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Abstract: Singular value decomposition has recently seen a great theoretical improvement for k-
tridiagonal matrices, obtaining a considerable speed up over all previous implementations, but at
the cost of not ordering the singular values. We provide here a refinement of this method, proving
that reordering singular values does not affect performance. We complement our refinement with
a scalability study on a real physical cluster setup, offering surprising results. Thus, this method
provides a major step up over standard industry implementations.
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1. Introduction

The singular value decomposition [1] of a matrix M ∈ Rm×n is M = USVT, such that
U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and S ∈ Rm×n is a rectangular diagonal
matrix containing the singular values of M, i.e., the square roots of the eigenvalues of
MTM. One of the most important application of the singular value decomposition is
principal component analysis [2,3], which exploits the Eckart–Young theorem [1], which
states that the closest rank k approximation of M under the Frobenius norm is M̂ = ÛŜV̂T,
where Ŝ ∈ Rk×k are the largest k singular values of M and Û, V̂ are their corresponding
singular vectors. If the diagonal entries of S are sorted in descending order, then Ŝ consists
of the first k lines and columns of S whereas Û and V̂ consist of the first k columns of U
and V, respectively. The matrix T̂ = ÛŜ gives the principal k components of M and is core
to dimensionality reduction [2].

Some applications of obtained results are also relevant in ODE or PDE models [4].
For example, matrices involved in PDE are usually band matrices, such as double-banded
matrices, encountered in the Lame equation, where, in particular, k-tridiagonal matrices
also arise. Consequently, the tests that we ran as part of this paper are relevant in the
context of the Lame equation [5]. Furthermore, fractional differential equations have also
become popular in recent years [6,7].

Singular value decomposition is a very important tool that is core to the develop-
ment of new technologies, being used, for example, in soft sensors [8], as well as for the
estimataion of 5G channel parameters [9]. In fact, SVD shows its value as a computation-
ally efficient dimensionality reduction method when confronted with large amounts of
data [10], which is often sharded, a situation which has prompted innovations such as
privacy-preserving SVD [11].

An important challenge when working with SVD is that most known exact algo-
rithms [12–16] have complexity O

(
m2n + mn2 + n3), which led the literature to approxi-

mation methods [17]. The classical methods of numerically computing the SVD all involve
bringing the matrix M to a bidiagonal form and using an iterative method to find its
eigenvalues. Further refinements, such as implicit bidiagonalization, e.g., the IRLANB [18],

Mathematics 2021, 9, 3123. https://doi.org/10.3390/math9233123 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5116-2822
https://orcid.org/0000-0002-4566-1545
https://doi.org/10.3390/math9233123
https://doi.org/10.3390/math9233123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9233123
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9233123?type=check_update&version=1


Mathematics 2021, 9, 3123 2 of 11

IRRLANB [19] and AIRLB [20] algorithms, are the state-of-the-art for sparse matrices. This
shows that core to a general SVD solver is a solver for a very particular matrix class—the
bidiagonal matrices.

A recent direction in numerical computation research pertains to k-tridiagonal matri-
ces [21–29], for which, important algorithms, such as block-diagonalization [21], matrix
inverse [22,23,26] and singular value decomposition [30], are improved by several orders
of magnitude. A k-tridiagonal matrix [22] T ∈ Rn×n is a matrix whose elements lay only on
its main and kth upper and lower diagonals, i.e., there are some d ∈ Rn and a, b ∈ Rn−k,
such that

T =



d1 0 · · · 0 a1 0 · · · 0

0
. . . 0 · · · 0 a2

. . .
...

... 0
. . . . . . · · · . . . . . . 0

0 · · · . . . . . . . . . · · · . . . an−k

b1 0 · · · . . . . . . . . . · · · 0

0 b2
. . . · · · . . . . . . 0

...
...

. . . . . . . . . · · · 0 dn−1 0
0 · · · 0 bn−k 0 · · · 0 dn



.

The key insight in this research direction is that, if pre- and post-processing are used
to improve data locality, then the resulting algorithm is much faster, especially when the
workload is found to be highly parallelizable.

While a recent paper [30] studied complexity, in this paper, we make a thorough
experimental study of the applicability and benefit of the SVD algorithm for k-tridiagonal
matrices on a grid system and investigate their true scalability. Moreover, we improve
on the algorithm of [30] by also sorting the singular values of S, and confirm that this
additional post-processing does not alter the scaling potential. In the previous published
results, the new optimized algorithm for SVD of the k-tridiagonal matrix is presented,
whereas the current paper focuses on parallelization and performance evaluation in terms
of scalability.

