the model can be extended to other applications
too. When there are no negative values in the whole process, the algorithm will not predict
any outcome and bypass all MAC output as valid output. However, these computations
that are bypassed by algorithms as valid will be reused as a partial product for computing
the actual output with the remaining mantissa bits. Since the compute used for prediction
is re-purposed as a partial product and also for the cases which are slightly uncertain,
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the algorithm tends to predict them as positive value (no approximation) and bypass them
out of the algorithm as valid outputs such that it will always go through the full precision
compute. Hence, no accuracy drop is expected with the use of a proposed solution.

The proposed solution will be applicable across various networks with activation
functions which displays a nonlinear behavior for either positive or negative numbers
(not both) and the other one must be a zero or any constant value. To support activation
functions like sigmoid, we might need to redevelop mathematical constraints to predict
values between [−ve, +ve] range, while all other values outside this range can be set to
a constant.

6.2. Implementation on GPU/Other Accelerators

This method is implementable on any compute engine that supports DNN workload.
Since the proposed solution supports the reusing of partially computed elements that
were used for early prediction, this will not impose a heavy tax on the existing hardware.
On GPU and other accelerators, the proposed solution will need fine-tuning of data flow,
data storage pattern and control logic, etc.

6.3. Extension to Training

The results presented in this work demonstrate the effectiveness of our model during
the inference stage in a DNN. However, the process of training also involves the same set of
steps, along with the additional step of adjusting the parameters. Hence, our model can be
used in every layer with a ReLU activation layer. Since DNN training is a time-consuming
and compute intensive process, this method can provide a significant improvement. It
is also noteworthy to mention that, unlike inference, training must be done with high
precision values. As a result, many of the approximate computing methods that have been
studied cannot be extended to training. However, since our method ensures that there is
no loss in accuracy, it can be applied to training as well.

7. Conclusions

In this work, we proposed a mathematical model that can detect zero outputs of the
ReLU activation function using low-precision MAC operations. Our model takes into
account the error resulting from the reduction of the number of bits in a floating-point
representation, and identifies values that would be negative even when full-precision
compute is performed. Our model can adapt based on the number of mantissa bits
considered in the computation, ensuring its suitability for different number formats used in
DNNs. We show that around 80% of ReLU zeros can be detected using just three mantissa
bits, which corresponds to a total of 50% of all ReLU outputs in VGG16 and ResNet50
CNN implementations. As the model is developed with no assumption about the nature of
the network or the application, we claim that the model can be extended to all DNNs that
use the ReLU activation function. In addition, as the MAC operation and the activation
layer in DNN training is identical to inference, this model can be adopted to make the
compute-hungry training process more efficient. We also propose a system level model
to implement this method and perform hardware acceleration of DNNs. The widespread
use of DNNs with the ReLU activation function means that our model can be used as an
error-free way to reduce computations in numerous applications.
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