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Abstract: This work aims at studying resolutions of the jerk and snap vectors of a point particle
moving along a quasi curve in Euclidean 3-space E3. In particular, we obtain the resolution of the
jerk and snap vectors along the quasi vectors and offer an alternative resolution of the jerk and snap
vectors along the tangential direction and two special radial directions that lie in the osculating and
rectifying planes. This alternative resolution for a quasi plane curve in Euclidean 3-space E3 is given
as corollary. Moreover, our results are illustrated via some examples.
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1. Introduction

There is a very close relationship between the kinematics of a moving particle and the
differential geometry of the trajectory where any point particle of constant mass moving
along a trajectory in the space has a position vector according to the moving frame for the
trajectory. Displacement, velocity, and acceleration are all terms that we are all familiar
with. We experience velocity when we move and acceleration when we change the velocity
at which we move. When acceleration is rapidly changing, we feel jerk and snap. The terms
jerk and snap mean very little to most people. Mathematically, the velocity, acceleration, jerk
(jolt), and snap (jounce) are the first, second, third, and fourth derivatives of the position
with respect to time, respectively. We can observe the effects of velocity, acceleration,
and higher-order derivatives when driving a car. A more experienced driver accelerates
smoothly, whereas a novice driver may produce a jerky ride, causing jerk and snap.

Jerk and snap can be observed in many areas. In physics and engineering, when transi-
tion and vibration occur, especially when this excitation causes multi-resonant modes of
vibration. In mechanical engineering, when the cam-follower jumps off the camshaft in
the automotive sense. In civil engineering, when switching between train tracks and roads
suddenly. Jerk and snap have many applications in oscillators, manufacturing and motion
control, see [1–3].

A curve provided with the Frenet, Darboux, modified, Bishop, or quasi frame is called
the Frenet, Darboux, modified, Bishop, or quasi curve, respectively. In most applications, the
acceleration is expressed as the sum of its normal and tangential components. Siacci [4]
obtained the acceleration vector as the sum of its radial and tangential components. Despite
Siacci’s theorem being very remarkable, his formulation of the theorem is inaccurate and
his proof is burdensome. Therefore, Whittaker [5] and Grossman [6] presented a more
modern geometrical proof of Siacci’s theorem in the plane. Casey [7] presented a proof of
Siacci’s theorem for Frenet curves in Euclidean 3-space E3. Küçükarslan et al. [8] studied
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Siacci’s theorem for curves in Finsler Manifold F3. Özen et al. [9] studied Siacci’s theorem
for Darboux curves on regular surfaces in Euclidean 3-space E3. Özen [10] studied Siacci’s
theorem for Frenet curves in Minkowski 3-space E3

1. Résal [11] obtained a resolution of
the jerk vector for Frenet curves in Euclidean 3-space E3. Özen et al. [12] presented a new
resolution of the jerk vector for Frenet curves in Euclidean 3-space E3. Özen et al. [13]
studied resolutions of the acceleration and jerk vectors for modified curves in Euclidean
3-space E3. Güner [14] studied resolutions of the jerk vector for Bishop curves in Euclidean
3-space E3. Tosun and Hızarcıoglu [15] studied resolutions of the jerk vector for Darboux
curves on regular surfaces in Euclidean 3-space E3. For more details about the jerk and
snap vectors, see [1,16,17].

The moving frames play an essential role in studying curves and surfaces in different
spaces, especially the quasi frame, which is more efficient and general than other frames
(Frenet, Bishop). This frame characterized as well-defined at all points, its calculations are
easy and its construction does not change if the curve parameterized by arc-length or not.

The purpose of this work is to study resolutions of the jerk and snap vectors of a point
particle moving along a quasi curve in Euclidean 3-space E3. This article is organized as
follows: In Section 2, we present background about the quasi frame along a unit speed
curve in Euclidean 3-space E3 and its relation to the Frenet frame. In Section 3, we obtain
the resolution of the jerk and snap vectors of a point particle according to the quasi frame
and provide an alternative resolution of the jerk and snap vectors along the tangential
direction and two special radial directions. Moreover, the tangential and special radial
components of the jerk and snap vectors for a quasi plane curve in Euclidean 3-space E3

are given as a corollary. In Section 4, we offer illustrative examples to show our results.
Finally, in Section 5, we conclude the article with a summary.

