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Abstract: This paper presents an active controller for electric vehicles in which active front steering
and torque vectoring are control actions combined to improve the vehicle driving safety. The electric
powertrain consists of four independent in–wheel electric motors situated on each corner. The control
approach relies on an inverse optimal controller based on a neural network identifier of the vehicle
plant. Moreover, to minimize the number of sensors needed for control purposes, the authors present
a discrete–time reduced–order state observer for the estimation of vehicle lateral and roll dynamics.
The use of a neural network identifier presents some interesting advantages. Notably, unlike standard
strategies, the proposed approach avoids the use of tire lateral forces or Pacejka’s tire parameters. In
fact, the neural identification provides an input–affine model in which these quantities are absorbed
by neural synaptic weights adapted online by an extended Kalman filter. From a practical standpoint,
this eliminates the need of additional sensors, model tuning, or estimation stages. In addition, the
yaw angle command given by the controller is converted into electric motor torques in order to
ensure safe driving conditions. The mathematical models used to describe the electric machines are
able to reproduce the dynamic behavior of Elaphe M700 in–wheel electric motors. Finally, quality
and performances of the proposed control strategy are discussed in simulation, using a CarSim® full
vehicle model running through a double–lane change maneuver.

Keywords: electric vehicles; in–wheel; neural network; inverse optimal control; extended Kalman
filter; electric motors; CarSim®

1. Introduction

The automotive industry is facing an ongoing evolution towards electrification and
inclusion of so–called smart features. In these efforts, the use of x–by–wire systems is a
common goal. Technologies such as electric power steering [1], electro–hydraulic brakes [2]
and regenerative dampers [3] have demonstrated to yield favorable performance and
augmented controllable features in automotive systems. As specified by Mazzilli et al. [4],
the presence of multiple actuators is conducive to their coordination. This is commonly
referred to as Integrated Chassis Control (ICC). In this paradigm, automotive systems pur-
sue five main features: adaptability, fault tolerance, dynamic reconfigurability, modularity
and low computational power.

To enable ICC, Ivanov and Savitski [5] highlighted improvements in longitudinal
dynamics, lateral dynamics and body motion control. Improvements in these three domains
favor vehicle stability, vehicle handling and passenger ride quality. Furthermore, chassis
and powertrain electrification also play a major role in this context. Zhang and Zhao
proposed a decoupling strategy to decompose steering and driving contributions for an in–
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wheel powertrain vehicle and provide ICC [6]. More recently, torque optimization strategies
with focus on regenerative braking and energy efficiency have been explored [7,8].

In their recent systematic review, Mazzilli et al. [4] found that most of the ICC im-
plementations target the enhancement of lateral vehicle dynamics through improved
utilization of the tire–road friction potential. In fact, this sole aspect emphasizes the impor-
tance of lateral dynamics in vehicle stability. To provide improved grip and handling, the
so–called torque vectoring (TV) strategies yield optimal torque references to each wheel of
the vehicle. Since the contact between the tire and the ground plays a fundamental role in
propulsion and vehicle stability, previous efforts have focused on the estimation of the tire
side–slip angle [9,10]. Many of these works assume the full knowledge of lateral tire forces,
which, from a practical standpoint requires dedicated sensors and/or estimation strategies.

In this context, this work combines active front steering (AFS) and TV approaches to
improve stability for a vehicle equipped with in–wheel electric motors. The vehicle roll
dynamics are here considered non–negligible and a discrete–time reduced–order observer
is used to reconstruct the otherwise unknown vehicle lateral and roll dynamics [11,12].
The main contribution of this work consists in the use of a recurrent high–order neural
network (RHONN) to identify the vehicle observed dynamics [13–15]. The RHONN
weight updating process is trained using an extended Kalman filter (EKF). The obtained
parameters are then used in the vehicle model to design the control algorithm, in this case,
an inverse optimal control. With the RHONN–based model, the AFS input appears linearly
in the dynamics and not implicitly in the tire characteristic [16]. This artificial intelligence
(AI) approach allows us to calculate the AFS input without inverting the tire model, which
is not a trivial task due to the complexity of the tire model and its dependence on the vehicle
dynamics. In addition, the TV control law does not depend on an explicit expression of the
lateral front and rear tire forces. These quantities are usually not available and they should
be estimated. These two aspects, together with the provided stability demonstration, are
key aspects covered in this work.

