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Abstract: In this article, we propose a novel mathematical model for the spread of COVID-19
involving environmental white noise. The new stochastic model was studied for the existence and
persistence of the disease, as well as the extinction of the disease. We noticed that the existence
and extinction of the disease are dependent on R0 (the reproduction number). Then, a numerical
scheme was developed for the computational analysis of the model; with the existing values of
the parameters in the literature, we obtained the related simulations, which gave us more realistic
numerical data for the future prediction. The mentioned stochastic model was analyzed for different
values of σ1, σ2 and β1, β2, and both the stochastic and the deterministic models were compared for
the future prediction of the spread of COVID-19.

Keywords: stochastic model; numerical scheme; COVID-19; existence; persistence

1. Introduction and Backgrounds

Coronavirus disease 2019 (COVID-19) is a communicable respiratory disease. The
disease is caused by a newly discovered virus strain, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1]. COVID-19 was first identified in December 2019 in Wuhan,
China, and spread quickly over four months. In a short period, more than 2.9 million
people in 185 nations around the world were infected and 206 thousand people had died [2].
On March 11, 2020, The World Health Organization (WHO) confirmed that the spread
of this disease constituted a pandemic [3]. This disease can be spread primarily from
droplets produced when coughing or sneezing, by person-to-person contact, or even
through conversation. By contacting contaminated surfaces, susceptible individuals can
also become infected. The most prevalent signs of this disease are fever, nausea, dry cough,
fatigue, and shortness of breath. All these signs constitute COVID-19 [4]. Some patients
can have joint pain, nasal congestion, diarrhea, runny nose, or sore throat. The symptoms
are typically mild, but can slowly worsen. In order to prevent infection, frequent hand
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washing, covering the nose and mouth when sneezing or coughing, avoiding touching the
nose, mouth, or eyes, and other preventive steps are advised, including social distancing.

Due to the seriousness of the COVID-19 pandemic, many countries have taken extreme
measures to curb its spread. In addition, they have evaluated and adapted their healthcare
systems accordingly. Hence, they have canceled public events, closed public venues,
schools, and borders, placed restrictions on travel, implemented lockdown measures, etc.
While those measures have been helpful, lockdowns have led to negative socioeconomic
impacts such as the bankruptcy of businesses, the loss of employment, etc. Furthermore,
lockdowns have disrupted supply chains and decreased productivity. The shutdown of
China’s drug-producing plants, which constitute the second largest pharmaceutical product
exporters, has delayed the delivery of generic drugs [5]. The air transport, tourism, and oil
sectors have been visibly affected. It is also expected that there will be unforeseen impacts
irrespective of the duration of the pandemic. According to The International Monetary
Fund, the worldwide economy was expected to shrink by 3% in 2020 [6].

Governments must prevent the failure of the economy, taking measures to relax the
lockdowns while preventing the spread of the disease. Some developed countries intend to
or have already issued immunity identity cards. However, The World Health Organization
has disapproved of this technique, since there is a lack of adequate scientific proof regarding
reinfection, possibly rendering such measures ineffective. A risk-balancing strategy has
been adopted by the South African government to lift the lockout restrictions progressively.
We refer the readers to [7,8] for some scientific works performed on infectious diseases and,
in particular, for several mathematical models related to abstract and real-world boundary
problems via fractional operators, to [9–24].

Brownian motion was discovered by the scholar Robert Brown in 1827. While Brown
was studying pollen particles drifting in water in a microscope, he noticed that the particles
exhibited an unsteady motion. After replicating the experiment, he concluded that the
motion was due to the particles being alive; however, the initiation of the motion remained
unexplained. The first to provide a theory of Brownian motion was Louis Bachelier in 1900
in his Ph.D. thesis. However, it was only in 1905 that Albert Einstein, using a probabilistic
model, could adequately explain Brownian motion. He determined that the kinetic energy
of fluids was the cause, in this case water molecules moving randomly. Thus, a small
particle would receive a random number of impacts of random strength and from random
directions in a short period of time. This random bombardment by the molecules of the
fluid would cause a sufficiently small particle to move exactly as Brown described [25].