2. Background

In this section, we shortly review some proprieties of k-tridiagonal matrices that allow
for their efficient processing. An important property of k-tridiagonal matrices is that the
connected components of the underlaying graph of T are the equivalence classes modulo
k [21], i.e.,

r̄n,k = {i ∈ 1, . . . , n | i ≡ r (mod k)}.

Then, if we let Pr̄n,k ∈ Rn×|r̄n,k|, such that the ith column of Pr̄n,k is the canonical vector
er+k(i−1), then the permutation matrix

Pσn,k =
[
P1̄n,k

P2̄n,k
. . . Pk̄n,k

]
pivots T into its block diagonal form [21],

T = Pσn,k

(
T1 ⊕ T2 ⊕ · · · ⊕ Tk

)
PT

σn,k
,

where its blocks Ti ∈ R|r̄n,k|×|r̄n,k| are tridiagonal matrices.
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Thus, if the singular value decomposition of each block is Ti = UiSiViT, then [30]

T =Pσn,k

(
⊕k

i=1UiSiViT
)

PT
σn,k

=
(

Pσn,k ⊕
k
i=1 Ui

)
︸ ︷︷ ︸

U

⊕k
i=1Si︸ ︷︷ ︸

S

(
Pσn,k ⊕

k
i=1 Vi

)T
︸ ︷︷ ︸

VT

, (1)

where S are the singular values of T, and U and V are the singular vectors of T, but the
diagonal matrix S is not necessarily sorted, as is conventional, which may hinder certain
applications, such as the truncated SVD used for PCA.

3. Parallel Singular Value Decomposition for k-Tridiagonal Matrices

In this section, we make a modification to the SVD algorithm of [30] to obtain the
sorted list of singular values.

For any permutation matrix Pτ , using Equation (1), we obtain

T =
(

Pσn,k ⊕
k
i=1 UiPT

τ

)
︸ ︷︷ ︸

Uτ

(
Pτ ⊕k

i=1 SiPT
τ

)
︸ ︷︷ ︸

Sτ

(
Pσn,k ⊕

k
i=1 ViPT

τ

)T
︸ ︷︷ ︸

VT
τ

.

and if τ sorts S descendingly, this is the conventional SVD.
Notably, determining τ can be achieved by a usual algorithm in O(n log n). However,

there are more interesting options, such as using an additional thread for a job scheduler
based upon a k-size heap in time O(n log k), or having a hierarchical job structure (parallel
merge sort), which also takes time O(n log k). The main benefit of a heap is that it can
be used as a scheduler and prioritize the running threads, which can be used to halt the
producer in the case of a truncated SVD.

We have thus proven the following result:

Theorem 1. Let the performance of a black box conventional SVD algorithm be T(n) for n× n
matrices. Then, our algorithm allows for computing the conventional SVD of a k-tridiagonal
n× n matrix with complexity min(k/t, k) ·

(
T(n/k) +O

(
n2/k2))+O(n log k), where t is the

number of maximum concurrent threads.

Proof. The first term comes from the result of [30], whereas the second is due to the
complexity of merging k vectors.

We now illustrate Theorem 1 through an explicit algorithm.
Notice that, for the truncation of all singular values lower than ε, the Algorithm 1 can

be used almost as-is. It is sufficient to report Sj,j = −1 for truncated singular values, and
redefine

ci =
{

j | vj = (−s, i, .), s > 0
}

.

Regarding the numerical stability of the proposed method, outside of the calls to the
underlying black box algorithm applied to the blocks, our algorithm does not involve
floating-point operations. Thus, numerical stability is a function of just the black box SVD
solver used for the blocks.
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Algorithm 1 Parallel conventional SVD for k-tridiagonal matrices

1: procedure KTRICONVSVD(n, k, d, a, b)
2: Share the memory d, a, b
3: Start threads KTRICONVSVDBLOCK(n, k, i) for 1 ≤ i ≤ n
4: Wait for all Si to arrive
5: Compute the augmented vectors vi

j =
(
−Si

j,j, i, j
)

6: Merge (in a stable manner) vis w.r.t. lex order into v
7: Compute ci =

{
j | vj = (., i, .)

}
(in a stable manner)

8: Post ci to their respective worker threads
9: end procedure

10: procedure KTRICONVSVDBLOCK(n, k, i)
11: Obtain the width of Ti, wi = 1 +

⌊
n−i

k

⌋
.