Another aspect worth mentioning is that the proposed controller is determined using
the inverse optimal control technique [14,15]. In a classical optimal control setting, the
meaningful cost functional is given a priori. Subsequently, it is used to calculate the control
law by solving a Hamilton–Jacobi–Bellmann (HJB) equation. In general, this latter task
introduces a further challenge. The inverse optimal control technique can be used to
overcome this problem, by choosing an a priori candidate Lyapunov function, which is
then used to calculate the control law and a meaningful cost functional [14,15].

To validate the described approach, CarSim® [17] is the tool of choice. This soft-
ware provides custom parametric mathematical models for full dynamics, which feature
lightweight but accurate representations of a real vehicle. CarSim® is an automotive indus-
try standard since 1990. Moreover, its seamless integration with MATLAB/Simulink® al-
lows users to validate different control strategies through co–simulation.

This work is organized as follows: Section 2 presents the proposed control method
applied to a ground vehicle with roll dynamics, where the reduced–order state observer,
neural model and control laws are described. Section 3 shows the simulation results
obtained by using the CarSim®full vehicle model for an interesting case in which the
vehicle performs a double–lane change (DLC) maneuver under an abrupt variation of the
tire–road friction coefficient. Finally, Section 4 concludes the work and opens the possibility
to future works.

2. Neural Network Inverse Optimal Control for In–Wheel Electric Vehicles

For a better understanding of the control purposes, Figure 1 shows the control scheme
utilized in this work. The signals measured from the CarSim® plant are the steering wheel
angle δd,k and the longitudinal and lateral vehicle accelerations ax,k and ay,k, as well as the
longitudinal vehicle speed vx,k and the yaw rate ωz,k. Then, a discrete–time reduced–order
state observer provides estimation of vehicle lateral velocity ṽy,k, roll position α̃x,k and
velocity ω̃x,k. Next, measured and observed dynamics are given to the neural identifier as
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input. By using synaptic weights trained in an EKF, the neural identifier is able to provide
an input–affine neural model that approximates the vehicle plant model.

Figure 1. Control scheme for in–wheel electric vehicles safety stability improvement.

Subsequently, the inverse optimal controller, based on the neural model, ensures
asymptotic stability of the desired references given for the vehicle lateral velocity vy,k,ref
and yaw rate ωz,k,ref. Outputs of the controller are the active front steering (AFS) and
the torque vectoring (TV), named δc,k and Mz,k, respectively. The AFS is directly given
as control feedback to the vehicle plant model, whereas the TV is split into two different
components, namely, the electric motor torques to be given to the left and right side of the
powertrain, τl,k and τr,k, respectively.

2.1. The Vehicle Mathematical Model with Roll Dynamics

For vehicles with generic center of gravity height, the essential dynamics describing
the vehicle attitude are given by the longitudinal and lateral velocities, the yaw rate and
the roll dynamics. The latter, if not considered, can generate vehicle instability as explained
in [11,12]. To this aim, the vehicle mathematical model including roll dynamics is well
described by the bicycle model in Figure 2. This representation is often used to design
active controllers for ground vehicles [18–20].