In probability theory and associated fields, a stochastic or random process is a mathe-
matical object, usually characterized as a group of random variables. In the 1930s, the first
mathematical definition of a stochastic process as a family of random variables indexed
by means of the change of the real line was given by Aleksandr Khinchin. Khinchin,
Andrey Kolmogorov, Joseph Doob, and William Feller furthered the probability concept
and stochastic techniques. In mathematics, the theory of stochastic processes is a significant
aspect of probability theory and a subject of research for both theory and applications.
The word stochastic is used to portray different terms and objects in mathematics. Few
example, this includes a stochastic matrix, which describes a stochastic process known
as a Markov process, and stochastic calculus, which includes differential equations and
integrals depending on stochastic processes such as the Wiener process, also called the
Brownian motion (white noise) process.

Stochastic processes are broadly used as mathematical models of systems and phe-
nomena that appear to vary in a random manner, for example the growth of a bacterial
population, an electrical flow fluctuating because of thermal noise, or the moment of gas
particles [26]. Stochastic processes have applications in several fields such as biology, chem-
istry, physics, image processing, computer science, and cryptography. Stochastic processes
consist of the Wiener process or Brownian motion technique, utilized by Louis Bachelier
to study the value changes on the Paris Bourse, and the Poisson technique, used by A.K.
Erlang to study the number of phone calls happening in a specific time frame. Stochastic
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processes can be arranged into different classes, which include random walks, martingales,
and Markov processes [27,28]. Mathematical knowledge on probability, calculus, linear
algebra, set theory, and topology, as well as branches of mathematical analysis such as real
analysis and measure theory are used in the study of stochastic techniques. The theory
of stochastic processes is viewed as a significant contribution to mathematics, and it con-
tinues to be an active topic of research for both theoretical reasons and applications. The
Wiener process is a stochastic process with stationary and independent addition, which are
typically dispersed depending on the size of the increments. The Wiener process is named
after Norbert Wiener, who demonstrated its mathematical existence, but the process is also
called the Brownian motion (white noises) process or just Brownian motion because of its
historical association as a model for Brownian motion in liquids. Brownian motion (white
noises) refers to either the physical phenomenon by which minute particles immersed in a
fluid move around randomly or the mathematical models used to describe those random
movements [29].

Compartmental models are a type of general modeling tool that are frequently used
in infectious diseases’ mathematical modeling. The population is divided into sections
denoted by the letters S , I , or R (susceptible, infectious, or recovered). The flow pat-
terns between the sections are commonly indicated by the order of the abbreviations; for
example, SEIS stands for susceptible, exposed, infected, and susceptible. Mathematical
modeling begin with the well-known contributions of Ross [30] in 1916, Ross and Hudson
in 1917 [31,32], and Kermack and McKendrick in 1927 [33]. The work of Kermack and
McKendrick, published in 1927, on inoculation against smallpox, had a major impact on
the modeling of the system. Their SIR model is still used to model epidemics of infec-
tious diseases. The SIR models are based on ordinary differential equations (which are
deterministic), yet can likewise be utilized with a stochastic (random) structure, which is
more sensible, yet substantially more challenging to investigate. The SIR model [34–36]
is the basic approach for a dynamical study, which can then be extended with further
subcompartments.

The SIRmodel comprises three classes: S are the susceptible people. At the point
when a susceptible and an infectious person come into “contact”, the susceptible becomes
infected and advances to the infected class. I is the class of infectious people. These
are people who are infected and are able to infect uninfected people. R stands for those
who were infected, but are now immune or are now deceased, thus entering the removed
compartment. It is expected that the quantity of deceased individuals will be negligible
concerning the absolute population. This compartment may likewise be classified as
“recovered” or “safe”.

The SIRmodel predicts infections that are communicated from one person to another.
These factors address the quantity of individuals in every compartment at a specific
time. The quantity of susceptible, infected, and recovered people might differ over time
(regardless of whether the absolute population size stays consistent), so we make the exact
numbers a function of t (time): S(t), I(t), andR(t). For a particular disease in a particular
area, these compartments might be determined to anticipate possible outbreaks and bring
them under control [37].

As suggested by the variable function of t, the model is dynamic in that the numbers in
every class might change over time. The significance of this unique perspective is generally
clear in an endemic disease with a short infectious period, for example measles in the U.K.
before the introduction of immunization in 1968. Such sicknesses will often happen in
patterns of episodes due to the variation in the number of susceptibles over time. During
an outbreak, the quantity of susceptible people falls quickly as a greater amount of them are
infected and consequently enter the infectious and removed compartments. An outbreak
cannot make an appearance again until the susceptible population has increased again,
for example because of a future generation being naturally introduced to the susceptible
compartment. Such models are still under consideration by the research community, and
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one can find some related work in [38–40]. These aspects highlight some of the innovations
in and contributions to the study of such models.