2. Preliminaries

In this section, we start with the basic concepts of this paper.
Let E3 be a Euclidean 3-space provided with the Cartesian metric g given by

g = dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a coordinate system of E3. Let P = (p1, p2, p3) and Q = (q1, q2, q3) be
any two vectors in E3. Then, we can define the following:

- The Cartesian inner product of P and Q as

〈P, Q〉 = p1q1 + p2q2 + p3q3;

- The Cartesian norm of Q by

‖Q‖ =
√
〈Q, Q〉;

- The Cartesian cross product of P and Q as

P×Q =

∣∣∣∣∣∣
e1 e2 e3
p1 p2 p3
q1 q2 q3

∣∣∣∣∣∣ = (p2q3 − p3q2, p3q1 − p1q3, p1q2 − p2q1).

Definition 1. A differentiable curve α(s) in E3 is termed a regular curve if α′(s) 6= 0 for each s,
while it is termed a unit speed curve or an arc-length parameterized curve if ‖α′(s)‖ = 1 for each s.
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Let α(s) be a unit speed curve in E3 such that α′′(s) 6= 0 for all s. Then, we can define
the following [18–20]:

- The Frenet orthonormal frame {T(s), N(s), B(s)} along the curve α(s) as

T(s) = α′(s), N(s) =
T′(s)
‖T′(s)‖ , B(s) = T(s)×N(s), (1)

where T(s), N(s) and B(s) are the unit tangent, Frenet-normal and Frenet-binormal vectors,
respectively. Therefore, the Frenet equations for the curve α(s) are given by T′(s)

N′(s)
B′(s)

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T(s)
N(s)
B(s)

, (2)

where the functions κ and τ are Frenet-curvatures for the curve α(s) and defined by

κ(s) =
∥∥T′(s)

∥∥, τ(s) = −
〈
B′(s), N(s)

〉
. (3)

- The quasi orthonormal frame
{

T(s), Nq(s), Bq(s)
}

along the curve α(s) as

T(s) = α′(s), Nq(s) =
T× k
‖T× k‖ , Bq(s) = T×Nq, (4)

where T(s), Nq(s),Bq(s) and k are the unit tangent, quasi-normal, quasi-binormal and
projection vectors, respectively. The projection vector equals (1, 0, 0) or (0, 1, 0) or (0, 0, 1).

- The relation matrix between the quasi frame and Frenet frame along the curve α(s) by T(s)
Nq(s)
Bq(s)

 =

 1 0 0
0 cos φ sin φ
0 − sin φ cos φ

 T(s)
N(s)
B(s)

. (5)

Thus, we have  T(s)
N(s)
B(s)

 =

 1 0 0
0 cos φ − sin φ
0 sin φ cos φ

 T(s)
Nq(s)
Bq(s)

, (6)

where φ(s) is the Cartesian angle between the Frenet-normal N(s) and quasi-normal Nq(s).
By using (2), (5) and (6), the quasi equations for the curve α(s) are given by T′(s)

N′q(s)
B′q(s)

 =

 0 κ1 κ2
−κ1 0 κ3
−κ2 −κ3 0

 T(s)
Nq(s)
Bq(s)

, (7)

where the functions {κi|i = 1, 2, 3} are quasi-curvatures for the curve α(s) and defined by

κ1 = κ cos φ(s), κ2 = −κ sin φ(s), κ3 = φ′(s) + τ. (8)

Thus, we have

κ2 = κ2
1 + κ2

2, φ(s) = − arctan
(

κ2

κ1

)
. (9)
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Remark 1. The quasi frame is singular if the vectors T and k are linearly dependent.

Remark 2. If we put κ2 = 0 in (7), then the quasi equations reduce to the Frenet equations.

During the following sections of our paper, we shall need the following definitions
and notation.

Definition 2. The first, second, third, and fourth time derivatives of the position vector are termed
the velocity, acceleration, jerk (jolt), and snap (jounce) vectors, respectively.

Notation 1. The osculating and rectifying planes are denoted by π and π∗, respectively. The
radial directions in the planes π and π∗ are denoted by HP and GP , respectively. The foots of
perpendicular lines that are from a fixed origin O to the planes π and π∗ are denoted by H and G,
respectively. The unit vectors in directions HP and GP are denoted by er and er∗ , respectively.
The angular momentum vector of a point particle P about a fixed origin O is denoted byHO .

3. Main Results

In this section, we obtain the resolution of the jerk and snap vectors of a point particle
along a quasi curve and provide an alternative resolution of the jerk and snap vectors along
the tangential direction and two special radial directions that lie in the planes π and π∗.