12: Obtain selector vector, si
j∈1,wi

= (j− 1)k + i

13: Obtain Ti’s diagonals di
j = dsi

j
; ai

j = asi
j
; bi

j = bsi
j
;

14: Perform the SVD of Ti = UiSiViT

15: Post Si to the scheduler
16: Await from the scheduler the target columns ci = siPT

τ
17: Copy Sx,x to Sci

x ,ci
x

18: Copy Ui
y,x to Usi

y ,ci
x

(obtaining Pīn,k
UiPT

τ )

19: Copy Vi
y,x to Vsi

y ,ci
x

(obtaining Pīn,k
ViPT

τ )
20: end procedure

4. Numerical Examples

In this section, we exemplify our algorithm on a matrix similar to those considered
by other authors [22,30], and another that also highlights the fact that our algorithm also
handles non-symmetric matrices.

Firstly, we consider the matrix

T =



1 0 0 0 1 0 0 0 0 0
0 2 0 0 0 1 0 0 0 0
0 0 2 0 0 0 1 0 0 0
0 0 0 2 0 0 0 1 0 0
1 0 0 0 2 0 0 0 1 0
0 1 0 0 0 2 0 0 0 1
0 0 1 0 0 0 2 0 0 0
0 0 0 1 0 0 0 2 0 0
0 0 0 0 1 0 0 0 2 0
0 0 0 0 0 1 0 0 0 2


,

or, equivalently,

d = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2]; a = b = [1, 1, 1, 1, 1, 1]

We then obtain the block-diagonal form of T,

T1 =

1 1 0
1 2 1
0 1 2

; T2 =

2 1 0
1 2 1
0 1 2

; T3 = T4 =

[
2 1
1 2

]
.
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Now, we perform the SVD on each block, as follows

T1 ≈

−0.328 0.591 0.737
−0.737 0.328 −0.591
−0.591 −0.737 0.328

3.247 0 0
0 1.555 0
0 0 0.198

−0.328 0.591 0.737
−0.737 0.328 −0.591
−0.591 −0.737 0.328

T,

T2 ≈

−0.500 0.707 0.500
−0.707 −0.000 −0.707
−0.500 −0.707 0.500

3.414 0 0
0 2.000 0
0 0 0.586

−0.500 0.707 0.500
−0.707 −0.000 −0.707
−0.500 −0.707 0.500

T,

T3 = T4 ≈
[
−0.707 −0.707
−0.707 0.707

][
3.000 0

0 1.000

][
−0.707 −0.707
−0.707 0.707

]T
.

The augmented vectors vi are

v1 ≈

−3.247 −1.555 −0.198
1 1 1
1 2 3

T,

v2 ≈

−3.414 −2.000 −0.586
2 2 2
1 2 3

T,

v3 ≈

−3.000 −1.000
3 3
1 2

T, v4 ≈

−3.000 −1.000
4 4
1 2

T,

and thus the merged vector v is

v ≈


−3.414 −3.247 −3.000 −3.000 −2.000 −1.555 −1.000 −1.000 −0.586 −0.198

2 1 3 4 2 1 3 4 2 1

1 1 1 1 2 2 2 2 3 3


T

from which, we obtain the column selectors ci,

c1 =
[
2 6 10

]T c2 =
[
1 5 9

]T c3 =
[
3 7

]T c4 =
[
4 8

]T
while the original row selectors si were,

s1 =
[
1 5 9

]T s2 =
[
2 6 10

]T s3 =
[
3 7

]T s4 =
[
4 8

]T
hence, we obtain the decomposition

U = V =



0 −0.328 0 0 0 0.591 0 0 0 −0.737
−0.500 −0 0 0 −0.707 0 0 0 0.500 0

0 0 −0.707 0 0 0 −0.707 0 0 0
0 0 0 −0.707 0 0 0 −0.707 0 0
0 −0.737 0 0 0 0.328 0 0 0 0.591

−0.707 0 0 0 0 0 0 0 −0.707 0
0 0 −0.707 0 0 0 0.707 0 0 0
0 0 0 −0.707 0 0 0 0.707 0 0
0 −0.591 0 0 0 −0.737 0 0 0 −0.328

−0.500 0 0 0 0.707 0 0 0 0.500 0


,

S = diag
([
−3.414 −3.247 −3.000 −3.000 −2.000 −1.555 −1.000 −1.000 −0.586 −0.198

])
.
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Furthermore, we consider the matrix

