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Abstract: We introduce mixtures of species sampling sequences (mSSS) and discuss how these
sequences are related to various types of Bayesian models. As a particular case, we recover species
sampling sequences with general (not necessarily diffuse) base measures. These models include
some “spike-and-slab” non-parametric priors recently introduced to provide sparsity. Furthermore,
we show how mSSS arise while considering hierarchical species sampling random probabilities (e.g.,
the hierarchical Dirichlet process). Extending previous results, we prove that mSSS are obtained by
assigning the values of an exchangeable sequence to the classes of a latent exchangeable random
partition. Using this representation, we give an explicit expression of the Exchangeable Partition
Probability Function of the partition generated by an mSSS. Some special cases are discussed in
detail—in particular, species sampling sequences with general base measures and a mixture of species
sampling sequences with Gibbs-type latent partition. Finally, we give explicit expressions of the
predictive distributions of an mSSS.

Keywords: species sampling models; exchangeable random partitions; exchangeable sequences;
predictive distributions

1. Introduction

Discrete random measures have been widely used in Bayesian nonparametrics. Note-
worthy examples of such random measures are the Dirichlet process [1], the Pitman–Yor
process [2,3], (homogeneous) normalized random measures with independent increments
(see, e.g., [4–7]), Poisson–Kingman random measures [8] and stick-breaking priors [9]. All
the previous random measures are of the form

P = ∑
j≥1

p↓j δZj , (1)

where (Zj)j≥1 are i.i.d. random variables taking values in a Polish space (X,X ) with

common distribution H, and (p↓j )j≥1 are random positive weights in [0, 1], independent of

(Zj)j≥1, such that p↓1 ≥ p↓2 ≥ p↓3 ≥ . . . .
With a few exceptions—see, e.g., [1,4,10–14]—the base measure H of a random measure

P in (1) is usually assumed to be diffuse, since this simplifies the derivation of various
analytical results.

The diffuseness of H is assumed also to define the so-called species sampling sequences [15],
exchangeable sequences whose directing measure is a discrete random probability of type (1).
In this case, the diffuseness of H is motivated by the interpretation of species sampling
sequences as sequences describing a sampling mechanism in discovering species from an
unknown population. In this context, the Zjs are the possible infinite different species, and
the diffuseness of H ensures that there is no redundancy in this description.

On the other hand, from a Bayesian point of view, the diffuseness of H is not always
reasonable and there are situations in which a discrete (or mixed) H is indeed natural. For
example, recent interest in species sampling models with a spike-and-slab base measure
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emerged in [16–21] in order to induce sparsity and facilitate variable selection. Other
models, which are implicitly related to species sampling sequences with non-diffused base
measures, are mixtures of Dirichlet processes [10] and hierarchical random measures; see,
e.g., [22–25].

The combinatorial structure of species sampling sequences derived from random
measure (1) with general H have been recently studied in [14].

In this paper, we discuss some relevant properties of species sampling sequences with
general base measures, as well as some further generalizations, namely mixtures of species
sampling sequences with general base measures (mSSS).

An mSSS is an exchangeable sequence whose directing random measure is of type (1),
where (Zn)n≥1 is a sequence of exchangeable random variables and (p↓n)n≥1 are random
positive weights in [0, 1] with p↓1 ≥ p↓2 ≥ p↓3 ≥ . . . , independent of (Zn)n≥1.

The core of the results that we prove in this paper is that all the mSSS can be obtained
by assigning the values of an exchangeable sequence to the classes of a latent exchangeable
random partition. We summarize the results of Section 3 in the next statement.

The following are equivalent:

1. ξ = (ξn)n≥1 is an mSSS;
2. with probability one (ξn)n≥1 = (ZIn)n≥1, where (In)n≥1 is a sequence of integer-valued

random variables independent of the Zs such that, conditionally on p↓ := (p↓1 , p↓2 , . . . ), the
In are independent and P{In = i|p↓} = p↓i .

3. with probability one (ξn)n≥1 := (Z′Cn(Π))n≥1, where (Z′n)n≥1 is an exchangeable sequence
with the same law of (Zn)n≥1, Π is an exchangeable partition, independent of (Z′n)n≥1,
obtained by sampling from (p↓n)n≥1, and Cn(Π) is the index of the block in Π containing n.

The partition Π obtained from p↓ = (p↓1 , p↓2 , . . . ) is the so-called paint-box process
associated with p↓. In general, this partition, called the latent partition, does not coincide
with the partition induced by the (ξn)n≥1. Note that also the sequence (Z′n)n≥1 is latent, in
the sense that it cannot be obtained if only (ξn)n≥1 is known. On the other hand, combining
the information contained in (Z′n)n≥1 and in Π, one obtains complete knowledge of (ξn)n≥1,
and, in particular, of its clustering behavior. This last observation is essential for the
development of all the other results presented in our paper.

The rest of the paper is organized as follows. Section 2 reviews some important results
on species sampling models and exchangeable random partitions. Section 3 introduces
mixtures of species sampling sequences and discusses how these sequences are related
to various types of Bayesian models. In the same section, the stochastic representations
for mixtures of species sampling sequences sketched above are proven. In Section 4, we
provide an explicit expression of the Exchangeable Partition Probability Function (EPPF) of
the partition generated by such sequences. This result is achieved considering two EPPFs
arising from a suitable latent partition structure. Some special cases are further detailed.
Finally, Section 5 deals with the predictive distributions of mixtures of species sampling
sequences.

2. Background Materials

In this section, we briefly review some basic notions of exchangeable random partitions
and species sampling models.

2.1. Exchangeable Random Partitions

A partition πn of [n] := {1, . . . , n} is an unordered collection {π1,n, . . . , πk,n} of disjoint
non-empty subsets (blocks) of {1, . . . , n} such that ∪k

j=1πj,n = [n]. A partition πn =

{π1,n, π2,n, . . . , πk,n} has |πn| := k blocks (with 1 ≤ |πn| ≤ n) and |πc,n|, with c = 1, . . . , k,
is the number of elements of the block c. We denote by Pn the collection of all partitions of
[n] and, given a partition, we list its blocks in ascending order of their smallest element, i.e.,
in order of their appearance. For instance, we write [(1, 3), (2, 4), (5)] and not [(2, 4), (3, 1), (5)].
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A sequence of random partitions, Π = (Πn)n≥1, defined on a common probability
space, is called a random partition of N if, for each n, the random variable Πn takes values in
Pn and, for m < n, the restriction of Πn to Pm is Πm (consistency property).

In order to define an exchangeable random partition, given a permutation ρ of [n] and
a partition πn in Pn, we denote by ρ(πn) the partition with blocks {ρ(j) : j ∈ πi,n} for
i = 1, . . . , |πn|. A random partition of N is said to be exchangeable if Πn has the same
distribution of ρ(Πn) for every n and every permutation ρ of [n]. In other words, its law is
invariant under the action of all permutations (acting on Πn in the natural way).

The law of any exchangeable random partition on N is completely characterized by
its Exchangeable Partition Probability Function (EPPF); in other words, there exists a unique
symmetric function q on the integers such that, for any partition πn in Pn,

P{Πn = πn} = q(|π1,n|, . . . , |πk,n|) (2)

where k is the number of blocks in πn. In the following, we shall write Π ∼ q to denote
an exchangeable partition of N with EPPF q. Note that an EPPF is indeed a family of
symmetric functions qn

k (·) defined on Cn,k = {(n1, . . . , nk) ∈ Nk : ∑k
i=1 ni = n}. To simplify

the notation, we write q instead of qn
k . Alternatively, one can assume that q is a function on

∪n∈N ∪n
k=1 Cn,k. See [26].

Given a sequence of random variables X = (Xj)j≥1 taking values in some measurable
space, the random partition Π∗(X) induced by X is defined as the random partition
obtained by the equivalence classes under the random equivalence relation i(ω) ∼ j(ω) if
and only if Xi(ω) = Xj(ω). One can check that a partition induced by an exchangeable
random sequence is an exchangeable random partition.

Recall that, by de Finetti’s theorem, a sequence X = (Xn)n≥1 taking values in a Polish
space (X,X ) is exchangeable if and only if the Xns, given some random probability measure
Q on X , are conditionally independent with common distribution Q. Moreover, the random
probability Q, known as the directing random measure of X, is the almost sure limit (with
respect to weak convergence) of the empirical process 1

n ∑n
i=1 δXi .

Based on de Finetti’s theorem, Kingman’s correspondence theorem sets up a one-to-
one map between the law of an exchangeable random partition on N (i.e., its EPPF) and
the law of random ranked weights p↓ = (p↓j )j≥1 satisfying 1 ≥ p↓1 ≥ p↓2 ≥ · · · ≥ 0 and

∑j p↓j ≤ 1 (with probability one). To state the theorem, recall that a partition Π is said to

be generated by a (possibly random) p↓, if it is generated by a sequence (In)n≥1 of integer-
valued random variables that are conditionally independent given p↓ with conditional
distribution

P{In = i|p↓} :=

{
1−∑j≥1 p↓j if i = −n

p↓i if i ≥ 1,
(3)

Note that 1−∑j≥1 p↓j is the magnitude of the so-called “dust” component; indeed, each
In sampled from this part, i.e., In = −n, contributes to a singleton n in the partition Π.
A consequence is that if ∑j≥1 p↓j = 1 a.s., the partition Π has no singleton. The partition

Π∗(I) is sometimes referred to as the p↓-paintbox process; see [27].
Let ∇ := {p↓j ∈ [0, 1] : p↓1 ≥ p↓2 ≥ . . . , ∑j≥1 p↓j ≤ 1}. We are now ready to state

Kingman’s theorem.

Theorem 1 ([28]). Given any exchangeable random partition Π with EPPF q, denote by Π↓j,n the
blocks of the partition rearranged in decreasing order with respect to the number of elements in the
blocks of Πn. Then,

lim
n

( |Π↓j,n|
n

)
j≥1

= (p↓j )j≥1 a.s. (4)
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for some random p↓ = (p↓j )j≥1 taking values in ∇. Moreover, on a possibly enlarged probability
space, there is a sequence of integer-valued random variables I = (In)n≥1, conditionally independent
given p↓, such that (3) holds and the partition induced by I is equal to Π a.s.