Theorem 1. Assume that the point particle P with constant mass m moves along an arc-length
parameterized quasi curve α(s) in E3. Suppose that the arc-length s of the curve α coincides with
time t. Then, we can state the following:

- The jerk vector of the point particle P at time t is given as

J = DtT +Dnq Nq +Dbq Bq, (10)

where

Dt =

(
d3s
dt3

)
−
(

κ2
1 + κ2

2

)(ds
dt

)3
,

Dnq =

[
3
√

κ2
1 + κ2

2

(
ds
dt

)(
d2s
dt2

)
+

(
ds
dt

)3 d
ds

(√
κ2

1 + κ2
2

)]
cos φ(s)

+

[(
κ3 − φ′

)√
κ2

1 + κ2
2

(
ds
dt

)3
]

sin φ(s),

Dbq =

[
3
√

κ2
1 + κ2

2

(
ds
dt

)(
d2s
dt2

)
+

(
ds
dt

)3 d
ds

(√
κ2

1 + κ2
2

)]
(− sin φ(s))

+

[(
κ3 − φ′

)√
κ2

1 + κ2
2

(
ds
dt

)3
]

cos φ(s).

Here, Dt, Dnq and Dbq are the tangential, quasi-normal and quasi-binormal components of
the jerk, respectively.

- The snap vector of the point particle P at time t is given by

S = CtT + Cnq Nq + Cbq Bq, (11)
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where

Ct =

(
d4s
dt4

)
− 6
(

κ2
1 + κ2

2

)(ds
dt

)2(d2s
dt2

)
− 3
√

κ2
1 + κ2

2

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)
,

Cnq =

[
4
√

κ2
1 + κ2

2

(
ds
dt

)(
d3s
dt3

)
+ 6
(

ds
dt

)2(d2s
dt2

)
d
ds

(√
κ2

1 + κ2
2

)

+3
√

κ2
1 + κ2

2

(
d2s
dt2

)2

+

(
ds
dt

)4 d2

ds2

(√
κ2

1 + κ2
2

)
−
(

κ2
1 + κ2

2

)3/2
(

ds
dt

)4

−
(
κ3 − φ′

)2
√

κ2
1 + κ2

2

(
ds
dt

)4
]

cos φ(s)

+

[
6
(
κ3 − φ′

)√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
+ 2
(
κ3 − φ′

)(ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)

+
(
κ3 − φ′

)′√
κ2

1 + κ2
2

(
ds
dt

)4
]

sin φ(s),

Cbq =

[
4
√

κ2
1 + κ2

2

(
ds
dt

)(
d3s
dt3

)
+ 6
(

ds
dt

)2(d2s
dt2

)
d
ds

(√
κ2

1 + κ2
2

)

+3
√

κ2
1 + κ2

2

(
d2s
dt2

)2

+

(
ds
dt

)4 d2

ds2

(√
κ2

1 + κ2
2

)
−
(

κ2
1 + κ2

2

)3/2
(

ds
dt

)4

−
(
κ3 − φ′

)2
√

κ2
1 + κ2

2

(
ds
dt

)4
]
(− sin φ(s))

+

[
6
(
κ3 − φ′

)√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
+ 2
(
κ3 − φ′

)(ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)

+
(
κ3 − φ′

)′√
κ2

1 + κ2
2

(
ds
dt

)4
]

cos φ(s).

Here, Ct, Cnq and Cbq are the tangential, quasi-normal and quasi-binormal components of the
snap, respectively.

Proof. Let a point particle P move along an arc-length parameterized quasi curve α(s) in
the space E3. Then, the point particle has a position vector according to the quasi frame.
Let X be the position vector of P at time t with respect to a fixed origin O in the space E3.
Through an assumption that “the arc-length of the curve coincides with the time”, the unit
tangent vector T(s) for the curve α at P is then given by

T(s) =
dX
ds

. (12)

From (7)–(9) and (12), we obtain the velocity V and accelerationA vectors of P at time
t according to the quasi frame as

V =
dX
dt

=

(
ds
dt

)
T (13)

and

A =

[
d2s
dt2

]
T +

[√
κ2

1 + κ2
2

(
ds
dt

)2
cos φ(s)

]
Nq −

[√
κ2

1 + κ2
2

(
ds
dt

)2
sin φ(s)

]
Bq,

respectively. From Definition 2, the jerk and snap vectors of the point particle P according
to the quasi frame are expressed as in (10) and (11), respectively. The proof is complete.
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Theorem 2. Assume that the point particle P with constant mass m moves along an arc-length
parameterized quasi curve α(s) in E3. Suppose that the components of the vectorHO never vanish.
Then, we can state the following:

- The jerk vector of the point particle P is given as

J = TtT + Trer + Tr∗er∗ , (14)

where

Tt =

(
d3s
dt3

)
−
(

κ2
1 + κ2

2

)(ds
dt

)3
+

3λ

ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d2s
dt2

)
+

λ

ν

(
ds
dt

)3 d
ds

(√
κ2

1 + κ2
2

)
− λ(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)3
,

Tr = −3r
ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d2s
dt2

)
− r

ν

(
ds
dt

)3 d
ds

(√
κ2

1 + κ2
2

)
,

Tr∗ =
r∗(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)3
.