The notion of stochastic modeling can be investigated from different dimensions of
engineering and science. For instance, stochastic models of financial markets are designed
to analyze commodities, relative stock prices, and interest rates; in biological stochastic
systems, we see that adding stochastic “noise” to internal links provides a balance and
other noise interactions optimize function and behavior.It is believed that manufacturing
processes have random structures. In fact, regarding both continuous and batch manufac-
turing processes, such a hypothesis is essentially valid. A process control chart represents a
given parameter of process control in terms of time and is plotted to record and analyze the
testing and monitoring of the relevant processes. Stochastic social science theory deals with
subconscious processes. Since the number of involved variables is large, every event creates
its own set of possibilities, which results in every event being unpredictable. The theory
of stochastic models of different dynamical epidemic problems is of great interest among
scientists. In the published literature, different aspects of theoretical analysis, including
existence, extinction, persistence, and numerical simulations, can be observed in stochastic
epidemic models. To better understand the subject, we recommend interested readers
see [41–45] and the references therein.

In this article, we considered that the fluctuations of β1 and β2 are random and
β1 = β1 + σ1dB1 and β2 = β2 + σ2dB2. With these considerations, we have the following
new stochastic model for the spread of COVID-19:

dS1 =
(
Λ1 − β1IS1 − αS1

)
dt− σ1IS1dB1,

dS2 =
(
Λ2 − β2IS2 − αS2

)
dt− σ2IS2dB2,

dI =
(
I
(

β1S1 + β2S2
)
− (µ + α)I

)
dt + I

(
σ1S1dB1 + σ2S2dB2

)
, (1)

dH =
(
µI − (ρ + α)H

)
dt,

dR =
(
ρH− αR

)
dt.

Here, S1 represents the class of uninfected susceptible people, S2 represents the class
of older people or those having other diseases, I represents the class of people infected
with COVID-19, H represents the class of people who are undergoing treatment, and R
represents the class of recovered individuals. S1, S2 are continuously increased with a
constant ratio denoted by Λ1 and Λ2, respectively. Furthermore, the parameters β1 and β2
are the ratios of the infection of S1 and S2 upon their contact with infected individuals I .
The infected individuals shift to the treated class with a ratio of µ, and the recovery rate is ρ.
σ1, σ2 represent the intensity of environmental white noise, and B1, B2 are the independent
Brownian motions. For the case of σ1 = σ2 = 0, we have the following deterministic
model [46]:

d
dt
S1 = Λ1 − β1IS1 − αS1,

d
dt
S2 = Λ2 − β2IS2 − αS2,

d
dt
I = I

(
β1S1 + β2S2

)
− (µ + α)I , (2)

d
dt
H = µI − (ρ + α)H,

d
dt
R = ρH− αR.

Our objectives were to study the analytical and computational approaches to the
stochastic epidemic model (1). We compared our results with the deterministic model (2)
numerically for different parametric values for the prediction of the future. Thus, the study



Mathematics 2021, 9, 3122 5 of 20

can be helpful to the community regarding the awareness about the spread of the disease
with a more realistic interpretation. Furthermore:

dN
dt

= (Λ1 + Λ2)− µN , (3)

in which N (t) = S1(t) +H(t) + S2(t) +R(t) + I(t) shows the total constant population
for (Λ1 + Λ2) ≈ µN and N (0) = S1(0) + S2(0) + I(0) +H(0) +R(0).

The above equation has an exact solution, that is:

N (t) = e−αt[N, (0) +
(Λ1 + Λ2)

α
eαt], (4)

which implies that N =
(Λ1 + Λ2)

α
.

Furthermore, we have S1(0) ≥ 0, I(0) ≥ 0,S2(0) ≥ 0,R(0) ≥ 0,H(0) ≥ 0, implying
that S1(t) ≥ 0, I(t) ≥ 0 S2(t) ≥ 0, R(t) ≥ 0, H(t) ≥ 0. Therefore, the solution has a
positive property.

2. Existence of the Solution

We made the following assumptions:

• Set Rd
+ = {( ¯̇hi ∈ Rd, ¯̇hi > 0, 1 ≤ d};

• Assume a complete probability space (Ω̇, =̇, {=̇}t≥t0).