Kingman’s theorem is usually stated in a slightly weaker form (see, e.g., Theorem 2.2
in [26]) and the equality between Π∗(I) and Π is given in law. The previous “almost sure”
version can be easily derived by inspecting the proof of Kingman’s theorem given in [29].

A consequence of the previous theorem is that q 7→ Law(p↓) for p↓ in (4) defines a
bijection from the set of the EPPF and the laws on ∇.

If p↓ is proper, i.e., ∑j≥1 p↓j = 1 a.s., then Kingman’s correspondence between p↓ and
the EPPF q can be made explicit by

q(n1, . . . , nk) = ∑
(j1,...,jk)∈Nk

E
[ k

∏
i=1

(p↓ji )
ni
]
. (5)

where Nk is the set of all ordered k-tuples of distinct positive integers. See Chapter 2 [26].
Given an EPPF q, one deduces the corresponding sequence of predictive distributions,

which is the sequence of conditional distributions

P{Πn+1 = πn+1|Πn = πn}

when Π ∼ q. Starting with Π1 = {1}, given Πn = πn (with |πn| = k), the conditional
probability of adding a new block (containing n + 1) to Πn is

νn(πn) = νn(|π1,n|, . . . , |πk,n|) :=
q(|π1,n|, . . . , |πk,n|, 1)
q(|π1,n|, . . . , |πk,n|)

; (6)

while the conditional probability of adding n + 1 to the `-th block of Πn (for ` = 1, . . . , k) is

ωn,`(πn) = ωn,`(|π1,n|, . . . , |πk,n|) :=
q(|π1,n|, . . . , |π`,n|+ 1, . . . , |πk,n|)

q(|π1,n|, . . . , |πk,n|)
. (7)

2.2. Species Sampling Models

A species sampling random probability (SSrp) is a random probability of the form

P = ∑
j≥1

pjδZj + (1−∑
j≥1

pj)H (8)

where (Zj)j≥1 are i.i.d. random variables taking values in a Polish space (X,X ) with
common distribution H, and (pj)j≥1 are random positive weights in [0, 1], independent of
(Zj)j≥1, such that ∑j≥1 pj ≤ 1 with probability one. These random probability measures
are also known as Type III random probability measures; see [30].

Given the SSrp in (8), let (p↓j )j≥1 be the ranked sequence obtained from (pj)j≥1 rear-
ranging the pjs in decreasing order. One can always write

P = ∑
j≥1

p↓j δZ̃j
+ (1−∑

j≥1
p↓j )H (9)

where (Z̃j)j≥1 is a suitable random reordering of the original sequence (Zj)j≥1. It is easy to

check that (Z̃j)j≥1 are i.i.d. random variables with law H independent of (p↓j )j≥1. Hence, H

and the EPPF q associated via Kingman’s correspondence with (p↓j )j≥1 completely charac-
terize the law of P, from now on denoted by SSrp(q, H).
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SSrp with H diffuse are also characterized as directing random measures of a partic-
ular type of exchangeable sequences, known as species sampling sequences. Let q be an
EPPF and H a diffuse probability measure on a Polish space X. An exchangeable sequence
ξ := (ξn)n taking values in X is a species sampling sequence, SSS(q, H), if the law of (ξn)n is
characterized by the predictive system:

• (PS1) P{ξ1 ∈ dx} = H(dx);
• (PS2) the conditional distribution of ξn+1 given (ξ1, . . . , ξn) is

P{ξn+1 ∈ dx|ξ1, . . . , ξn} =
K

∑
c=1

ωn,cδξ∗c (dx) + νn H(dx),

where (ξ∗1 , . . . , ξ∗K) is the sequence of distinct observations in order of appearance, ωn,c =
ωn,c(|Π1,n|, . . . , |ΠK,n|), νn = νn(|Π1,n|, . . . , |ΠK,n|), K = |Πn|, Πn is the random parti-
tion induced by (ξ1, . . . , ξn) and ωn,c and νn are related to the q by (6) and (7).

We summarize here some results proven in [15].

Proposition 1 ([15]). Let H be a diffuse probability measure; then, an exchangeable sequence
(ξn)n is characterized by (PS1)–(PS2) if and only if its directing random measure is an SSrp(q, H).

As noted in [29], the partition induced by any exchangeable sequence taking values
in X with directing measure µ̃ depends only on the sequence µ̃(x̃j), where x̃j are the
random atoms forming the discrete component of µ̃ and ordered in such a way that
µ̃(x̃1) ≥ µ̃(x̃2) ≥ . . . . Combining this observation with the previous proposition, one can
see that, when H is diffuse and ξ is an SSS(q, H), the partition Π∗(ξ) is equal (a.s.) to
Π∗(I) (where I is defined as in Kingman’s theorem) and Π∗(ξ) has EPPF q. Note that [29]
defines the p↓-paintbox process as any random partition Π∗(ξ) where ξ is an exchangeable
sequence with directing random measure (9) and H is a diffuse measure.

One can show (see the proof of Proposition 13 in [15]) that an SSS(q, H) can be obtained
by assigning the values of an i.i.d. sequence (Zn)n with distribution H to the classes of an
independent exchangeable random partition with EPPF q. More formally, for a random
partition Π, let Cn(Π) be the random index denoting the block containing n, i.e.,

Cn(Π) = c if n ∈ Πc,n

or equivalently if n ∈ Πc,j for some (and hence all) j ≥ n. If Z′ = (Z′n)n is an i.i.d.
sequence with law H (diffuse), Π is an exchangeable partition with Π ∼ q, and Z′ and Π
are stochastically independent, then

(ξn)n≥1 := (Z′Cn(Π))n≥1 (10)

is an SSS(q, H). Note that the Z′ns appearing in (10) are not the same Zns of (8), although
they have the same law.

It is worth mentioning that the original characterization given in [15] of species sampling
sequences is stronger than the one summarized here. Indeed, the original definition of SSS is
given using a slightly weaker predictive assumption. For details, see Proposition 13 and the
discussion following Proposition 11 in [15].

In summary, when H is diffuse, one can build a species sampling sequence (ξn)n by
one of the following equivalent constructions:

• using the system of predictive distributions (PS1)–(PS2);
• sampling (conditionally) i.i.d. variables from (8);
• combining an i.i.d. sequence from H with an exchangeable random partition by (10).
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3. Mixture of Species Sampling Models

We now discuss some possible generalizations of the notion of species sampling
sequences and we show that the three constructions presented above are no more equivalent
in this setting.

3.1. Definitions and Relation to Other Models

Exchangeable sequences sampled from an SSrm with a general base measure, also
known as generalized species sampling sequences (gSSS), have been introduced and studied
in [14,25].

Definition 1 (gSSS(q, H)). (ξn)n≥1 is a gSSS(q, H) if it is an exchangeable sequence with
directing random measure P, where P ∼ SSrp(q, H), H being any measure on (X,X ) (not
necessarily diffuse).

Clearly, a gSSS(q, H) with H diffuse is an SSS(q, H). On the contrary, if ξ is a gSSS(q, H)
with H non-diffuse, (PS1)–(PS2) are no longer true. Moreover, the EPPF of the random partition
induced by ξ with H non-diffuse is not q. The relation between the partition induced by ξ and
q has been studied in [14].

In [25], the definition of gSSS(q, H) with H not necessarily diffuse was motivated by an
interest in defining the class of the so-called hierarchical species sampling models. If ξ1, ξ2, . . .
are exchangeable random variables with a directing random measure of hierarchical type,
one has that

ξn|P1, P0
i.i.d.∼ P1 n ≥ 1

P1|P0∼SSrp(q, P0)

P0 ∼ SSrp(q0, H0).

In order to understand why the general definition of gSSS(q, H) is useful in this context,
note that, even if H0 is diffuse and q0 is proper (i.e., the p↓ associated with q0 by Kingman’s
correspondence are proper), the conditional distribution of [ξn]n≥1 given P0 is not an SSS,
since P0 is a.s. a purely atomic probability measure on X . Moreover, assuming that q is
proper, we can write

P1 = ∑
j

pj1δZj

where Zj are conditionally i.i.d. with common distribution P0, given P0, and (pj1)j are asso-
ciated by Kingman’s correspondence with the EPPF q. In other words, in this case, (ξn)n≥1
are exchangeable with directing random measure P1 = ∑j pj1δZj , where (pj1)j and (Zj)j

are independent and (Zj)j are exchangeable with directing measure P0 ∼ SSrp(q0, H0).
The previous observation suggests a further generalization of species sampling se-

quences.

Definition 2 (mSSS). We say that (ξn)n≥1 is a mixture of species sampling sequences (mSSS) if
it is an exchangeable sequence with directing random measure

P = ∑
j≥1

p↓j δZj + (1−∑
j≥1

p↓j )H̃ (11)

where Z := (Zn)n≥1 is an exchangeable sequence with directing random measure H̃, p↓ a se-
quence of random weight in ∇ with EPPF q such that P{∑j≥1 p↓j > 0} > 0, (Z, H̃) and p↓ are
stochastically independent.
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First of all, note that gSSS(q, H) is a particular case of Definition 2, obtained from a
deterministic H̃ = H. Moreover, Definition 2 can be seen as a mixture of gSSS. Indeed, if
ξ = (ξn)n≥1 is as in Definition 2 and H̃ is the directing random measure of (Zn)n, then the
conditional distribution of ξ given H̃ is a gSSS(q, H̃). This motivates the name “mixture of
species sampling sequences”.