Here, Tt, Tr and Tr∗ are the tangential and special radial components of the jerk. The special
radial components Tr and Tr∗ lie along the lines that pass by the point particle P and the points H
and G, respectively. The tangential component Tt lies along the tangent line T of the curve α at P .

- The snap vector of the point particle P is given by

S = FtT +Frer +Fr∗er∗ , (15)

where

Ft =

(
d4s
dt4

)
− 6
(

κ2
1 + κ2

2

)(ds
dt

)2(d2s
dt2

)
− 3
√

κ2
1 + κ2

2

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)
+

4λ

ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d3s
dt3

)
+

6λ

ν

(
ds
dt

)2(d2s
dt2

)
d
ds

(√
κ2

1 + κ2
2

)
+

3λ

ν

√
κ2

1 + κ2
2

(
d2s
dt2

)2

− 6λ(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
+

λ

ν

(
ds
dt

)4 d2

ds2

(√
κ2

1 + κ2
2

)
− 2λ(κ3 − φ′)

µ

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)
−λ

ν

(
κ2

1 + κ2
2

)3/2
(

ds
dt

)4
− λ(κ3 − φ′)2

ν

√
κ2

1 + κ2
2

(
ds
dt

)4

−λ(κ3 − φ′)′

µ

√
κ2

1 + κ2
2

(
ds
dt

)4
,

Fr = −4r
ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d3s
dt3

)
− 6r

ν

(
ds
dt

)2(d2s
dt2

)
d
ds

(√
κ2

1 + κ2
2

)
−3r

ν

√
κ2

1 + κ2
2

(
d2s
dt2

)2

+
r(κ3 − φ′)2

ν

√
κ2

1 + κ2
2

(
ds
dt

)4

+
r
ν

(
κ2

1 + κ2
2

)3/2
(

ds
dt

)4
− r

ν

(
ds
dt

)4 d2

ds2

(√
κ2

1 + κ2
2

)
,

Fr∗ =
6r∗(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
+

r∗(κ3 − φ′)′

µ

√
κ2

1 + κ2
2

(
ds
dt

)4

+
2r∗(κ3 − φ′)

µ

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)
.
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Here, Ft, Fr and Fr∗ are the tangential and special radial components of the snap. The special
radial components Fr and Fr∗ lie along the lines that pass by the point particle P and the points H
and G, respectively. The tangential component Ft lies along the tangent line T of the curve α at P .

Proof. Let a point particle P move along an arc-length parameterized quasi curve α(s) in
the space E3. Then, the point particle has a position vector in terms of the quasi frame.
Assume that the position vector X of P is resolved as

X = λT− ν
(
cos φNq − sin φBq

)
+ µ

(
sin φNq + cos φBq

)
, (16)

where

λ = 〈X , T〉, ν = −
〈
X , cos φNq − sin φBq

〉
, µ =

〈
X , sin φNq + cos φBq

〉
. (17)

We note that the vectors T,
(
cos φNq − sin φBq

)
and

(
sin φNq + cos φBq

)
are or-

thonormal. Let us define the vectors r and r∗ as

r = λT− ν
(
cos φNq − sin φBq

)
, r∗ = λT + µ

(
sin φNq + cos φBq

)
, (18)

that lie in the planes π and π∗ to α at P , respectively. Then, we have

r2 = 〈r, r〉 = λ2 + ν2, (r∗)2 = 〈r∗, r∗〉 = λ2 + µ2, (19)

where r and r∗ are the Cartesian norms of r and r∗, respectively. (See Figure 1). The jerk
and snap vectors in (10) and (11) can be written as

J =

[(
d3s
dt3

)
−
(

κ2
1 + κ2

2

)(ds
dt

)3
]