For the existence of the solution to our problem (1), we considered a general 5D
stochastic differential equation, which takes the form:

d ¯̇h(t) = h( ¯̇h(t), t)dt + g( ¯̇h(t), t)dB(t) f or t ≥ t0, (5)

via the initial value ¯̇h(0) = ¯̇h0 ∈ R5
+. Furthermore, an operator L̇ is defined as:

L̇ =
∂

∂t
+

d

∑
i.=1

hi.(
¯̇h, t)

∂

∂ ¯̇hi.
+

1
2

5

∑
i.,j.=1

[gT( ¯̇h, t)g( ¯̇h, t)]i.j.
∂2

∂ ¯̇hi.∂
¯̇hj.

. (6)

By operating L̇ on a function V̇ = (Rd × Ṙ+; Ṙ+), then:

L̇V̇( ¯̇h, t) = V̇t(
¯̇h, t) + V̇ ¯̇h(

¯̇h, t) f ( ¯̇h, t) +
1
2

trace[gT( ¯̇h, t)V̇ ¯̇h ¯̇h(
¯̇h, t)g( ¯̇h, t)]. (7)

The existence of the solution is ensured by the following lemma.

Lemma 1. For (S1(0),H(0),S2(0), I(0),R(0)) ∈ R5
+, a positive solution of (1) exists uniquely

on t ≥ 0 in R5
+ with probability equal to one.

Proof. Since (1) fulfills the local Lipschitz criterion, in this case for:

(S1(0),H(0),S2(0), I(0),R(0)) ∈ R5
+,

we have (S1,H,S2, I ,R) as a unique local solution on [0, τe) in which τe is the explosion
time. Now, our aim is to show τe = ∞ for the global solution of (1). Let k0 ≥ 0 be very
large so that (S1(0),S2(0), I(0),H(0),R(0)) lies in [ 1

k0
, k0]. For k ≥ k0, define:

τe = inf
{

t ∈ [0, τe) : min{S1(t),H(t),S2(t), I(t),R(t)} ≤
1
k

or max{S1(t),S2(t),H(t), I(t),R(t)} ≤ k
}

.

By assuming ∅ as the empty set, inf ∅ = ∞. Since τk is increasing for k → ∞, set
τ∞ = limk→∞τk. Then, we have τ∞ ≤ τe a.s.
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Next, we aim to show τ∞ = ∞ a.s. If this claim is not true, then ∃ T > 0 and ∃ ε ∈ (0, 1)
such that P{τ∞ ≤ T} > ε. As a result, we have k1 ≥ k0 s.t. P{τ∞ ≤ T} ≥ ε, ∀k ≥ k1 and
for t ≤ τk.

Now, consider the C2-function V̇ : R5
+ → Ṙ+ by the following formulation:

V̇(S1,S1, I1,H,R) = (S1 − c− c ln
S1

c
) + (S2 − 1− lnS2) + (I − 1− ln I)

+
(
H− 1− lnH) +

(
R− 1− lnR). (8)

By Ito’s formula, we have:

dV̇(S1,S2, I1,H,R) = (1− c
S1

)dS1 +
1

2S2
1
(dS1)

2 + (1− 1
S2

)dS2 +
1

2S2
2
(dS2)

2

+ (1− 1
I )dI +

1
2I2 (dI)

2 + (1− 1
H )dH+ (1− 1

R )dR

= L̇V̇ + σ1(I − S1)dB1 + σ2(I − S2)dB2 (9)

where L̇V̇ : R5
+ → Ṙ+ acts as:

L̇V̇ =
(
1− c
S1

)(
Λ1 − β1IS1 − αS1

)
+

1
2

σ2
1I2 +

(
1− 1
S2

)(
Λ2 − β2IS2 − αS2

)
+

1
2

σ2
2I2 +

(
1− 1
I
)(
I
(

β1S1 + β2S2
)
− (µ + α)I

))
+

1
2

σ2
1S2

1 +
1
2

σ2
2S2

2

+
(
1− 1
H
)(

µI − (ρ + α)H
)
+
(
1− 1
R
)(

ρH− αR
)

= Λ1 − β1IS1 − αS1 −
cΛ1

S1
+ cβ1I + cα +

1
2

σ2
1I2 + λ2 − β2IS2 − αS2 −

λ2

S2

+ β2I + α +
1
2

σ2
2I2 + I(β1S1 + β2S2)− (µ + α)I − (β1S1 + β2S2) + (µ + α)