It is worth noticing that one can also consider more general mixtures of SSS. The most
general mixture one can take into consideration leads to a random probability measure
of the form (11), where Z := (Zn)n≥1 are exchangeable random variables with directing
random measure H̃, p↓ is a sequence of random weight in∇ such that P{∑j≥1 p↓j > 0} > 0,

where [Z, H̃], and p↓ are not necessarily stochastically independent.
As an example of this more general situation, we describe the so-called mixtures of

Dirichlet processes as defined in [10]. Recall that a Dirichlet process P ∼ Dir(α) is defined
as a random probability measure characterized by the system of finite n-dimensional
distributions

P{(P(A1), . . . , P(An)) ∈ ·} = Dir
(
· ; α(A1), . . . , α(An)

)
∀n ≥ 1, ∀Ai ∈ X

where Dir(· ; a1, . . . , an) is the Dirichlet measure (on the n − 1 simplex) of parameters
a1, . . . , an and α is a finite σ-additive measure on X . It is well known that a Dirichlet
process is an SSrp(q, H) for H(·) = α(·)/α(X) and

q(n1, . . . , nk) =
α(X)k

(α(X))n

k

∏
c=1

(nc − 1)!, (12)

where (x)n = x(x + 1) . . . (x + n− 1) is the rising factorial (or Pochhammer polynomial);
see [2,31]. A mixture of Dirichlet processes is defined in [10] as a random probability
measure P characterized by the n-dimensional distributions

P{(P(A1), . . . , P(An)) ∈ ·} =
∫

U
Dir
(
· ; αu(A1), . . . , αu(An)

)
Q(du) (13)

where, now, (u, A) 7→ αu(A) is a kernel measure on U ×X (in particular, A 7→ αu(A) is a
finte σ-additive measure on X for every u ∈ U), (U,U ) is a (Borel) regular space (e.g., a
Polish space) and Q is a probability measure on U .

Using the fact that a Dirichlet process is the SSrp described above, one can prove that
any mixture of Dirichlet processes has a representation of the form (11), where ((Zn)n≥1H̃)
and p↓ are stochastically dependent. More precisely, the joint law of (H̃, (Zn)n≥1, p↓) is
characterized by the law of the (augmented) random element

(H̃, (Zn)n≥1, p↓, ũ)

given by the following:

• ũ is a random variable taking values in U with law Q;
• H̃(·) := αũ(·)/αũ(X);
• (Zn)n≥1 are exchangeable random variables with directing random measure H̃;
• p↓ is sequence of random weight in ∇ such that P{∑j≥1 p↓j = 1} = 1 and the condi-

tional distribution of p↓ given ũ depends only on αũ(X). In particular, the (conditional)
EPPF associated with the law of p↓ given ũ has the form

q(n1, . . . , nk|ũ) :=
αũ(X)k

(αũ(X))n

k

∏
c=1

(nc − 1)! (14)
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Note that the marginal EPPF of the p↓, obtained by integrating (14) with respect to the law
of ũ, is

q(n1, . . . , nk) =
k

∏
c=1

(nc − 1)!
∫

U

αu(X)k

(αu(X))n
Q(du). (15)

Without further assumptions, a mixture of Dirichlet processes is a mixture of SSrp
with p↓ and H̃(·) possibly dependent. Nevertheless, with this representation at hand, one
can easily deduce that if (ξn)n≥1 is sampled from a mixture of Dirichlet processes under
the additional hypothesis that Q is such that αũ(X) and αũ(·)/αũ(X) are independent, then
(ξn)n≥1 satisfies Definition 2, with H̃ = αũ(·)/αũ(X) and q given by (15).

In the rest of the paper, we focus our attention on mSSS for which [Z, H̃] and p↓ are
independent.

3.2. Representation Theorems for mSSS

In this section, we give two alternative representations for exchangeable sequences as
in Definition 2, which generalize Proposition 1 in [14].

Proposition 2. An exchangeable sequence ξ = (ξn)n≥1 is an mSSS as in Definition 2 if and
only if

ξn = ZIn a.s.

where Z+ = (Zn)n≥1, H̃ and p↓ are as in Definition 2, Z− = (Zn)n≤−1 are further conditionally
(given H̃) i.i.d. random variables with conditional distribution H̃, and (In)n≥1 is a sequence of
integer-valued random variables independent of the Zs and H̃, such that, conditionally on p↓,
the In are independent and (3) holds. All the random elements are defined on a possibly enlarged
probability space.

Proof. Let σ2 = [Z+, H̃, p↓], where Z+, H̃, p↓ are defined as in Definition 2 (mSSS). Set
α = 1− ∑j≥1 p↓j . On a possibly enlarged probability space, let (Z′)− = (Z′n)n≤−1 be a
sequence of random variables conditionally i.i.d. given H̃ with conditional distribution
H̃ and let I′ = (I′n)n≥1 be a sequence of integer-valued random variables conditionally
independent given p↓ with conditional distribution (3) with I′n in place of In. One can also
assume that I′ and Z = [Z+, (Z′)−] are independent given [p↓, H̃]; see Lemma A1 in the
Appendix A. Set τ1 = [I′, (Z′)−] and define

(ξ ′n)n≥1 = φ(τ1, σ2) := (ZI′n 1{I′n ≥ 1}+ Z′−n1{I′n = −n})n≥1.

Let us show that the law of ξ ′ := (ξ ′n)n≥1 given σ2 is the same as the law of ξ given σ2. Take
n Borel sets A1, . . . , An and non-zero integer numbers i1, . . . , in. One has

P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An, I′1 = i1, . . . , I′n = in

∣∣∣H̃, p↓, Z
}

=
n

∏
j=1

[
δZij

(Aj)p↓ij
1{ij > 0}+ αδZ′−j

(Aj)1{ij = −j}
]
.

Conditionally on H̃, the (Z′n)n≤−1 are i.i.d. with law H̃ so that



Mathematics 2021, 9, 3127 9 of 27

P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An, I′1 = i1, . . . , I′n = in
∣∣∣H̃, p↓, Z+

}
= E

[
P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An, I′1 = i1, . . . , I′n = in

∣∣∣H̃, p↓, Z
}∣∣∣H̃, p↓, Z+

]
= E

[ n

∏
j=1

[
δZij

(Aj)p↓ij
1{ij > 0}+ αδZ′−j

(Aj)1{ij = −j}
]∣∣∣H̃, p↓, Z+

]
=

n

∏
j=1

E
[
δZij

(Aj)p↓ij
1{ij > 0}+ αδZ′−j

(Aj)1{ij = −j}
∣∣∣H̃, p↓, Z+

]
=

n

∏
j=1

[
δZij

(Aj)p↓ij
1{ij > 0}+ αH̃(Aj)1{ij = −j}

]
.

Marginalizing with respect to i1, . . . , in,

P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An

∣∣∣H̃, p↓, Z+
}
=

n

∏
j=1

P(Aj).

Recalling that P = ∑j≥1 p↓j δZj + αH̃,

P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An|P
}
=

n

∏
j=1

P(Aj)

almost surely. Since X is Polish, we have proven that, given P, (ξ ′n)n≥1 are i.i.d. with
common distribution P. In particular, we have proven that ξ ′ := (ξ ′n)n≥1 given σ2 is
the same as the law of ξ given σ2. This concludes the proof of the “if part”, since, by
the previous argument, any sequence of the form (ξ ′) is of type (mSSS). To complete
the proof, it remains to conclude the “only if part”. Setting σ1 = ξ, we have proven
that the conditional distribution of σ1 given σ2 is the same as the conditional distribution
of φ(τ1, σ2) given σ2. At this stage, Lemma A3 in the Appendix A yields that there is
τ = [(In)n≥1, (Zn)n≤−1] such that (ξn)n = φ(τ, σ2) a.s., i.e., (ξn)n = (ZIn)n a.s. In addition,
L(τ, σ2) = L(τ1, σ2); hence, the (Zn)n≤−1 are conditionally i.i.d. given H̃ and the Ins are
conditionally independent given [Z+, Z−, H̃, p↓] with the conditional distribution defined
by (3).

Proposition 3. An exchangeable sequence ξ = (ξn)n≥1 is an mSSS as defined in Definition 2 if
and only if

(ξn)n≥1 := (Z′Cn(Π))n≥1 a.s. (16)

where Z′ := (Z′n)n≥1 is an exchangeable sequence with the same law of Z, Π is an exchangeable
partition with EPPF q and Π and Z′ are independent.

Remark 1. Note that the Z′ns appearing in (16) are not the same Zns appearing in Definition 2,
although they have the same law.

Proof of Proposition 3. If ξ is mSSS, then, by Proposition 2, we know that ξ = (ZIn)n≥1.
Let Π = Π∗(I) be the partition induced by (In)n≥1; then, Π has EPPF q by Kingman’s
theorem 1. Denote by I∗1 = I1, I∗2 , . . . , I∗K (with K ≤ +∞) the distinct values of (In)n≥1 in
order of appearance, and set

Z′n = ZI∗n n = 1, . . . , K.

When K < +∞, set I∗K+j = D + j, where D = max{i : i = I∗n for n ≤ K}, and define the
remaining Z′m for m > K accordingly as Z′m = ZI∗m . Let {i1, . . . , iM} be integers in Z \ {0},
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and denote the distinct values in (i1, . . . , iM) in order of appearance by (i∗1 , . . . , i∗m). Let
A1, . . . , An be measurable sets in X , if n > m, then

P{Z′1 ∈ A1, . . . , Z′n ∈ An, I1 = i1, . . . , IM = iM}

= ∑
`1,...,`n−m

P
{

Zi∗1
∈ A1, . . . , Zi∗m ∈ Am, Z`1 ∈ Am+1 . . . ,

Z`n−m ∈ An, I1 = i1, . . . , IM = iM, I∗m+1 = `1, . . . , I∗n = `n−m

}
where the sum runs over all the non-zero distinct integers `1, . . . , `n−m different from
i∗1 , . . . , i∗m. Since I∗ is a function of I and I and Z are independent, it follows that

P
{

Zi∗1
∈ A1, . . . , Zi∗m ∈ Am, Z`1 ∈ Am+1 . . . ,

Z`n−m ∈ An, I1 = i1, . . . , IM = iM, I∗m+1 = `1, . . . , I∗n = `n−m

}
= P{Zi∗1

∈ A1, . . . , Zi∗m ∈ Am, Z`1 ∈ Am+1, . . . , Z`n−m ∈ An}
P{I1 = i1, . . . , IM = iM, I∗m+1 = `1, . . . , I∗n = `n−m}

= P{Z1 ∈ A1, . . . , Zn ∈ An}P{I1 = i1, . . . , IM = iM, I∗m+1 = `1, . . . , I∗n = `n−m}

where the second equality follows by exchangeability. Summing in `, one obtains

P{Z′1 ∈ A1, . . . , Z′n ∈ An, I1 = i1, . . . , IM = iM}
= P{Z1 ∈ A1, . . . , Zn ∈ A}P{I1 = i1, . . . , IM = iM}.