T

+

[
3
√

κ2
1 + κ2

2

(
ds
dt

)(
d2s
dt2

)
+

(
ds
dt

)3 d
ds

(√
κ2

1 + κ2
2

)](
cos φNq − sin φBq

)
+

[(
κ3 − φ′

)√
κ2

1 + κ2
2

(
ds
dt

)3
](

sin φNq + cos φBq
)

(20)

and

S =

[(
d4s
dt4

)
− 6
(

κ2
1 + κ2

2

)(ds
dt

)2(d2s
dt2

)
− 3
√

κ2
1 + κ2

2

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)]
T

+

[
4
√

κ2
1 + κ2

2

(
ds
dt

)(
d3s
dt3

)
+ 6
(

ds
dt

)2(d2s
dt2

)
d
ds

(√
κ2

1 + κ2
2

)

+3
√

κ2
1 + κ2

2

(
d2s
dt2

)2

+

(
ds
dt

)4 d2

ds2

(√
κ2

1 + κ2
2

)
−
(

κ2
1 + κ2

2

)3/2
(

ds
dt

)4

−
(
κ3 − φ′

)2
√

κ2
1 + κ2

2

(
ds
dt

)4
](

cos φNq − sin φBq
)

+

[
6
(
κ3 − φ′

)√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
+ 2
(
κ3 − φ′

)(ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)

+
(
κ3 − φ′

)′√
κ2

1 + κ2
2

(
ds
dt

)4
](

sin φNq + cos φBq
)
, (21)

respectively. It is well known that the vectorHO is given by

HO = X ×mV .
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Thus, from (13) and (16), we obtain

HO = mµ

(
ds
dt

)(
cos φNq − sin φBq

)
+ mν

(
ds
dt

)(
sin φNq + cos φBq

)
. (22)

Figure 1. The motion of point particle P along a quasi curve α in E3.

Our goal is to resolve the jerk and snap vectors in (20) and (21) along the vectors T, er
and er∗ . To do that, let us write the vectors

(
cos φNq − sin φBq

)
and

(
sin φNq + cos φBq

)
in terms of {r, T} and {r∗, T}, respectively. By means of (18), we can do this if and only if
ν 6= 0 and µ 6= 0. Through an assumption “the components of the vectorHO in (22) never
vanish”, we can guarantee that ν 6= 0 and µ 6= 0. Thus, we find from (18) that

cos φNq − sin φBq =
1
ν
(−r + λT), sin φNq + cos φBq =

1
µ
(−λT + r∗). (23)

We also find from (19) that r 6= 0 and r∗ 6= 0. So, we can define the unit vectors er and
er∗ as

er =
1
r

r, er∗ =
1
r∗

r∗. (24)

Thus, (23) becomes

cos φNq − sin φBq =
1
ν
(−rer + λT), sin φNq + cos φBq =

1
µ
(−λT + r∗er∗). (25)

By substituting (25) in (20) and (21), the jerk and snap vectors of the point particle P
are expressed as in (14) and (15), respectively. The proof is complete.

Corollary 1. In Euclidean 3-space, assume that the oriented quasi curve traced out by the point
particle P is limited to the plane π which does not necessarily contain the origin O. Suppose that
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the component of the vectorHO along the vector
(
sin φNq + cos φBq

)
never vanishes. Then, we

can state the following:

- The tangential and special radial components of the jerk vector become

Tt =

(
d3s
dt3

)
−
(

κ2
1 + κ2

2

)(ds
dt

)3
+

3λ

ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d2s
dt2

)
+

λ

ν

(
ds
dt

)3 d
ds

(√
κ2

1 + κ2
2

)
,

Tr = −3r
ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d2s
dt2

)
− r

ν

(
ds
dt

)3 d
ds

(√
κ2

1 + κ2
2

)
,

Tr∗ = 0. (26)

- The tangential and special radial components of the snap vector become

Ft =

(
d4s
dt4

)
− 6
(

κ2
1 + κ2

2

)(ds
dt

)2(d2s
dt2

)
− 3
√

κ2
1 + κ2

2

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)
+

4λ

ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d3s
dt3

)
+

6λ

ν

(
ds
dt

)2(d2s
dt2

)
d
ds

(√
κ2

1 + κ2
2

)
+

3λ

ν

√
κ2

1 + κ2
2

(
d2s
dt2

)2

+
λ

ν

(
ds
dt

)4 d2

ds2

(√
κ2

1 + κ2
2

)
−λ

ν

(
κ2

1 + κ2
2

)3/2
(

ds
dt

)4
,

Fr = −4r
ν

√
κ2

1 + κ2
2

(
ds
dt

)(
d3s
dt3

)
− 6r

ν

(
ds
dt

)2(d2s
dt2

)
d
ds

(√
κ2

1 + κ2
2

)
−3r

ν

√
κ2

1 + κ2
2

(
d2s
dt2

)2

− r
ν

(
ds
dt

)4 d2

ds2

(√
κ2

1 + κ2
2

)
+

r
ν

(
κ2

1 + κ2
2

)3/2
(

ds
dt

)4
,

Fr∗ = 0. (27)