The interested reader can find, in [21], a discrete–time version of such a model, ob-
tained by means of a variational integrator (known as symplectic Euler) and represent-
ing the discrete–time version of the bicycle model. Although this model ensures better
performance for (relatively) high sampling periods, a more popular model is the Euler
approximation.
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where T is the sampling period; vx,k, vy,k and ωz,k are the vehicle longitudinal, lateral and
yaw velocities; αx,k and ωx,k are the roll position and velocity, respectively. The longitudinal
acceleration can be expressed as

ax,k =
µx

m

(
Fx, f (λ f ,k) + Fx,r(λr,k)

)
where Fx, f and Fx,r are the longitudinal forces, depending on the front/rear tire slips λ f ,k =
1 − ωw, f ,kRw/vx,k, λr,k = 1 − ωw,r,kRw/vx,k (where ωw, f ,k and ωw,r,k are the front/rear
wheel angular velocities) and Rw is the wheel radius.

lf

lr
αr
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β
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kx

αf δd

Figure 2. Bicycle model with roll dynamic.

The lateral acceleration is given by

ay,k =
µy

m

(
Fy, f (α f ,k) + Fy,r(αr,k)

)
where Fy, f and Fy,r are the lateral forces which depend on the tire slip angles α f ,k =
δd,k + δc,k − (vy,k + l f ωz,k)/vx,k and αr,k = −(vy,k − lrωz,k)/vx,k (where δd,k is the driver
steering wheel angle and δc,k is the AFS input).

As previously stated, this work does not rely on a specific tire model. The only
assumption, verified in practice, is that the tire characteristics are bounded functions [16].
For the sake of concreteness, one may consider, for instance, a simplified Pacejka’s model
for the longitudinal and lateral forces.

Fi,j = Di,j sin
(
Ci,j arctan Bi,jαj

)



Mathematics 2021, 9, 3120 5 of 27

with i = x, y and j = f , f and where the constants Di,j, Ci,j and Bi,j are experimentally
determined.

Finally, m and Jz are the vehicle mass and inertia momentum; l f and lr are the front
and rear vehicle length; and µx and µy are the longitudinal and lateral tire–road friction
coefficients. Furthermore, Mz,k is the TV input.

2.2. The Control Problem

As already mentioned, the use of the AFS and the TV allows us to track given refer-
ences for the lateral velocity vy,k,ref and the yaw rate ωz,k,ref.

Thus, the control problem can be defined as follows: given bounded references vy,k,ref
and ωz,k,ref, with bounded increments, determine a controller uk = αk(x̂k, xk,ref), such that
the tracking errors evy,k = vy,k − vy,k,ref, eωz,k = ωz,k −ωz,k,ref satisfy

lim
k→∞

evy,k = 0, lim
k→∞

eωz,k = 0.

Moreover, when applying control strategies for vehicle stability, not all the state
measurements are available. To avoid an extensive use of sensors, we present a discrete–
time reduced–order state observer for the reconstruction of the vehicle lateral velocity ṽy,k,
roll position α̃x,k and velocity ω̃x,k.

Making reference to Figure 1, the tracking errors evy,k and eωz,k can then be bounded as
follows:

‖evy,k‖ ≤ ‖vy,k − ṽy,k‖+ ‖ṽy,k − v̂y,k‖+ ‖v̂y,k − vy,k,ref‖

‖eωz,k‖ ≤ ‖ωz,k − ω̂z,k‖+ ‖ω̂z,k −ωz,k,ref‖.

Thus, the tracking problem of desired trajectories can be split into three requirements:

1. lim
k→∞
‖vx,k − ṽx,k‖ = 0; lim

k→∞
‖vy,k − ṽy,k‖ = 0

2. lim
k→∞
‖ṽx,k − v̂x,k‖ ≤ εe1 , lim

k→∞
‖ṽy,k − v̂y,k‖ ≤ εe2 , lim

k→∞
‖ωz,k − ω̂z,k‖ ≤ εe3 ,

lim
k→∞
‖α̃x,k − α̂x,k‖ ≤ εe4 , lim

k→∞
‖ω̃x,k − ω̂x,k‖ ≤ εe5

;
3. lim

k→∞
‖v̂y,k − vy,k,ref‖ = 0, lim

k→∞
‖ω̂z,k −ωz,k,ref‖ = 0.