For m ≥ n, the sum is not needed and the same result follows. This shows that (Z′n)n is an
exchangeable sequence with the same law of Z, and (Z′n)n and (In)n≥1 are independent.
To conclude, note that, with probability one, I∗Cn(Π) = In, and hence

ξn = ZIn = ZI∗
Cn(Π)

= Z′Cn(Π).

Conversely, let us assume that ξn = Z′Cn(Π) and let (p↓j )j≥1 be the weights obtained
from Π by (4). Let I1, I2, . . . be the integer-valued random variables appearing in Theorem 1
such that Π = Π∗(I) a.s. It follows that Cn(Π) = Cn(Π∗(I)) and I∗Cn(Π) = In, where the I∗n
are defined as above for n ≤ K. Setting

Zm :=
{

Z′k if I∗k = m
Z′′m if I∗k 6= m ∀ k,

with Z′′m, m ∈ Z conditionally i.i.d. given H̃ with law H̃, independent of everything else.
Arguing as above, one can check that the (Zm)m∈Z,m 6=0 are exchangeable random variables
with the same law of Z′ independent of (I, p↓). To conclude, note that, in particular,

ZIn = ZI∗
Cn(Π)

= Z′Cn(Π) a.s..

The conclusion follows by Proposition 2.

A simple consequence of the previous proposition is the following.

Corollary 1. Let (ξn)n≥1 be an mSSS as defined in Definition 2. For every A1, . . . , An Borel set
in X,

P{ξ1 ∈ A1, . . . , ξn ∈ An} = ∑
πn∈Pn

q(|π1,n|, . . . , |πk,n|)E
[ |πn |

∏
c=1

H̃(∩j∈πc,n Aj)
]
.
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4. Random Partitions Induced by mSSS

Let Π̃ = Π∗(ξ) be the random partition induced by an exchangeable sequence ξ
defined as in Definition 2, and let Π(0) := Π∗(Z′) be the partition induced by the corre-
sponding exchangeable sequence (Z′n)n (see Proposition 3). Finally, let Π be the partition
with EPPF q appearing in Proposition 3. As already observed, if Z′ is an i.i.d. sequence
from a diffuse H, then Π(0) = [(1), (2), (3), . . . ] a.s. and hence Π∗(ξ) = Π. The same
result follows if Z′ is exchangeable without ties (see Corollary 2). When Π(0) is not the
trivial partition, it is clear by construction that different blocks in Π can merge in the final
clustering configuration (i.e., Π∗(ξ)). In other words, two observations can share the same
value because either they belong to the same block in the latent partition Π or they are in
different blocks but they share the same value (from Z′). This simple observation leads us
to write the EPPF of the random partition Π∗(ξ) using the EPPF of Π(0) and of Π.

4.1. Explicit Expression of the EPPF

If π̃n = {π̃1,n . . . , π̃k,n} is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n =
(n1, . . . , nk), we can easily describe all the partitions πn more finely than π̃n, which are
compatible with π̃n in the merging process described above. To do this, first of all, note
that any block π̃i,n can arise from the union of 1 ≤ mi ≤ ni blocks in the latent partition.
Hence, given n = (n1, . . . , nk), where n = ∑k

i=1 ni, we define the set

M(n) =
{

m = (m1, . . . , mk) ∈ Nk : 1 ≤ mi ≤ ni

}
.

See Figure 1 for an example. Once a specific configuration m inM(n) is considered, the mi
blocks of the latent partition contributing to the block π̃i,n, are characterized by the sufficient
statistics λi = (λi1, . . . , λini) ∈ Nni , where λij is the number of blocks of j elements among
the mi blocks above. This leads, for m inM(n), to the definition of

Λ(n, m) :=

{
λ = [λ1, . . . , λk] where λi = (λi1, . . . , λini ) ∈ Nni :

∑ni
j=1 jλij = ni, ∑ni

j=1 λij = mi for i = 1, . . . , k

}
.

In summary, the set of partitions π̃n, which are compatible with π̃n in the merging process
described above, can be written as

Pπ̃n := ∪m∈M(n) ∪λ∈Λ(n,m) Pπ̃n(λ) (17)

where Pπ̃n(λ) is the set of all the partitions in Pn with m1 + · · ·+ mk =: |m| blocks such
that

• it is possible to determine k subset containing m1, . . . , mk of these blocks;
• the union of the blocks in the i-th subset coincides with the i-th block of π̃n for

i = 1, . . . , k;
• in the i-th block, there are λij blocks with j elements, for j = 1, . . . , ni.

Given the EPPF q, let

q̄(λ) := q(n11, . . . , n1m1 , n21, . . . , nkmk
),

where (n11, . . . , n1m1 , . . . , nkmk
) is any sequence of integer numbers such that ∑mi

c=1 nic =

∑j jλij for every i and #{c : nic = j} = λij for every i and j. Note that since the value of
q(n11, . . . , n1m1 , n21, . . . , nkmk

) depends only on the statistics λ, q̄(λ) is well-defined. See,
e.g., [26].
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Figure 1. Pictorial representation of the latent partition structure of an mSSS. In the example, the
partition induced by (ξ1, . . . , ξn) for n = 8 is Π̃n = {[1, 3, 4, 7], [2], [5, 6, 8]}, and it is represented
using rounded squares (left bottom). Circles at the top left represent a compatible latent partition,
namely Πn = {[1, 3], [2], [4, 7], [5, 8], [6]}. The partition on {1, . . . , 5} induced by the latent Z′n, i.e.,

Π(0)
|Πn | = {[1, 3], [2], [4, 5]}, is represented with squares in the middle of the figure. Combining Πn and

Π(0)
|Πn |, one obtains Π̃n. The statistics n, m and λ corresponding to this particular configuration are

shown in the box at the bottom right.

Finally, recall that the cardinality of Pπ̃n(λ) is

c(λ) :=
k

∏
i=1

(∑j jλij)!

∏ni
j=1 λij!(j!)λij

=
k

∏
i=1

ni!

∏ni
j=1 λij!(j!)λij

,

See Equation (39) in [15].

Proposition 4. Let ξ = (ξn)n≥1 be an (mSSS). Denote by Π̃ = Π∗(ξ) the random partition
induced by ξ and by q(0) the EPPF of the partition induced by (Z′n)n≥1. If π̃n = {π̃1,n . . . , π̃k,n}
is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n = (n1, . . . , nk), then

P{Π̃n = π̃n} = ∑
m∈M(n)

q(0)(m) ∑
λ∈Λ(n,m)

c(λ)q̄(λ). (18)

Proof. Start by writing

P{Π̃n = π̃n} = P(∪m∈M(n) ∪λ∈Λ(n,m) ∪πn∈Pπ̃n (λ)
{Πn = πn, Π̃n = π̃n}), (19)

which gives

P{Π̃n = π̃n} = ∑
m∈M(n)

∑
λ∈Λ(n,m)

∑
πn∈Pπ̃n (λ)

P{Π̃n = π̃n|Πn = πn}P{Πn = πn} (20)

Whenever πn ∈ Pπ̃n(λ),
P{Πn = πn} = q̄(λ).

Therefore, we can write (20) as

P{Π̃n = π̃n} = ∑
m∈M(n)

∑
λ∈Λ(n,m)

∑
πn∈Pπ̃n (λ)

P{Π̃n = π̃n|Πn = πn}q̄(λ). (21)
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Define now the function Mπ̃n ,πn : {1, . . . , |m|} → {1, . . . , |π̃n|} as M(j) = i if πj,n is in the
i-th subset of blocks, i.e., if πj,n ⊂ π̃i,n. Recalling that k is the number of blocks in π̃n, define
now a partition π(Mπ̃n ,πn) on {1, . . . , |m|} with k block where the i-th block is

{j : Mπ̃n ,πn(j) = i}.

Recalling that Π(0) is the partition induced by the Z′s, one has

{Π̃n = π̃n, Πn = πn} = {Π(0)
|m| = π(Mπ̃n ,πn), Πn = πn}

which gives

P{Π̃n = π̃n|Πn = πn} = P{Π(0)
|m| = π(MΠ̃n ,πn

)|Πn = πn}

= P{Π(0)
|m| = π(MΠ̃n ,πn

)}

since Π(0) and Π are independent. To conclude, note that the vector of the cardinalities of the
blocks in π(Mπ̃n ,πn) is m; hence, if q(0) is the EPPF of Π(0), one has P{Π(0)

|m| = π(Mπ̃n,πn)} =
q(0)(m). Since the cardinality of Pπ̃n(λ) is c(λ), one obtains the thesis.

Corollary 2. Let ξ = (ξn)n be defined according to (mSSS). If P{Z′1 = Z′2} = 0, then Π∗(ξ) =
Π with probability one.

Proof. If P{Z′1 = Z′2} = 0, by exchangeability, P{Z′i1 = Z′i2 = · · · = Z′ik} ≤ P{Z′1 =

Z′2} = 0. Hence, the Z′is are distinct with probability one. Since (ξ1, . . . , ξn) = (Z′C1(Π),

. . . , Z′Cn(Π)) by Proposition 3, it follows that Π̃n = Πn.