Proof. Let a point particle P move along an arc-length parameterized quasi curve α(s)
that lies in the plane π and choose a fixed origin O in the space E3. Then, there are two
cases. Firstly, we assume that the plane π does not contain O. Then, µ 6= 0. Through
an assumption “the component of the vectorHO along the vector

(
sin φNq + cos φBq

)
in

(22) never vanishes”. Then ν 6= 0. We know that τ = 0 in the planar motion. Then, the
vector

(
sin φNq + cos φBq

)
is constant and perpendicular to the plane π. Therefore, µ is a

nonzero constant and (
sin φNq + cos φBq

)′
= 0.

By means of (7) and (8), we obtain

−
[(

κ3 − φ′
)

cos φ
]
Nq +

[(
κ3 − φ′

)
sin φ

]
Bq = 0,

which implies that
κ3 − φ′ = 0.

Consequently, we find from (14) and (15) that the tangential and special radial compo-
nents of the jerk and snap vectors are expressed as in (26) and (27), respectively. Secondly,
we assume that the plane π contains O. Then, µ = 0. As well, ν 6= 0 and κ3 − φ′ = 0. Thus,
the quantities

−λ(κ3 − φ′)2

ν

√
κ2

1 + κ2
2

(
ds
dt

)4
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and
r(κ3 − φ′)2

ν

√
κ2

1 + κ2
2

(
ds
dt

)4

vanish. While, the quantities

−6λ(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
,

6r∗(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
,

−2λ(κ3 − φ′)

µ

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)
,

2r∗(κ3 − φ′)

µ

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)
,

−λ(κ3 − φ′)′

µ

√
κ2

1 + κ2
2

(
ds
dt

)4
,

r∗(κ3 − φ′)′

µ

√
κ2

1 + κ2
2

(
ds
dt

)4
,

−λ(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)3
and

r∗(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)3

have indefiniteness 0/0. Therefore, we will study this case when µ −→ 0. Then, it follows
from (18), (19) and (24) that r∗ ≈ λ and T ≈ er∗ . (See Figure 2).

Figure 2. The motion of point particle P along a quasi plane curve α that contains a fixed origin O.

Consequently, we can say that the vectors[
−λ(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)3
]

T+

[
r∗(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)3
]

er∗
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and [
−6λ(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
− λ(κ3 − φ′)′

µ

√
κ2

1 + κ2
2

(
ds
dt

)4

−2λ(κ3 − φ′)

µ

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)]
T

+

[
6r∗(κ3 − φ′)

µ

√
κ2

1 + κ2
2

(
ds
dt

)2(d2s
dt2

)
+

r∗(κ3 − φ′)′

µ

√
κ2

1 + κ2
2

(
ds
dt

)4

+
2r∗(κ3 − φ′)

µ

(
ds
dt

)4 d
ds

(√
κ2

1 + κ2
2

)]
er∗

are about to coincide with the zero vector at µ −→ 0. Thus, we find from (14) and (15) that
the tangential and special radial components of the jerk and snap vectors are expressed as
in (26) and (27), respectively. The proof is complete.

Remark 3. If we put κ2 = 0 in the previous theorems and corollaries, we obtain resolutions of the
jerk and snap vectors for a Frenet curve in Euclidean 3-space.

4. Applications

In this section, we present examples to illustrate our results.

Example 1. Let us consider a point particle P moving along a slant helix (see Figure 3)

α(t) =

(
1
6

sin t +
2
3

sin
t
2

,
1
6

cos t +
2
3

cos
t
2

,
4
√

2
3

cos
t
4

)

in Euclidean 3-space E3. In this case, the position vector X of P is given as

X =

(
1
6

sin t +
2
3

sin
t
2

,
1
6

cos t +
2
3

cos
t
2

,
4
√

2
3

cos
t
4

)
,

where t indicates time. The velocity V , acceleration A, jerk (jolt) J and snap (jounce) S vectors of
P are

V =

(
1
6

cos t +
1
3

cos
t
2

, − 1
6

sin t− 1
3

sin
t
2

, −
√

2
3

sin
t
4

)
,

A =

(
−1

3
sin

3t
4

cos
t
4

,− 1
3

cos
3t
4

cos
t
4

, − 1
6
√

2
cos

t
4

)
,

J =

(
−1

6
cos t− 1

12
cos

t
2

,
1
6

sin t +
1

12
sin

t
2

,
1

24
√

2
sin

t
4

)
,

S =

(
1
6

sin t +
1

24
sin

t
2

,
1
6

cos t +
1
24

cos
t
2

,
1

96
√

2
cos

t
4

)
.