T =



1 0 0 0 1 0 0 0 0 0
0 2 0 0 0 1 0 0 0 0
0 0 2 0 0 0 1 0 0 0
0 0 0 2 0 0 0 1 0 0
−1 0 0 0 2 0 0 0 1 0
0 −1 0 0 0 2 0 0 0 1
0 0 −1 0 0 0 2 0 0 0
0 0 0 −1 0 0 0 2 0 0
0 0 0 0 −1 0 0 0 2 0
0 0 0 0 0 −1 0 0 0 2


,

or, equivalently,

d = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2]; b = −a = −[1, 1, 1, 1, 1, 1]

We then obtain the block-diagonal form of T,

T1 =

 1 1 0
−1 2 1
0 −1 2

; T2 =

 2 1 0
−1 2 1
0 −1 2

; T3 = T4 =

[
2 1
−1 2

]
.

Now, we perform the SVD on each block, as follows

T1 ≈

−0.268 −0.208 −0.940
−0.940 0.268 0.208
0.208 0.940 0.268

2.507 0 0
0 2.285 0
0 0 1.221

 0.268 −0.208 −0.940
−0.940 −0.268 −0.208
−0.208 0.940 −0.268

T,

T2 ≈

−0.408 −0.577 −0.707
−0.816 0.577 0.000
0.408 0.577 0.500

2.449 0 0
0 2.449 0
0 0 2.000

 0.000 −0.707 −0.707
−1.000 0.000 0.000
0.000 0.707 −0.707

T,

T3 = T4 ≈
[
−0.894 −0.447
−0.447 0.894

][
2.236 0

0 2.236

][
−1 0
−0 1

]T
.

The augmented vectors vi are

v1 ≈

−2.507 −2.285 −1.221
1 1 1
1 2 3

T,

v2 ≈

−2.449 −2.449 −2.000
2 2 2
1 2 3

T,

v3 ≈

−2.236 −2.236
3 3
1 2

T, v4 ≈

−2.236 −2.236
4 4
1 2

T,

and thus, the merged vector v is

v ≈


−2.507 −2.449 −2.449 −2.285 −2.236 −2.236 −2.236 −2.236 −2.000 −1.221

1 2 2 1 3 3 4 4 2 1

1 1 2 2 1 2 1 2 3 3


T
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from which, we obtain the column selectors ci,

c1 =
[
1 4 10

]T c2 =
[
2 3 9

]T c3 =
[
5 6

]T c4 =
[
7 8

]T
while the original row selectors si were

s1 =
[
1 5 9

]T s2 =
[
2 6 10

]T s3 =
[
3 7

]T s4 =
[
4 8

]T
hence, we obtain the decomposition

U =



−0.268 0 0 −0.208 0 0 0 0 0 −0.940
0 −0.408 −0.577 0 0 0 0 0 −0.707 0
0 0 0 0 −0.894 0.447 0 0 0 0
0 0 0 0 0 0 −0.894 0.447 0 0

−0.940 0 0 0.268 0 0 0 0 0 0.208
0 −0.816 0.577 0 0 0 0 0 0.000 0
0 0 0 0 0.447 0.894 0 0 0 0
0 0 0 0 0 0 −0.894 0.447 0 0

0.208 0 0 0.940 0 0 0 0 0 −0.268
0 0.408 0.577 0 0 0 0 0 −0.707 0


,

−S = diag
([
−2.507 −2.449 −2.449 −2.285 −2.236 −2.236 −2.236 −2.236 −2.000 −1.221

])
.

V =



0.268 0 0 −0.208 0 0 0 0 0 −0.940
0 0.000 −0.707 0 0 0 0 0 −0.707 0
0 0 0 0 −1.000 0.000 0 0 0 0
0 0 0 0 0 0 −1.000 0.000 0 0

−0.940 0 0 −0.268 0 0 0 0 0 −0.208
0 −1.000 0.000 0 0 0 0 0 0.000 0
0 0 0 0 0.000 1.000 0 0 0 0
0 0 0 0 0 0 0.000 1.000 0 0

−0.208 0 0 0.940 0 0 0 0 0 −0.268
0 0.000 0.707 0 0 0 0 0 −0.707 0


,

5. Evaluation

In this section, we present a comparison between Algorithm 1 and the industry
standard for full SVD implementations, the LAPACK library. We used LAPACK DGESVD
rutine, the standard method. It computes the SVD of a real n × m matrix, optionally
computing the left and/or right singular vectors. Our code was developed to obtain real
results on many random matrix inputs, and to show that Lapack does indeed not know
to take advantage of n/k. Experimental data serves to validate Theorem 1, and, given the
small RSD, it can clearly be extrapolated.