Remark 2. Note that, as a special case, we recover the fact that if ξ is a gSSS(q, H) with H diffuse
(i.e., it is a SSS(q, H)), then the random partition induced by ξ is a.s. Π.

Remark 3. The fact that the EPPF of Π̃n is q when P{Z′1 = Z′2} = 0 can be deduced from (18).
Indeed, if P{Z′1 = Z′2} = 0, then the partition induced by Z′ is a.s. the trivial partition
[(1), (2), (3), . . . ], so that q(0)(m) = 0 for every m 6= (1, 1, . . . , 1). For m = (1, 1, . . . , 1),
π̃n = {π̃1,n . . . , π̃k,n} with |π̃i,n| = ni (i = 1, . . . , k), and n = (n1, . . . , nk), the set Λ(n, m)

reduces to the singleton λ(1) := [λ1, . . . , λk], where λi = (0, 0, . . . , 1) with λi of length ni. Hence,
q̄(λ(1)) = q(n) and (18) gives P{Π̃n = π̃n} = q̄(λ(1)) = q(n).

4.2. EPPF When Π Is of Gibbs Type

An important class of exchangeable random partitions is that of Gibbs-type partitions,
introduced in [32] and characterized by the EPPF

q(n1, . . . , nk) := Vn,k

k

∏
j=1

(1− σ)nj−1, (22)

where (x)n = x(x + 1) . . . (x + n− 1), σ < 1 and Vn,k are positive real numbers such that
V1,1 = 1 and

(n− σk)Vn+1,k + Vn+1,k+1 = Vn,k, n ≥ 1, 1 ≤ k ≤ n.

A noteworthy example of Gibbs-type EPPF is the so-called Pitman–Yor two-parameter
family. It is defined by

q(n1, . . . , nk) :=
∏k−1

i=1 (θ + iσ)
(θ + 1)n−1

k

∏
c=1

(1− σ)nc−1, (23)

where 0 ≤ σ < 1 and θ > −σ; or σ < 0 and θ = |σ|m for some integer m; see [2,31].
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In order to state the next result, we recall that

∑
(λ1,...,λn)

∑n
j=1 jλj=n,∑n

j=1 λj=k

n

∏
j=1

[(1− σ)j−1]
λj

n!

∏n
j=1 λi!(j!)λj

= Sσ(n, k) (24)

where Sσ(n, k) is the generalized Stirling number of the first kind; see (3.12) in [26]. In the
same book, various equivalent definitions of generalized Stirling numbers are presented.

Corollary 3. Let Π̃ = Π∗(ξ) be defined as in Proposition 4 with q of Gibbs type defined in (22).
If π̃n = {π̃1,n . . . , π̃k,n} is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n = (n1, . . . , nk),
then

P{Π̃n = π̃n} = ∑
m∈M(n)

q(0)(m)Vn,|m|
k

∏
i=1

Sσ(ni, mi).

Proof. Combining Proposition 4 with (22), one obtains

P{Π̃n = π̃n} = ∑
m∈M(n)

q(0)(m)Vn,|m| ∑
λ∈Λ(n,m)

k

∏
i=1

ni

∏
j=1

[(1− σ)j−1]
λi,j

ni!

∏ni
j=1 λij!(j!)λij

= ∑
m∈M(n)

q(0)(m)Vn,|m|

×
k

∏
i=1

∑
(λi1,...,λini

)

∑
ni
j=1 jλij=ni ,∑

ni
j=1 λij=mi

ni

∏
j=1

[(1− σ)j−1]
λi,j

ni!

∏ni
j=1 λij!(j!)λij

= ∑
m∈M(n)

q(0)(m)Vn,|m|
k

∏
i=1

Sσ(ni, mi).

4.3. The EPPF of a gSSS(q, H)

As a special case, we now consider the partition induced by a gSSS(q, H) with general
base measure H. For the rest of the section, it is useful to decompose H as

H(dx) = ∑
i≥1

aiδx̄i (dx) + (1− a)Hc(dx) (25)

where X0 := {x̄1, x̄2, . . . } is the collection of points with positive H probability, ai = H(x̄i),
a = H(X0) ∈ [0, 1] and Hc(·) = H(· ∩Xc

0)/H(Xc
0) is a diffuse probability measure on X.

The sum is assumed taken over i ∈ {1, . . . , |X0|}.
We now describe q(0), i.e., the EPPF of the partition induced by (Z′n)n≥1. Let m in

M(n), where n = (n1, . . . , nk), and assume that the realization of Π(0)
|m| has k blocks of

cardinality m1, . . . , mk. Set zi = 0 if the Z′n corresponding to the i-th block of Π(0)
|m| comes

from the diffuse component Hc, while zk = ` if it is equal to x̄`. Since the blocks in Π(0)

need to be associated with different values of the Z′n, one has that necessarily zi = zj = 0 if
zi = zj for i 6= j. In this case, the block is a singleton, which is mi = mj = 1. On the other
hand, if mi ≥ 2, i.e., a merging occurred, necessarily, zi > 0. Note that it is also possible
that mi = 1 but zi > 0. This motivates the definition of the set

Z(m) : =
{
(z1, . . . , zk) ∈ {0, 1, . . . , |X0|}k : if zi = zj for i 6= j then zi = zj = 0

and mi = mj = 1; if mi ≥ 2 then zi > 0
}
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for m inM(n) where n = (n1, . . . , nk). The probability of obtaining, in an i.i.d. sample
of length |m| from H, exactly k ordered blocks with cardinality m1, . . . , mk, such that
observations in each block are equal and observations in distinct blocks are different, is

H#(m) := ∑
(z1,...,zk)∈Z(m)

(1− a)#{j:zj=0} ∏
j:zj>0

a
mj
zj .

By exchangeability, H#(m) turns out to be q(0)(m). Note also that if a = 1, H#(m) reduces to

∑
(z1,...,zk)

k

∏
j=1

a
mj
zj

where z1, . . . , zk runs over all distinct positive integers (less than or equal to |X0| if X0 is
finite), which is nothing else (5) for deterministic weights.

To rewrite H#(m) in a different way, given m = (m1, . . . , mk) inM(n), let m∗ be the
vector containing all the elements mi > 1 and let r be its length, with possibly r = 0 if
m = (1, 1, . . . , 1), and define for ` ≥ 0

Am,` = ∑
j1 6=···6=jr+`

am∗1
j1

. . . am∗r
jr ajr+1 . . . ajr+`

with the convention that Am,0 = 1 when r = 0. A simple combinatorial argument shows
that

H#(m) =
k−r

∑
`=0

(1− a)k−`−r
(

k− r
`

)
Am,`.

Proposition 4 gives immediately the next proposition.

Proposition 5. Let ξ be a gSSS(q, H) and let Π̃ = Π∗(ξ) be the random partition induced by ξ.
If π̃n = [π̃1,n . . . , π̃k,n] is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n = (n1, . . . , nk),
then

P{Π̃n = π̃n} = ∑
m∈M(n)

H#(m) ∑
λ∈Λ(n,m)

c(λ)q̄(λ).

Remark 4. Once again, if H is diffuse, then H#(m) = 0 for every m 6= (1, 1, . . . , 1). Hence, the
above formula reduces to the familiar

P{Π̃n = π̃n} = q(|π̃n,1|, . . . , |π̃n,k|) = P{Πn = π̃n}.

4.4. EPPF for gSSS with Spike-and-Slab Base Measure

We now consider the special case of gSSS with a spike-and-slab base measure. A
spike-and-slab measure is defined as

H(dx) = aδx0(dx) + (1− a)Hc(dx) (26)

where a ∈ (0, 1), x0 is a point of X and Hc is a diffuse measure on X. This type of measure
has been used as a base measure in the Dirichlet process by [16–20] and in the Pitman–Yor
process by [21].

Here, we deduce by Proposition 5 the explicit form of the EPPF of the random partition
induced by a sequence sampled from a species sampling random probability with such a
base measure.
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Proposition 6. Let H be as in (26), Π̃ be the random partition induced by a gSSS(q, H) and Π
be an exchangeable random partition with EPPF q. If πn = {π1,n . . . , πk,n} is a partition of [n]
with |πi,n| = ni (i = 1, . . . , k), then

P{Π̃n = πn} = (1− a)kq(n1, . . . , nk)

+ (1− a)k−1
k

∑
i=1

q(n1, . . . , ni−1, ni+1, . . . , nk)
ni

∑
r=1

arqn(r|n1, . . . , ni−1, ni+1, . . . , nk)
(27)

where, conditionally on the fact that Πn−ni has k− 1 blocks with sizes n1, . . . , ni−1, ni+1, . . . , nk,
the probability that Πn has k− 1 + r blocks is denoted by qn(r|n1, . . . , ni−1, ni+1, . . . , nk). If, in
addition, q is of Gibbs type (22), then

P{Π̃n = πn} = (1− a)kVn,k

k

∏
j=1

(1− σ)nj−1

+ (1− a)k−1
k

∑
i=1

k

∏
j=1,j 6=i

(1− σ)nj−1

ni

∑
r=1

arVn,k−1+rSσ(ni, r).

Proof. In this case, H#(m) = 0 if mi ≥ 2 and mj ≥ 2 for some i 6= j because H has only one
atom. Moreover, H#(m) is clearly symmetric and

H#(1, 1, 1, . . . , 1) = (1− a)k + k(1− a)k−1a

H#(m, 1, . . . , 1) = am(1− a)k−1 for m > 1.