The speed of P is

‖V‖ = ds
dt

=
1
2

.

Thus, we have

s = s(t) =
t
2

and
d2s
dt2 =

d3s
dt3 =

d4s
dt4 = 0.
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Figure 3. The slant helix curve.

It is easy to see that the curve can be reparameterized by the arc-length function as

α∗(s) =

(
1
6

sin 2s +
2
3

sin s,
1
6

cos 2s +
2
3

cos s,
4
√

2
3

cos
s
2

)
. (28)

From (1), the Frenet frame for the slant helix is

T(s) =

(
1
3

cos 2s +
2
3

cos s, − 1
3

sin 2s− 2
3

sin s, − 2
√

2
3

sin
s
2

)
,

N(s) =

(
− 4

3
√

2
sin

3s
2

, − 4
3
√

2
cos

3s
2

, − 1
3

)
,

B(s) =

(
−1

3
sin 2s +

2
3

sin s, − 1
3

cos 2s +
2
3

cos s, − 4
3
√

2
cos

s
2

)
.

Thus, the Frenet-curvatures are

κ(s) =
√

2 cos
s
2

, τ(s) =
√

2 sin
s
2

.

From (8), the quasi-curvatures are

κ1 =
√

2 cos
s
2

cos φ, κ2 = −
√

2 cos
s
2

sin φ, κ3 = φ′ +
√

2 sin
s
2

.

By using (5), the quasi vectors for the slant helix are given as
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T(s) =

(
1
3

cos 2s +
2
3

cos s, − 1
3

sin 2s− 2
3

sin s, − 2
√

2
3

sin
s
2

)
,

Nq(s) =

(
− 4

3
√

2
sin

3s
2

cos φ− 1
3

sin 2s sin φ +
2
3

sin s sin φ,

− 4
3
√

2
cos

3s
2

cos φ− 1
3

cos 2s sin φ +
2
3

cos s sin φ,

−1
3

cos φ− 4
3
√

2
cos

s
2

sin φ

)
,

Bq(s) =

(
4

3
√

2
sin

3s
2

sin φ− 1
3

sin 2s cos φ +
2
3

sin s cos φ,

4
3
√

2
cos

3s
2

sin φ− 1
3

cos 2s cos φ +
2
3

cos s cos φ,

1
3

sin φ− 4
3
√

2
cos

s
2

cos φ

)
.

By means of (17), (19) and (28), we obtain

λ = − sin s, ν =
√

2 cos
s
2

, µ = −1 + 2 cos s
2

,

r =
√

2(2− cos s) cos
s
2

, r∗ =
√

5 + 4 cos s
2

.

By applying Theorem 1, we obtain the jerk and snap vectors of the point particle P along the
quasi bases as

J =

[
−1

4
cos2 s

2

]
T +

[
− 1

8
√

2
sin

s
2

cos φ +
1
8

sin s sin φ

]
Nq

+

[
1

8
√

2
sin

s
2

sin φ +
1
8

sin s cos φ

]
Bq

and

S =

[
3
32

sin s
]

T +

[
− 9

32
√

2
cos

s
2

cos φ− 1
32

sin φ +
3
32

cos s sin φ

]
Nq

+

[
9

32
√

2
cos

s
2

sin φ− 1
32

cos φ +
3
32

cos s cos φ

]
Bq,

respectively. By applying Theorem 2, we obtain the jerk and snap vectors of the point particle P
along the vectors T, er and er∗ as

J =

[
−2 cos2 s + 5 cos s + 5

16(1 + 2 cos s)

]
T +

[√
2− cos s
8
√

2
sin

s
2

]
er

−
[ √

5 + 4 cos s
8(1 + 2 cos s)

sin s

]
er∗

and

S =

[
19 + 18 cos s

64(1 + 2 cos s)
sin s

]
T +

[
9
√

2− cos s
32
√

2
cos

s
2

]
er

+

[
(1− 3 cos s)

√
5 + 4 cos s

32(1 + 2 cos s)