+
1
2

σ2
1S2

1 +
1
2

σ2
2S2

2 + µI − (ρ + α)H− µI
H + (ρ + α) + ρH− αR− ρH

R + α

≤ Λ1 + Λ2 + β2I + 3α + µ + ρ +
1
2

σ2
1I2 +

1
2

σ2
2I2 +

1
2

σ2
1S2

1 +
1
2

σ2
2S2

2

= Λ1 + Λ2 + β2I + 3α + µ + ρ +
σ2

1I2 + σ2
2I2 + σ2

1S2
1 + σ2

2S2
2

2
. (10)

Set the constant : K = Λ1 + Λ2 + β2I + 3α + µ + ρ +
σ2

1I2 + σ2
2I2 + σ2

1S2
1 + σ2

2S2
2

2
.

Then:

dV̇ ≤ Kdt + σ1(I − S1)dB1 + σ2(I − S2)dB2. (11)

Now, integrate both sides of (11) between 0 to σ} ∧ T∗ and calculate the expectation;
then, we obtain the inequality:

E[V̇(S1(σ} ∧ T∗),S2(σ} ∧ T∗),I(σ} ∧ T∗),H(σ} ∧ T∗),R(σ} ∧ T∗))

≤ V̇(0) + E
∫ σ}∧T∗

0
Kds
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≤ V̇(0) + KE(σ} ∧ T∗)

≤ V̇(0) + KT∗, (12)

where:
V̇(0) = V̇(S1(0),S2(0), I(0),H(0),R(0)).

We take Ω} = {σ} ≤ T∗}, ∀ } ≥ }1, which implies for every P(Ω}) ≥ ξ. We remark
that for every ω ∈ Ω}, there exist at least S1(σ}, ω),S2(σ}, ω), I(σ}, ω),H(σ}, ω),R(σ}, ω),

equaling the number } or
1
} , such that:

V̇ [S1(σ} ∧ T∗, ω),S2(σ} ∧ T∗, ω), I(σ} ∧ T∗, ω),H(σ} ∧ T∗, ω),R(σ} ∧ T∗, ω)]

≥ (
1
} − c− c− ln(

c
} )) ∧ (}− 1− ln}).

From equation(12), we obtain the following relation:

V̇(0) + KT∗ ≥ [1Ω} ∨ (S1(σ} ∧ T∗),S2(σ} ∧ T∗), I(σ} ∧ T∗),H(σ} ∧ T∗),R(σ} ∧ T∗)]

≥ ξ(
1
} − c− c− ln(

c
} )) ∧ (}− 1− ln}), (13)

in which 1Ω} stands for the indicator function. Furthermore, it is seen that when K → ∞,
then:

∞ > V̇(0) + KT∗ = ∞

implies that σ∞ = ∞ a.s., which means that the solution (S1,S2, I ,H,R) is globally positive
a.s.

Theorem 1. Let (S1t ,S2t , It,Ht,Rt) be the solution of the stochastic epidemic model (1). Then,

forR0 =
β1Λ1 + β2Λ2

α(µ + α)
< 1, we have:

lim
t→∞

1
t

log(It) < 0,

lim
t→∞
Ht = 0,

lim
t→∞

∫ t

0
S2(t)dt =

Λ2(µ + α)

β2Λ2 + α(µ + α)
, (14)

lim
t→∞

∫ t

0
S1(t)dt =

Λ1(µ + α)

β1Λ1 + α(µ + α)
,

lim
t→∞

1
t

∫ t

0
R(t)dt = 0.

Proof. With the help of (1), we have:

d log(I) =
[(

β1S1 + β2S2
)
− (µ + α)

]
dt + σ1S1dB1(t) + σ2S2dB2(t). (15)

This implies:

log(It)− log(I0)

t
=

1
t

∫ t

0

[(
β1S1 + β2S2

)
− (µ + α)

]
ds

+
1
t

∫ t

0
σ1S1dB1(s) +

1
t

∫ t

0
σ2S2dB2(s)
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≤ β1Λ1

α
+

β2Λ2

α
− (µ + α)

+
Λ1

α

1
t

∫ t

0
σ1dB1(s) +

1
t

Λ2

α

∫ t

0
σ2dB2(s). (16)

By the help of the large number approach in local martingales, studied in [47], we have:

lim
t→∞

[Λ1

α

1
t

∫ t

0
σ1dB1(s) +

1
t

Λ2

α

∫ t

0
σ2dB2(s)

]
→ 0. (17)

Thus, forR0 < 1, (16) yields:

log(It)− log(I0)

t
≤ β1Λ1

α
+

β2Λ2

α
− (µ + α)

= (µ + α)
( β1Λ1 + β2Λ2

α(µ + α)
− 1
)

(18)

= (µ + α)
(
R0 − 1

)
< 0.