By Proposition 5,

P{Π̃n = πn} = [(1− a)k + k(1− a)k−1a]q(n1, . . . , nk)

+ (1− a)k−1
k

∑
i=1

ni

∑
mi=2

ami ∑
λ∈Λ(m)

c(λ)q̄(λ)

= [(1− a)k + k(1− a)k−1]q(n1, . . . , nk)+

+ (1− a)k−1
k

∑
i=1

ni

∑
r=2

ar ∑
λ∈Λ(m) for m:
mi=r, mj=1,j 6=i

c(λ)q(n1, . . . , ni−1, n(i)
r , ni+1, . . . , nk)

= (1− a)kq(n1, . . . , nk)

+ (1− a)k−1
k

∑
i=1

ni

∑
r=1

ar ∑
λ∈Λ(m) for m:
mi=r, mj=1,j 6=i

c(λ)q(n1, . . . , ni−1, n(i)
r , ni+1, . . . , nk)

where n(i)
r is any vector of r positive integers with sum ni such that λij of them are equal to

j. In view of the definition of c(λ), formula (27) is immediately obtained.
If q is of Gibbs type, taking into account (24), then

qn(r|n1, . . . , ni−1, ni+1, . . . , nk) =
Vn,k−1+r

Vn−ni ,k−1
Sσ(ni, r)

and the second part of the thesis follows by simple algebra.

Applying Proposition 6 to the Pitman–Yor EPPF defined in (23), one immediately
recovers the results stated in Theorem 1 and Corollary 1 of [21].
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5. Predictive Distributions

In this section, we provide some expressions for the predictive distributions of mix-
tures of species sampling sequences.

5.1. Some General Results

Let ξ be as in Definition 2 and let (Z′n)n and Πn be the sequence of exchangeable
random variables and the exchangeable random partition appearing in Proposition 3. Let

Gn = σ(Z′1, . . . , Z′|Πn |, Πn)

be the σ-field generated by (Z′1, . . . , Z′|Πn |, Πn). By Proposition 3, one has ξn = Z′Cn(Π) a.s.;
hence, ξn is Gn measurable. Note that, in general, σ(ξ1, . . . , ξn) can be strictly contained
in Gn. Set Ξn := |Πn| and, for any k ≥ 1, let Kk+1(·|·) be a kernel corresponding to the
conditional distribution of Z′k+1 given Z′1, . . . , Z′k (i.e., the k + 1-predictive distribution of
the exchangeable sequence Z′). Finally, recall that Π̃ = Π∗(ξ) is the partition induced
by ξ and define ξ∗1:K̃n

= (ξ∗1 , . . . , ξ∗K̃n
) as the distinct values in order of appearance of

ξ1:n := (ξ1, . . . , ξn) with K̃n = |Π̃n|.

Proposition 7. Let ξ as in Definition 2. Then,

P{ξn+1 ∈ ·|Gn} =
Ξn

∑
`=1

ωn,`(Πn)δZ′`
(·) + νn(Πn)KΞn+1(·|Z′1, . . . , Z′Ξn

) (28)

where νn and ωn,` are defined by (6) and (7). If P{Z′1 = Z′2} = 0, then

P{ξn+1 ∈ ·|ξ1, . . . , ξn} = P{ξn+1 ∈ ·|ξ∗1 , . . . , ξ∗K̃n
, Π̃n}

=
K̃n

∑
`=1

ωn,`(Π̃n)δξ∗`
(·) + νn(Π̃n)KK̃n+1(·|ξ

∗
1 , . . . , ξ∗K̃n

).
(29)

Proof. Set
E∗new = {Ξn+1 = Ξn + 1}.

Since ξn = Z′Cn(Π), one can write

P{ξn+1 ∈ A|Gn} =
Ξn

∑
`=1

P{ξn+1 ∈ A, n + 1 ∈ Π`,n|Gn}+ P{ξn+1 ∈ A, E∗new|Gn}

=
Ξn

∑
`=1

P{Z′` ∈ A, n + 1 ∈ Π`,n|Gn}+ P{Z′Ξn+1
∈ A, E∗new|Gn}

=
Ξn

∑
`=1

δZ′`
(A)P{n + 1 ∈ Π`,n|Gn}+ P{Z′Ξn+1 ∈ A, E∗new|Gn}

Now, since Π and (Z′n)n are independent, it follows that P{n + 1 ∈ Π`,n|Gn} = P{n + 1 ∈
Π`,n|Πn} = ωn,`(Πn) and also

P{Z′Ξn+1 ∈ A, E∗new|Gn}
= P{Z′Ξn+1 ∈ A|Z′1, . . . , Z′Ξn

}P{E∗new|Πn}
= KΞn+1(A|Z′1, . . . , Z′Ξn

)νn(Πn).

Combining all the claims, one obtains (28). The second part of the proof follows since,
if P{Z′1 = Z′2} = 0, the Z′is are distinct with probability one. Since (ξ1, . . . , ξn) =
(Z′C1(Π), . . . , Z′Cn(Π)), it follows that Π̃n = Πn, Ξn = K̃n and (ξ∗1 , . . . , ξ∗K̃n

) = (Z′1, . . . , Z′Ξn
)

with probability one and Gn = σ(ξ1, . . . , ξn). Hence, (29) follows from (28).
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Remark 5. Note that (29) can be also derived as follows. P{Z′1 = Z′2} = 0 is equivalent to the
fact that H̃ is almost sure diffuse. Hence, conditionally on H̃, we have a SSS(q, H̃); then, by (PS2)
in Section 2.2, one has

P{ξn+1 ∈ ·|ξ1, . . . , ξn, H̃} =
K̃n

∑
`=1

ωn,`(Π̃n)δξ∗`
(·) + νn(Π̃n)H̃(dx). (30)

Taking the conditional expectation of the previous equation, given ξ1, . . . , ξn, we obtain

P{ξn+1 ∈ A|ξ1, . . . , ξn} =
K̃n

∑
`=1

ωn,`(Π̃n)δξ∗`
(A) + νn(Π̃n)E[H̃(A)|ξ1, . . . , ξn] (31)

and the thesis follows since one can check (arguing as in the proof of the proposition) that

E[H̃(A)|ξ1, . . . , ξn] = E[H̃(A)|Z′1, . . . , Z′K̃n
] = KK̃n+1(A|Z′1, . . . , Z′K̃n

).

Assume now that the random variables Z′j are defined on X by a Bayesian model
with likelihood f (zj|u) and prior Q(u), where f is a density with respect to a dominating
measure λ and Q is a probability measure defined on a Polish space U (the space of
parameters). In other words,

P{Z′1 ∈ A1, . . . , Z′k ∈ Ak} =
∫

U

( ∫
A1×A2···×Ak

k

∏
j=1

f (zj|u)λ(dz1) . . . λ(dzk)
)

Q(du).

Note that this means that H̃(A) =
∫

A f (z|ũ)λ(dz), where ũ ∼ Q. Bayes’ theorem (see, e.g.,
Theorem 1.31 in [33]) gives

P{Z′k+1 ∈ dzk+1|Z′1, . . . , Z′k} =
( ∫

U
f (zk+1|u)Q(du|Z′1, . . . , Z′k)

)
λ(dzk+1)

where Q(du|Z1, . . . , Zk) is the usual posterior distribution, which is

Q(du|Z′1, . . . , Z′k) :=
∏k

j=1 f (Z′j |u)Q(du)∫
U ∏k

j=1 f (Z′j |v)Q(dv)
.

If λ is a diffuse measure, one obtains P{Z′1 = Z′2} = 0. Hence, (29) in Proposition 7 applies
and one has

P{ξn+1 ∈ dx|ξ1, . . . , ξn} =
K̃n

∑
`=1

ωn,`(Π̃n)δξ∗`
(dx)

+ νn(Π̃n)
( ∫

U
f (x|u)Q(du|ξ∗1 , . . . , ξ∗K̃n

)
)

dx.

(32)

For example, one can apply this result to a mixture of Dirichlet processes in the sense of [10],
as briefly described at the end of Section 3.1. Assume that αũ(X) and H̃(·) = αũ(·)/αũ(X)
are independent and that αu(A)/αu(X) =

∫
Z f (z|u)λ(dz) for a suitable dominating diffuse

measure λ.
Under these hypotheses, a sample (ξn)n≥1 from a mixture of Dirichlet processes is an

mSSS with q described in (15) and, in addition, P{Z′1 = Z′2} = 0. Combining (15) with (6)
and (7), one obtains

ωn,`(Π̃n) = |Π̃n,`|

∫
U

αu(X)K̃n

(αu(X))n+1
Q(du)∫

U
αu(X)K̃n

(αu(X))n
Q(du)
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and

νn(Π̃n) =

∫
U

αu(X)K̃n+1

(αu(X))n+1
Q(du)∫

U
αu(X)K̃n

(αu(X))n
Q(du)

Hence, the predictive distribution of ξn+1 given (ξ1, . . . , ξn) is (33) for ωn,`(Π̃n) and νn(Π̃n)
given above.

Note that the same result can be deduced by combining Lemma 1 and Corollary 3.2’
in [10].

Example 1 (Species Sampling NIG). Let Z′n be defined as a mixture of normal random variables
with Normal-Inverse-Gamma prior. In other words, given µ0 ∈ R, k0 > 0, α0 > 0, β0 > 0,

Zn|µ̃, σ̃2 i.i.d.∼ N (µ̃, σ̃2)

µ̃|σ̃2 ∼ N (µ0, σ̃2/k0)

σ̃2 ∼ InΓ(α0, β0)

where N (µ, σ2) denotes a normal distribution of mean µ and variance σ2 and InΓ(α, β) is the
inverse gamma distribution with shape α and scale β. Let Tν(·|µ, σ2) be the density of a Student-T
distribution with ν degrees of freedom and (µ, σ) position/scale parameters, i.e.,

Tν(x|µ, σ2) :=
1√
σ2

Γ
(

ν+1
2
)

√
νπΓ( ν

2 )

(
1 +

1
νσ2 (x− µ)2

)−ν+1
2

.