where εei > 0 ∀i = 1, . . . , 5 are fixed bounds for the norm of the identification errors.
The asymptotic stability of the estimation error stated in the first condition is ensured

by the use of a reduced–order state observer, as presented in Section 2.4. The practical
stability of the identification error required by the second condition is guaranteed by using
the RHONN identifier introduced in Section 2.5. In addition, the reference tracking stability
required by the third condition is satisfied by the utilization of the discrete–time controller
discussed in Section 2.6, developed with the inverse optimal control technique. Before
these conditions are met, Section 2.3 shows how to generate safe references for the vehicle
attitude.

2.3. The Reference Signals

The references vy,k,ref and ωz,k,ref represent what the driver expects from the vehicle
performance. No reference is imposed on vx,k. This work assumes that the slips λ f ,k
and λr,k are set to zero; therefore, no longitudinal acceleration/deceleration is imposed.
Various expressions can be found in the literature as reference generators. In particular, we
consider—without loss of generality—the references given in [11,12] as the behavior of an
“ideal” or “reference” vehicle. This ideal vehicle is not controlled by the AFS and/or the TV
and receives, as input, only the driver’s steering signal.
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(
vy,k+1,ref

ωz,k+1,ref

)
=


vy,k,ref − Tvx,kωz,k,ref+

T
µy,ref

mref

(
Fy, f ,ref(α f ,ref) + Fy,r,ref(αr,ref)

)
ωz,k,ref + T

µy,ref

Jz,ref

(
Fy, f ,ref(α f ,ref)l f − Fy,r,ref(αr,ref)lr

)
 (2)

The reference lateral forces Fy, f ,ref and Fy,r,ref depend on the reference slip angles

α f ,ref = δd,k −
vy,k,ref + l f ωz,k,ref

vx,k
, αr,ref = −

vy,k,ref − lrωz,k,ref

vx,k
(3)

and appear multiplied by the reference lateral tire–road friction coefficient µy,ref. These
reference forces Fy, f ,ref and Fy,r,ref are determined using the Pacejka’s Magic Formula [16]

Fy,i,ref = Dy,i,ref sin(Cy,i,ref arctan(By,i,ref αi,k,ref)), i = f , r, (4)

and may differ from the real lateral forces. In particular, Fy,i,ref can be considered non–
decreasing with the slip angle αi,k,ref. This ensures that the reference vehicle cannot generate
tailspins.

2.4. Discrete–Time Reduced–Order State Observer with Roll Dynamics

In this section, it is supposed that ax,k, ay,k, vx,k and ωz,k are measured. This hypothesis
is acceptable for modern vehicles equipped with the required sensors. Moreover, for
vehicles with generic center of gravity height, it is mandatory to take into account roll
dynamics that could cause vehicle instabilities, as explained in [11,12]. Given this context,
the present work deals with non–negligible roll dynamics.

To estimate the vehicle lateral velocity vy,k, roll angle αx,k and roll rate ωx,k, the
following reduced–order state observer is presented:

ṽx,k+1 = ṽx,k + T
(

ṽy,kωz,k + ax,k

)
+ ko,1(vx,k − ṽx,k)

ṽy,k+1 = ṽy,k + T
(
− ṽx,kωz,k +

1
me

ay,k −
kx,e

Jx,s
α̃x,k −

bx

Jx,s
ω̃x,k

)
+ (ko,2 − Tωz,k)(vx,k − ṽx,k)

α̃x,k+1 = α̃x,k + Tω̃x,k + ko,3(vx,k − ṽx,k)

ω̃x,k+1 = ω̃x,k + T
(msh

Jx,e
ay,k −

kx,e

Jx,e
α̃x,k −

bx

Jx,e
ω̃x,k

)
+ ko,4(vx,k − ṽx,k)

(5)

where ko,i∀i = 1, . . . , 4 are the Luenberger’s observer gains [22]. For observability proper-
ties, the authors work under the following assumption.