We define Ω1 = {℘ ∈ Ω : lim supt→∞ I(℘, t) = 0}. By (18), we have P(Ω1) = 1. This
proves that the infection is bounded and controlled with ξ1.

Next, with the help of (1), for the infection, we have:

dH(℘, t) = (µI(℘, t)− (ρ + α)H(℘, t))dt.

This yields the following:

H(℘, t) ≤ µξ1

(α + ρ)
.

By the arbitrariness of the ξ1, we haveH(℘, t) ≤ 0. Furthermore, on the other side,

lim
t→∞
H(℘, t) ≥ 0.

Thus, there exists some constant, say ξ2, such thatH(t) < ξ2.
Next for S2(t), we have:

( β2Λ2

α + µ
+ α
) ∫ t

0
S2(t)dt = Λ2 −

S2t − S20

t
,

and so: ∫ t

0
S2(t)dt = Λ2

α + µ

β2Λ2 + α(α + µ)
− α + µ

β2Λ2 + α(α + µ)

S2t − S20

t
.

This implies:

lim
t→∞

∫ t

0
S2(t)dt =

Λ2(α + µ)

β2Λ2 + α(α + µ)
.

Similarly, for S1(t), we have:

lim
t→∞

∫ t

0
S1(t)dt =

Λ1(α + µ)

β1Λ1 + α(α + µ)
,

and forR(t), we obtain:

lim
t→∞

∫ t

0
R(t)dt =

ρξ2

α
.
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However, due to the arbitrariness of the ξ2 and t→ ∞, we have:

lim
t→∞

1
t

∫ t

0
R(t)dt→ 0.

This completes the proof.

Theorem 2. Let (S1t ,S2t , It,Ht,Rt) be the solution of the stochastic epidemic model (1), via the

initial values given by (S1t(0),S2t(0), It(0),Ht(0),Rt(0)). Then, forR0 =
β1Λ1 + β2Λ2

α(µ + α)
> 1,

we have:

lim
t→∞

infS1 ≥
Λ1

α
,

lim
t→∞

infS2 ≥
Λ2

α
,

lim
t→∞

infH ≥ µ(Λ1 + Λ2)

(ρ + α)(α + µ)
,

lim
t→∞

inf I ≥ (Λ1 + Λ2)

(α + µ)
,

lim
t→∞

infR ≥ ρµ(Λ1 + Λ2)

α(ρ + α)(α + µ)
.

Proof. In view of the first three equations of the proposed stochastic system (1), we obtain:

dS1 + dS2 + dI = Λ1 + Λ2 − αS1 − αS2(µ + α)I . (19)

Integrating (19), we have:

−S1(0)− S2(0) + S1(t) + S2(t) + I(t)− I(0) = (Λ1 + Λ2)t− α
∫ t

0
S1(t)dt

− α
∫ t

0
S2(t)dt− (µ + α)

∫ t

0
I(t)dt.

This implies:

(µ + α)

t

∫ t

0
I(t)dt = (Λ1 + Λ2)−

α

t

∫ t

0
S1(t)dt− α

t

∫ t

0
S2(t)dt

−
(
− S1(0)− S2(0) + S1(t) + S2(t) + I(t)− I(0)

)
t

.

This further gives:

lim
t→∞

1
t

∫ t

0
I(t)dt =

(Λ1 + Λ2)

(µ + α)
− lim

t→∞

α

t

∫ t

0
S1(t)dt− lim

t→∞

α

t

∫ t

0
S2(t)dt

− lim
t→∞

(
S1(t)− S1(0)− S2(0) + S2(t) + I(t)− I(0)

)
t(µ + α)

. (20)

Ultimately, we have:

lim
t→∞

inf
1
t

∫ t

0
I(t)dt ≥ (Λ1 + Λ2)

(µ + α)
> 0.
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Next, for S1(t), we have:

dS1 = (Λ1 − β1IS1 − αS1
)
dt− σ1IS1dB1(t). (21)

Integrating (21), we have:

S1(t)− S1(0)
t

= Λ1 −
1
t

[
β1

∫ t

0
IS1ds + α

∫ t

0
S1ds +

∫ t

0
σ1IS1dB1(s)

]
.