It is well known that, under these assumptions, Kk+1(A|z1, . . . , zk) has density T2αk (z|µk, σ2
k ),

where the parameters are updated

µk =
k0µ0 + kz̄n

k0 + n
z̄k =

1
k

k

∑
j=1

zj αk = α0 + k/2,

σ2
k =

(
β0 +

1
2 ∑k

j=1(zj − z̄k)
2 + kk0(zk−µ0)

2

2(n+k0)

)
(k0 + k + 1)

(α0 + k/2)(k0 + k)

Thus, in this case, if z1, . . . , zk are distinct real numbers and πn = [π1,n, . . . , πk,n], one has

P{ξn+1 ∈ dx|ξ∗1 = z1, . . . , ξ∗k = zk, Π∗(ξ) = πn} =
k

∑
`=1

ωn,`(πn)δξ∗`
(dx)

+ νn(πn)T2αk (x|µn, σ2
k )dx.

(33)

We show an application of (33) to a true dataset by choosing ωn,` and νn according to a
Pitman–Yor two-parameter family; see (23). The data are the relative changes in reported larcenies
between 1991 and 1995 (relative to 1991) for the 90 most populous US counties, taken from
Section 2.1 of [34]. We apply our models to both the raw data and the rounded data (approximated
to the second digit) in order to obtain ties in the ξs. In the evaluation of the predictive CDFs, we fix
µ0 = 0, α0 = 0.1, β0 = 0.1 and k0 = 0.1. In Figure 2, we report the empirical CDF of the rounded
data (solid line), the predictive CDF obtained from (33) (dotted line) and the predictive CDF of a
Pitman–Yor species sampling sequence (see PS2) with H = T2α0(·|µ0, σ2

0 ), σ2
0 = β0(k0 + 1)/α0k0

(dashed line). Similar plots are reported in Figure 3, with raw data in place of the rounded data.
Note that in all the various settings, the influence of the hyper-parameters (θ, σ) is stronger in the
CDF of the simple Pitman–Yor species sampling model with respect to the corresponding predictive
CDF derived from (33).



Mathematics 2021, 9, 3127 20 of 27

Figure 2. Predictive CDFs for the relative changes in larcenies between 1991 and 1995 (relative to 1991)
for the 90 most populous US counties; data taken from Section 2.1 of [34]. Data have been rounded to
the second decimal. Here, n = 90 and k = 36. Solid line: empirical CDF. Dotted line: predictive CDF
from (33). Dashed line: predictive CDF from PS2 with H = T2α0 (·|µ0, σ2

0 ), σ2
0 = β0(k0 + 1)/α0k0.

Different plots correspond to different values of θ and σ. In all the plots, the predictive CDFs are
evaluated with µ0 = 0, α0 = 0.1, β0 = 0.1 and k0 = 0.1.

Figure 3. Predictive CDFs for the relative changes in larcenies between 1991 and 1995 (relative to
1991) for the 90 most populous US counties; data taken from Section 2.1 of [34]. Raw data, without
rounding. Here, n = 90 and k = 36. Solid line: empirical CDF. Dotted line: predictive CDF from (33).
Dashed line: predictive CDF from PS2 with H = T2α0 (·|µ0, σ2

0 ), σ2
0 = β0(k0 + 1)/α0k0. Different plots

correspond to different values of θ and σ. In all the plots, the predictive CDFs are evaluated with
µ0 = 0, α0 = 0.1, β0 = 0.1 and k0 = 0.1.

5.2. Predictive Distributions for gSSS

We now deduce an explicit form for the predictive distribution of a gSSS with general
base measure H given in (25).
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Recall that we denote by Π̃n the partition induced by ξ1:n, with K̃n = |Π̃n|, and by Πn
the latent partition appearing in Proposition 3. We also set

ζi =

{
` if ξ∗i = x̄`
0 if ξ∗i ∈ Xc

0.

The variable ζi is a discrete random variable that takes value 0 if ξ∗i comes from the diffuse
component of H.

Let Pπ̃n ,z1:k ⊂ Pπ̃n be the set of all the possible configurations of Πn that are compatible
with the observed partition Π̃n = π̃n and the additional information given by ζ1:K̃n

= z1:k,
K̃n = k. In order to describe this set, observe that if zi > 0, then the block π̃i,n may arise
from the union of more blocks in πn, while, if zi = 0, then π̃i,n = πφ(i),n for some φ. Note
that it may happen that φ(i) 6= i.

Recalling that the elements in m = (m1, . . . , mk) in (17) are used to describe the
numbers of sub-blocks into which the blocks of π̃n have been divided to form the latent
partition πn, it turns out that the set Pπ̃n ,z1:k has the additional constraint mi = 1 whenever
zi = 0. These considerations yield that, starting from π̃n and z1:k, the set of admissible m
can also be described by resorting to the definition of Z(m) as follows:

M(n, z1:k) :=
{

m ∈ M(n) : z1:k ∈ Z(m)
}

=
{

m ∈ Nk : mi = 1 if zi = 0, 1 ≤ mi ≤ ni if zi > 0
}

.

With this position, one has

Pπ̃n ,z1:k = ∪m∈M(n):z1:k∈Z(m) ∪λ∈Λ(n,m) Pπ̃n(λ)

= ∪m∈M(n,z1:k)
∪λ∈Λ(n,m) Pπ̃n(λ),

(34)

where Λ(n, m) and Pπ̃n(λ) have been defined in Section 4.1.
For any m inM(n, z1:k) and any λ in Λ(n, m), we define

λnew := [λ1, . . . , λk, 1].

In other words, λnew corresponds to the configuration obtained from λ by adding one
new element as a new block. In the following, let Ñ = (|Π̃1,n|, . . . , |Π̃K̃n ,n|), and let Ñi+ be
obtained from Ñ by adding 1 to its i-th component.

Proposition 8. Let (ξn)n≥1 be a gSSS(q, H). Then, for any A in X ,

P{ξn+1 ∈ A|ξ1:n} =
1
Zn

( K̃n

∑
i=1

wiδξ∗i
(A) + w0H̄n(A)

)
a.s.

where

H̄n(A) :=
[

∑
`:x̄` 6∈ξ∗

1:K̃n

a`δx̄`(A) + (1− a)Hc(A)
]

H(X \ ξ∗1:K̃n
)−1,

wi := ∑
m∈M(Ñi+ ,ζ1:K̃n )

∏
j:ζ j>0

a
mj
ζ j ∑

λ∈Λ(Ñi+ ,m)

c(λ)q̄(λ),

w0 := H(X \ ξ∗1:K̃n
) ∑

m∈M(Ñ,ζ1:K̃n )
∏

j:ζ j>0
a

mj
ζ j ∑

λ∈Λ(Ñ,m)

c(λ)q̄(λnew),

Zn := ∑
m∈M(Ñ,ζ1:K̃n )

∏
j:ζ j>0

a
mj
ζ j ∑

λ∈Λ(Ñ,m)

c(λ)q̄(λ).
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Proof. We start by defining the following events for i = 1, . . . , K̃n:

Ei = {ξn+1 = ξ∗i }, Enew = {ξn+1 6∈ ξ∗1:K̃n
}.

Since conditioning on ξ1:n is equivalent to the condition on [ξ∗1:K̃n
, Π̃n], one can write

P{ξn+1 ∈ A|ξ1:n} =
K̃n

∑
i=1

P{ξn+1 ∈ A, Ei|ξ∗1:K̃n
, Π̃n}+ P{ξn+1 ∈ A, Enew|ξ∗1:K̃n

, Π̃n}

Now, set
E∗new := {Cn+1(Π) = |Πn|+ 1}

and
E∗i = {|Cn+1(Π)| ≤ |Πn| and ΠCn+1(Π),n ⊂ Π̃i,n }.

On ζi = 0, one has (up to zero probability sets)

{ξn+1 ∈ A} ∩ Ei = {ξ∗i ∈ A} ∩ E∗i

while, on ζi > 0 (up to zero probability sets),

{ξn+1 ∈ A} ∩ Ei =
(
{ξ∗i ∈ A} ∩ E∗i

)
∪
(
{ξ∗i ∈ A} ∩ {Z′|Πn |+1 = x̄ζi} ∩ E∗new

)
.

Note that (up to zero probability sets)

{Z′|Πn |+1 = x̄ζi} ∩ E∗new ∩ {ζi = 0} = ∅.

Hence,

P{ξn+1 ∈ A, Ei|ξ∗1:K̃n
, Π̃n}

= δξ∗i
(A)P{E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new)|Π̃n, ξ∗1:K̃n

}.
(35)

Similarly, using that Enew ⊂ E∗new, one obtains

P{ξn+1 ∈ A, Enew|ξ1:n} = P{ξn+1 ∈ A, Enew, E∗new|Π̃n, ξ∗1:K̃n
}

= P{ξn+1 ∈ A, Enew|ξ∗1:K̃n
,E∗new}P{E∗new|Π̃n, ξ∗1:K̃n

}

= Hn(A)P{E∗new|Π̃n, ξ∗1:K̃n
}

(36)

where
Hn(A) = ∑

`:x̄` 6∈ξ∗
1:K̃n

ā`δx̄`(A) + (1− a)Hc(A).