]
er∗ ,

respectively.
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Example 2. Let us consider a point particle P moving along the log-spiral curve (see Figure 4)

β(t) =
(

eϑt sin(ϑt), eϑt cos(ϑt), 0
)

in Euclidean 3-space E3. In this case, the position vector X of P is given as

X =
(

eϑt sin(ϑt), eϑt cos(ϑt), 0
)

,

where t indicates time and ϑ > 0 is a constant. The velocity V , acceleration A, jerk (jolt) J and
snap (jounce) S vectors of P are

V = ϑ
(

eϑt sin(ϑt) + eϑt sin(ϑt), eϑt cos(ϑt)− eϑt sin(ϑt), 0
)

,

A = 2ϑ2
(

eϑt cos(ϑt), − eϑt sin(ϑt), 0
)

,

J = 2ϑ3
(

eϑt cos(ϑt)− eϑt sin(ϑt), − eϑt sin(ϑt)− eϑt cos(ϑt), 0
)

,

S = −4ϑ4
(

eϑt sin(ϑt), eϑt cos(ϑt), 0
)

.

The speed of P is

‖V‖ = ds
dt

=
√

2ϑeϑt.

Thus, we have
s = s(t) =

√
2eϑt −

√
2

and
d2s
dt2 =

√
2ϑ2eϑt,

d3s
dt3 =

√
2ϑ3eϑt,

d4s
dt4 =

√
2ϑ4eϑt.

It is easy to see that the curve can be reparameterized by the arc-length function as

β∗(s) =
(

s/
√

2 + 1
)(

sin log
(

s/
√

2 + 1
)

, cos log
(

s/
√

2 + 1
)

, 0
)

. (29)

From (1), the Frenet frame for the log-spiral curve is

T(s) =
1√
2

(
sin log

(
s/
√

2 + 1
)
+ cos log

(
s/
√

2 + 1
)

, cos log
(

s/
√

2 + 1
)
− sin log

(
s/
√

2 + 1
)

, 0
)

,

N(s) =
1√
2

(
cos log

(
s/
√

2 + 1
)
− sin log

(
s/
√

2 + 1
)

, − sin log
(

s/
√

2 + 1
)
− cos log

(
s/
√

2 + 1
)

, 0
)

,

B(s) = (0, 0, − 1).

Thus, the Frenet-curvatures are

κ(s) =
1

s +
√

2
, τ(s) = 0.

From (8), the quasi-curvatures are

κ1 =
1

s +
√

2
cos φ, κ2 = − 1

s +
√

2
sin φ, κ3 = φ′.

By using (5), the quasi vectors for the log-spiral curve are given as
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T(s) =
1√
2

(
sin log

(
s/
√

2 + 1
)
+ cos log

(
s/
√

2 + 1
)

, cos log
(

s/
√

2 + 1
)
− sin log

(
s/
√

2 + 1
)

, 0
)

,

Nq(s) =
1√
2

(
cos log

(
s/
√

2 + 1
)

cos φ− sin log
(

s/
√

2 + 1
)

cos φ

, − sin log
(

s/
√

2 + 1
)

cos φ− cos log
(

s/
√

2 + 1
)

cos φ, −
√

2 sin φ
)

,

Bq(s) =
1√
2

(
− cos log

(
s/
√

2 + 1
)

sin φ + sin log
(

s/
√

2 + 1
)

sin φ

, sin log
(

s/
√

2 + 1
)

sin φ + cos log
(

s/
√

2 + 1
)

sin φ, −
√

2 cos φ
)

.

By means of (17), (19) and (29), we obtain

λ = ν = r∗ =
s +
√

2
2

, µ = 0, r =
s +
√

2√
2

.

respectively. By applying Corollary 1, we obtain the tangential and special radial components of the
jerk and snap vectors as

Tt = 2
√

2ϑ3eϑt, Tr = −4ϑ3eϑt, Tr∗ = 0

and
Ft = 0, Fr = −4ϑ4eϑt, Fr∗ = 0,

respectively.

Figure 4. The log-spiral curve.

5. Conclusions

In this article, by employing the quasi frame, resolutions of the jerk and snap vectors
of a point particle moving along a curve in Euclidean 3-space were studied. In detail, the
jerk and snap vectors of the point particle along the tangential, quasi-normal and quasi-
binormal directions were obtained. An alternative approach of the jerk and snap vectors
along the tangential direction and two special radial directions was presented. Moreover,
the components of the jerk and snap vectors for the planar motion in Euclidean 3-space
were discussed as corollary.
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