Thus:

lim
t→∞

α

t

∫ t

0
S1(s)ds = Λ1 − lim

t→∞

1
t

[S1(t)− S1(0)
t

+ β1

∫ I
0

tS1ds +
∫ t

0
σ1IS1dB1(s)

]
.

This further gives:

lim
t→∞

inf
1
t

∫ t

0
S1(s)ds ≥ Λ1

α
.

Similarly, we have:

lim
t→∞

inf
1
t

∫ t

0
S2(s)ds ≥ Λ2

α
.

ForH, integrating the fourth equation in the system (1), we obtain:

−H(0) +H(t)
t

=
µ

t

∫ t

0
I(s)ds− (ρ + α)

t

∫ t

0
H(s)ds.

This implies that:

(ρ + α)

t

∫ t

0
H(s)ds =

µ

t

∫ t

0
I(s)ds− (−H(0) +H(t)

t
).

With the help of (20), we further have:

lim
t→∞

1
t

∫ t

0
H(s)ds ≥ 1

(ρ + α)

(
µ
(Λ1 + Λ2)

(α + µ)
− lim

t→∞

H(t)−H(0)
t

)
,

and:

lim
t→∞

inf
1
t

∫ t

0
H(s)ds ≥ µ(Λ1 + Λ2)

(ρ + α)(α + µ)
. (22)

Integrating the fifth equation of the system (1), we obtain:

−R(0) +R(t)
t

=
ρ

t

∫ t

0
H(s)ds− α

∫ t

0
Rds.

Therefore:

α
∫ t

0
Rds =

ρ

t

∫ t

0
H(s)ds− R(t)−R′

t
.

With the help of (22), we reach:

lim
t→∞

inf
∫ t

0
Rds ≥ µρ(Λ1 + Λ2)

α(ρ + α)(α + µ)
.

This ends the proof.

3. Numerical Scheme and Simulations

In this section, we provide a numerical scheme for the suggested stochastic COVID-
19 epidemic model (1). We have the parametric values Λ1 = 0.2, Λ1 = 0.05, α = 0.25,
µ = 0.1, ρ = 0.3, S1(0) = 0.45, S2(0) = 0.15, I(0) = 0.1, H(0) = 0.45, H(0) = 0.1. For the
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numerical values, we refer the readers to [48,49]. For the numerical results, we discretize
the suggested stochastic mathematical model (1). The following discretization is based on
the work given in [50,51] where the notion of the numerical scheme and its stability were
discussed.

S1k+1 = S1k +
(

Λ1 − β1IkS1k − αS1k

)
∆t− σ1IkS1k

√
∆tτk −

σ2
1

2
IkS1k (τ

2
k − 1)∆t,

S2k+1 = S2k +
(

Λ1 − β2IS2 − αS2

)
∆t− σ2IkS2k

√
∆tτk −

σ2
2

2
IkS2k (τ

2
k − 1)∆t,

Ik+1 = Ik +
(
Ik
(

β1S1k + β2S2k

)
− (µ + α)Ik

)
∆t + σ1S1kIkτk

√
∆t

+
σ2

1
2
IkS1k (τ

2
k − 1)∆t + σ2S2kIkτk

√
∆t +

σ2
2

2
IkS2k (τ

2
k − 1)∆t,

Hk+1 = Hk +
(

µIk − (ρ + α)Hk

)
∆t,

Rk+1 = Rk +
(

ρHk − αRk

)
∆t.

The graphical explanation of the model (1) is given onward. In Figure 1, a numerical
solution of the model (1) is given for the zero noise, i.e., σ1 = σ2 = 0.0. In Figure 2, we give
a numerical solution to the aforementioned epidemic stochastic model (1) for the zero noise,
i.e., σ1 = σ2 = 0.30. For the zero noise, we have a numerical solution given by Figure 3 of
the model (1), i.e., σ1 = σ2 = 0.40. In Figure 4, we give a numerical solution to (1) for the
zero noise, i.e., σ1 = σ2 = 0.50. In Figure 5, another numerical solution is plotted to the
model (1) for the zero noise, i.e., σ1 = σ2 = 0.60. The class S1 is compared for different
values of σ1 = σ2 = 0.20, 0.40, 0.50, 0.60, 0.0 in Figure 6. Figure 7 represents a numerical
analyses for the class S2 keeping σ1 = σ2 = 0.20, 0.40, 0.50, 0.60, 0.0. These analyses show
that there is a vital role of the noise in the spread of COVID-19. Next, we give the graphical
presentation for the role of β1 and β2 for fixed σ1 and σ2.