Regarding the dataset, any bidiagonal or tridiagonal matrix dataset can be used, using
any black box solver, like the one presented in [31]. However, such matrices are only
1-tridiagonal; thus, our algorithm will simply be called the black box. To our knowledge,
there is no standard k-tridiagonal matrix dataset, which is why we generated random
matrices.

In order to validate and compare our scalability of k-tridiagonal matrix singular value
decomposition, we have built an experimental infrastructure using dedicated computing
servers. The compute node used is a dual-socket one with a CPU architecture based on
XEON E5-2640 v3 running at 2.60 GHz. It has 16 cores and 32 hyper-threads (hyper-
threading enabled). The amount of memory available is 128 GB RAM, which is relevant
for the size of the matrix you can load in the memory. Being a shared cluster, we have
used a shared NFS storage connected through 10Gbps ethernet. The NFS backend is
formed of 900 GB SAS disks in RAID6 (this is relevant for the time needed to read the
input matrix). The amount of memory and storage description was given here for practical
purposes, but was not taken into account in our measurements and comparisons. In
our experimental setup we measured the amount of time needed for computing the k-
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tridiagonal matrix singular value decomposition (without reading and writing the inputs
and outputs). Regarding the software base, the compute node was running a CentOS7,
with the latest updates of the time of writing this paper (CentOS 7.7), and a hand built
compiler gcc gnu-5.4.0 (to take full advantage of the architecture). The parallelization was
performed using OpenMP flags (so multi-threaded).

Please note that the 24-core experiment uses the hyper-threads, which are not as
efficient as a fully-fledged core, but we wanted to see how it scales.

We firstly investigate the reliability of our measurements. We evaluate our method
on 10,000 × 10,000 k-tridiagonal matrices with entries of uniformly distributed integers in
the interval [0, 100] for various values of k (10, 50, 100, 200, 500, 1000, 5000) using multiple
setups (1, 2, 4, 8, 16, 24 CPUs). We perform 1000 such experiments and plot the mean and
standard deviation of our proposed code in Figure 1. The variability of this method can
be quantified by the relative standard deviation (RSD), which varies between 1.05% and
9.95% for the measurements we have performed.

1 0 1 0 0 1 0 0 0
0 . 0 1

0 . 1

1

1 0

1 0 0

Ru
nti

me
 (s

)

n / k

 S  1  c p u
 S  2  c p u s
 S  4  c p u s
 S  8  c p u s
 S  1 6  c p u s
 S  2 4  c p u s

Figure 1. Average runtime of our proposed algorithm for n = 10,000 and multiple values of k and
multiple numbers of cpus.

Finally, we evaluate whether industry standard software, such as LAPACK, can detect
and use the sparsity of our data. We consider 10, 000× 10, 0000 matrices with entries of
uniformly distributed integers in the interval [0, 100], and multiple values of k (10, 50, 100,
200, 500, 1000, 5000). We plot in Figure 2 the mean runtime of LAPACK, the parallel code
of [30] and our proposed code, where the parallel codes are ran on 1, 2, 4, 8, 16, 24 cpus.
From the graph, we can see that sorting the eigenvalues adds almost no cost (<5 ms), and
that both methods produce much better results than LAPACK. Thus, considering its low
variability, our method provides a great improvement over Lapack, not only on average,
but even in the worst cases.

While many algorithms have been developed for general banded matrices, the k-
tridiagonal form allows for even further optimization. For example, notice that, as the
matrix becomes wider-banded (i.e., as k increases), our algorithm gets better whereas the
previous algorithm [32] gets worse, i.e., when k = n, the previous algorithm is worse than
the traditional full-matrix BCD SVD.
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Figure 2. Average runtime of our proposed algorithm (marked S in the legend), the algorithm of [30]
(marked NS in the legend) and Lapack for n = 10, 000 and multiple values of k and multiple numbers
of cpus.

6. Conclusions

Considering the great theoretical improvement of singular value decomposition for
k-tridiagonal matrices [30] as a starting point, we proved here that sorting the singular
values does not alter the performance, nor the scaling potential. Furthermore, a complete
scaling scenario has been treated, showing surprising results, which emphasize the endless
scalability potential of such methods, providing a considerable burst to industry standard
implementations. The singular value decomposition method is a very important tool that
is core to the development of new technologies especially in communications, so any new
improved implementation adds a valuable benefit.
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Abbreviations
The following abbreviations are used in this manuscript:

SVD Singular value decomposition
PCA Principal component analysis
NFS Network file system
RSD Relative standard deviation
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