At this stage, note that, by construction,

L(ξ∗1:K̃n
|Πn, Z′|Πn |+1, ζ1:K̃n

, Π̃n, Πn+1) = L(ξ∗1:K̃n
|ζ1:K̃n

)

where L(ξ∗1:K̃n
|ζ1:K̃n

) is characterized by

P(ξ∗1 ∈ A1, . . . , ξ∗K̃n
∈ AK̃n

|ζ1:K̃n
) =

K̃n

∏
i=1

(
Hc(Ai)1{ζi = 0}+ δx̄ζi

(Ai)1{ζi > 0}
)

,

and then

L(Z′|Πn |+1, ζ1:K̃n
, Π̃n, Πn+1, ξ∗1:K̃n

|Πn) = L(Z′|Πn |+1, ζ1:K̃n
, Π̃n, Πn+1|Πn)L(ξ∗1:K̃n

|ζ1:K̃n
).
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Hence,

L(Πn, Πn+1, Z′|Πn |+1,ξ∗1:K̃n
, ζ1:K̃n

, Π̃n)

= L(Πn)L(Z′|Πn |+1, ζ1:K̃n
, Π̃n, Πn+1|Πn)L(ξ∗1:K̃n

|ζ1:K̃n
)

(37)

which shows, in particular, that [Πn, Πn+1, Z′|Πn |+1, Π̃n] and ξ∗1:K̃n
are conditionally inde-

pendent given ζ1:K̃n
. Since E∗i , E∗new and {Z′|Πn |+1 = x̄ζi} ∩ E∗new depend logically only on

Πn+1, Z′|Πn |+1, Π̃n, ζ1:K̃n
, one obtains

P{E∗i |Π̃n, ξ∗1:K̃n
} = P{E∗i |Π̃n, ζ1:K̃n

},

P{(Z′|Πn |+1= x̄ζi )∩ E∗new|Π̃n, ξ∗1:K̃n
} = P{(Z′|Πn |+1 = x̄ζi )∩ E∗new|Π̃n, ζ1:K̃n

}
(38)

and, finally,
P{E∗new|Π̃n, ξ∗1:K̃n

} = P{E∗new|Π̃n, ζ1:K̃n
}. (39)

Since [Π̃n, ζ1:K̃n
, K̃n] are discrete random variables, we use the elementary definition of

the conditional probability of events to evaluate the conditional distributions (38) and (39).
Specifically, assume that K̃n = k, [Π̃n, ζ1:K̃n

] = [π̃n, z1:k], Ñ = n, and, for a given event
E, write

P{E|Π̃n = π̃n, ζ1:K̃n
= z1:k} =

P{E, Π̃n = π̃n, ζ1:K̃n
= z1:k}

P{Π̃n = π̃n, ζ1:K̃n
= z1:k}

. (40)

As for the denominator in (40), lettingM∗
n =M(n, z1:k) and J = #{i : zi > 0}, using (34),

one obtains

P{Π̃n =π̃n, ζ1:K̃n
= z1:k}

= ∑
πn∈Pπ̃n ,z1:k

P{Π̃n = π̃n, ζ1:K̃n
= z1:k, Πn = πn}

= ∑
m∈M∗n

∑
λ∈Λ(n,m)

∑
πn∈Pπ̃n (λ)

P{Π̃n = π̃n, ζ1:n = z1:k, Πn = πn}

= (1− a)k−J ∑
m∈M∗n

∏
j:zj>0

a
mj
zj ∑

λ∈Λ(n,m)
∑

πn∈Pπ̃n (λ)

q̄(λ)

= (1− a)k−J ∑
m∈M∗n

∏
j:zj>0

a
mj
zj ∑

λ∈Λ(n,m)

c(λ)q̄(λ).

As for the numerators in (40), when E = E∗new, we start from

P{E∗new, Π̃n = π̃n, ζ1:K̃n
= z1:k, Πn = πn}

= P{E∗new|Πn = πn}P{Π̃n = π̃n, ζ1:K̃n
= z1:k, Πn = πn}

= P{E∗new|Πn = πn}(1− a)k−J ∏
j:zj>0

a
mj
zj q̄(λ)

= (1− a)k−J ∏
j:zj>0

a
mj
zj q̄(λ

new).

where, in the last equality, we used that for πn ∈ Pπ̃n(λ), one has

P{E∗new|Πn = πn} =
q̄(λnew)

q̄(λ)
.

Taking the sum over Pπ̃n ,z1:k gives

P{E∗new, Π̃n = π̃n, ζ1:K̃n
= z1:k} = (1− a)k−J ∑

m∈M∗n
∏

j:zj>0
a

mj
zj ∑

λ∈Λ(n,m)

c(λ)q̄(λnew).
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Combining these with (39) and (40) and recalling thatM∗
n =M(n, z1:k), one obtains

P{E∗new|Π̃n, ξ∗1:K̃n
} =

∑m∈M(n,z1:k) ∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λnew)

∑m∈M(n,z1:k) ∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λ)

.

Finally, it remains to consider (40) when E = E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new). Now,
observe that(

E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new)
)
∩ {Π̃n = π̃n, ζ1:K̃n

= z1:k}

= {Π̃n+1 = π̃i+
n , ζ1:K̃n

= z1:k} = {Π̃n+1 = π̃i+
n , ζ1:K̃n+1

= z1:k}

where π̃i+
n denote the partition in Pn+1 obtained from π̃n by adding n + 1 to the i-th

block of π̃n. Note that, for the second equality, we used that, on Π̃n+1 = π̃i+
n , one has

K̃n+1 = K̃n = k.
Hence, using (34) with π̃i+

n in place of π̃n, one concludes that

P{Π̃n+1 = π̃i+
n , ζ1:K̃n+1

= z1:k}

= ∑
m∈M(ni+ ,z1:k)

λ∈Λ(n,m)

∑
πn+1∈Pπ̃n+1 (λ)

P{Π̃n+1 = π̃i+
n , Πn+1 = πn+1, ζ1:K̃n+1

= z1:k}

= (1− a)k−J ∑
m∈M(ni+ ,z1:k)

∏
j:zj>0

a
mj
zj ∑

λ∈Λ(n,m)

c(λ)q̄(λ)

where ni+ = (n1, . . . , ni + 1, . . . , nk). Hence, by (38)–(40), one can write

P{E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new)|Π̃n, ξ∗1:K̃n
}

=
∑m∈M(ni+ ,z1:k)

∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λ)

∑m∈M(n,z1:k) ∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λ)

.

Combining these results, one obtains the thesis.

6. Conclusions and Discussion

We have defined a new class of exchangeable sequences, called mixtures of species
sampling sequences (mSSS). We have shown that these sequences include various well-
known Bayesian nonparametric models. In particular, the observations of many nonpara-
metric hierarchical models (e.g., hierarchical Dirichlet process, hierarchical Pitman–Yor
process and, more generally, hierarchical species sampling models [22–25]) are mSSS. We
have shown that also observations sampled from a mixture of Dirichlet processes [10]
are mSSS, under some additional assumptions. Our general class also includes species
sampling sequences with a general (not necessarily diffuse) base measure, which have
been used in various applications, e.g., in the case of “spike-and-slab”-type nonparametric
priors [16–21].

We believe that our general framework sheds light on the common structure of all the
above-mentioned models, leading to a possible unified treatment of some of their important
features. Our techniques provides unified proofs for various results that, up to now, have
been proven with ad hoc methods.

We have proven that all the mSSS are obtained by assigning the values of an exchange-
able sequence to the classes of a latent exchangeable random partition. This representation
is proven in the strong sense of an almost sure equality (see Section 3) and leads to the sim-
ple and clear derivation of an explicit expression for the EPPF of an mSSS. We believe that
our general proof simplifies the derivation of the EPPF of many of the above-mentioned
particular cases. Moreover, our results show that the clustering and the predictive structure
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of various well-known models do not depend on the relation between these models and
completely random measures, but are essentially a consequence of the simple combinatorial
structure of these sequences. Many important differences between well-known models
(such as mixtures of Dirichlet and hierarchical Dirichlet) can be explained easily by simple
differences in the latent partition and the corresponding latent exchangeable sequence.

We stress that a clear understanding of the clustering structure of mSSS is fundamental
for practical purposes, since these models are typically used to cluster observations. More-
over, we hope that the explicit expression for EPPFs in our general framework can lead to
the development of new MCMC algorithms for sampling from the posterior distribution.

Finally, we believe that some of the results we have proven here for mSSS can be
extended to the more general case of partially exchangeable arrays. In this direction, for
future works, a possible generalization of mSSS is to consider partially exchangeable arrays
with a mixture of species sampling random probability measures as directing measures.
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Appendix A

In what follows, L(X) denotes the law of a random element X. For ease of reference,
we state here Lemma 5.9 and Corollary 5.11 of [35].

Lemma A1 (Extension 1). Fix a probability kernel K between two measurable spaces S and T,
and let σ be a random element defined on (Ω,F ,P) taking values in S. Then, there exists a
random element η in T, defined on some extension of the original probability space Ω, such that
P[η ∈ ·|σ] = K(·|σ) a.s. and, moreover, η is conditionally independent given σ from any other
random element on Ω.

Lemma A2 (Extension 2). Fix two Borel spaces S and T, a measurable mapping f : T → S and
some random elements σ in S and η̃ in T with L(σ) = L( f (η̃)). Then, there is a random element η
defined on some extension of the original probability space, such that L(η) = L(η̃) and σ = f (η) a.s.

We need the following variant of the previous result.

Lemma A3 (Extension 3). Fix three Borel spaces S1, S2 and T1, a measurable mapping φ :
T1 × S2 → S1 and some random elements σ = (σ1, σ2) in S1 × S2 and τ1 in T1, all defined on
a probability space (Ω,F , P). Assume that the conditional law of σ1 given σ2 is the same as the
conditional law of φ(τ1, σ2) given σ2 (P-almost surely). Then, there is a random element τ defined
on some extension of the original probability space (Ω,F , P) taking values in T1 such that

• σ1 = φ(τ, σ2) a.s.
• L(τ1, σ2) = L(τ, σ2).

Proof. Define f : T1× S2 =: T → S1× S2 =: S by f (a, b) = (φ(a, b), b), set η̃ = (τ1, σ2) and
σ = (σ1, σ2). By hypothesizing, it is clear that L( f (η̃)) = L((φ(τ1, σ2), σ2)) = L(σ1, σ2) =
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L(σ). Thus, by Lemma A2, one has that, on an enlargement of (Ω,F , P), there exists
η := (τ, σ∗2 ) such that L(η) = L(η̃) and (φ(τ, σ∗2 ), σ∗2 ) = f (η) = σ = (σ1, σ2) a.s. Hence,
σ∗2 = σ2 a.s. but also φ(τ, σ2) = φ(τ, σ∗2 ) = σ1 a.s. It remains to show the second part of the
thesis. Since (τ, σ2) = (τ, σ∗2 ) = η a.s. and L(η) = L(η̃), where η̃ = (τ1, σ2), it follows that
L(τ, σ2) = L(τ1, σ2).
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