Figure 1. Numerical solution of the model (1) for σ1 = σ2 = 0.0.
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Figure 2. Numerical solution of the model (1) for σ1 = σ2 = 0.3.

0 50 100 150

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
n
a
ly

s
is

 o
f 
S

1
(t

),
 S

2
(t

),
 I
(t

) 
s
ig

m
a
1
,2

=
0
.4

 

The role of Brownian terms at 
1
=

2
=0.4

S
1

S
2

I

Figure 3. Numerical solution of the model (1) for σ1 = σ2 = 0.4.
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Figure 4. Numerical solution of the model (1) for σ1 = σ2 = 0.5.

0 50 100 150

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
n
a
ly

s
is

 o
f 
S

1
(t

),
 S

2
(t

),
 I
(t

) 
s
ig

m
a
1
,2

=
0
.6

.

Fixing the 
1
=

2
=0.6.

S
1

S
2

I

Figure 5. Numerical solution of the model (1) for σ1 = σ2 = 0.6.
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Figure 6. Comparative analysis of S1(t) for σ1 = σ2 = 0.2, 0.4, 0.5, 0.6, 0.0.

Figure 7. Comparative analysis of S2(t) for σ1 = σ2 = 0.2, 0.4, 0.5, 0.6, 0.0.

We give the numerical results with the help of graphs for the analysis of the stochastic
model (1) based on β1 and β2. In Figure 8, we give the numerical presentation of S1, S2, I
for the role of β1 and β2 such that β1 = 0.25, β2 = 0.2 keeping σ1 = σ2 = 0.3. In
Figure 9, we have numerical data S1, S2, I for the role of β1 and β2 with β1 = 0.25, β2 =
0.45 and σ1 = σ2 = 0.3. In Figure 10, we have numerical values S1, S2, I for the role
of β1 and β2 with β1 = 0.30, β2 = 0.50 and σ1 = σ2 = 0.3. In Figure 11, we have a
numerical presentation of S1, S2, I for the role of β1 and β2 with β1 = 0.35, β2 = 0.55
and σ1 = σ2 = 0.3. In Figure 12, we have a numerical presentation of the role of β1 and β2
with β1 = 0.25, 0.3, 0.35, 0.4, 0.6, and β2 = 0.45, 0.5, 0.55, 0.6, 0.2 and σ1 = σ2 = 0.3 for the
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comparative analysis of the S1 class. In Figure 13, we have a numerical presentation of
the role of β1 and β2 with β1 = 0.25, 0.3, 0.35, 0.4, 0.6, and β2 = 0.45, 0.5, 0.55, 0.6, 0.2 and
σ1 = σ2 = 0.3 for the comparative analysis of the S2 class.
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Figure 8. Comparative analysis of S1(t), S2(t), I(t) for β1 = 0.25, β2 = 0.2.
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Figure 10. Comparative analysis of S1(t), S2(t), I(t) for β1 = 0.30, β2 = 0.50.
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Figure 12. Comparative analysis of S1(t).

Figure 13. Comparative analysis of S2(t).

4. Conclusions

In this article, we designed a new stochastic mathematical model for the spread of
COVID-19 along with the white noise in the environment. The model was investigated
mathematically in terms of the existence of the solution, the persistence of the disease, and
the extinction of the disease. After the mathematical analysis of the model, we gave the
numerical scheme for the computational analysis of the model, and the scheme was then
tested for the available parametric and initial data in the literature. The computational
results presented more realistic data for us. The numerical analysis was presented with
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the help of several graphs with respect to different noises σ1, σ2 and the parameters β1,
β2. These parametric values have important roles in the stochastic model (1). Our results
showed that the disease dies out in the case of R0 < 1 and persists if R0 > 1. In future
works, we will aim to implement these criteria for different stochastic epidemic models of
diseases. With the help of Figures 2–7, we observed that by increasing the values of σ1 and
σ2, an increase of the susceptible compartment occurs. Our presumed model is an SIR
model where the susceptible class is categorized into two classes: S1, S2. In the future, the
readers can follow the same technique to consider the epidemic models studied in [52–55]
with a similar procedure as a continuation of the work and a further generalization of
the study.
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