Assumption 1. The yaw angular velocity ωz,k remains bounded.

|ωz,k| ≤ ωz,k,max ∀ t > t0 (6)

Since the vehicle is a finite energy system, Assumption 6 is physically reasonable. In
the following, the stability analysis of the observer is discussed.

Theorem 1. The discrete–time reduced–order state observer (5) under Assumption 6, with the
observer gains of the form
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ko,1 =
ko,2(2− κ|ωz,k|T − 2Tωz,kψ1)

κSωz ,k − 2Tωz,kψ1

ko,2 =

2ko,3T
kx,e

Jx,e
p12 + n1

n2

ko,3 =
1
n3

(−n4ko,4 − n5)

ko,4 =
−v2 ±

√
v2

2 − 4v1v3

2v1

(7)

and ensures the asymptotic stability to the origin of the estimation errors

ẽvx ,k = vx,k − ṽx,k ẽvy ,k = vy,k − ṽy,k

ẽαx ,k = αx,k − α̃x,k ẽωx ,k = ωx,k − ω̃x,k

(8)

where ni, mj and vl for i = 1, ..., 5, j = 1, ..., 3 and l = 1, ..., 3 are given in Appendix A. �

Proof of Theorem 1 is presented in Appendix A.

2.5. The RHONN Identifier

In previous works, neural networks have shown favorable results when approxi-
mating continuous functions over a compact domain, even with a single hidden layer.
Specifically, RHONNs present a high number of interactions among neurons. Moreover,
their model is very flexible and allows a priori information about the system to be in-
cluded [13–15].

In this paper, we consider the use of a discrete–time RHONN (Figure 3) of the form

xi,k+1 = wT
i,kzi(xk) + w◦Ti uk, i = 1, 2, ..., n (9)

with

zi(xk) =


zi,1
zi,2

...
zi,`i

 =



∏
j∈I1

γ
dij

(1)

ij ,k

∏
j∈I2

γ
dij

(2)

ij ,k

...

∏
j∈I`i

γ
dij

(`i)

ij ,k


, (10)

for i = 1, 2, ..., n, where {I1, I2, · · · , I`i
} is a collection of `i non–ordered subsets of

{1, 2, · · · , n + m} and dij(1), · · · , dij(`i) are non–negative integers. w◦Ti is a constant synap-
tic weight vector and the functions γi,k are in the particular form

γi,k =

 γi,1,k
...

γi,n,k

 =

 s(x1,k)
...

s(xn,k)

.

where γi,j,k are either external inputs or states of neurons passed through a sigmoid
function. The functions s(xi,k), i = 1, · · · , n are typically sigmoidal monotone–increasing
and differentiable functions, called activation functions, having the form

s(xi,k) =
αi

1 + e−βixi,k
− ρi, i = 1, · · · , n
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where αi, βi, ρi > 0 are constants. Sigmoid activation functions can be obtained for αi =
βi = 1 and ρi = 0. In particular, hyperbolic tangent functions are used for αi = βi = 2,
ρi = 1. This last choice simplifies the calculation of the control signal needed to guarantee
the closed–loop performance.

Figure 3. RHONN architecture.

Let us now denote, by w∗i , w◦∗i , i = 1, · · · , n, the constant (unknown) weights minimiz-
ing, on a fixed compact set, the norm of the identification error between (9) and the system
to be identified [14]. Therefore, considering the approximation errors

εi,k =
(

wi,k − w∗i
)T

zi(xk) +
(

w◦i − w◦∗i
)T

uk,

for i = 1, · · · , n, one rewrites (9) as

xi,k+1 = w∗Ti zi(xk) + w◦∗Ti uk + εi,k, i = 1, · · · , n. (11)

For (11), one can consider a RHONN identifier

x̂i,k+1 = ŵT
i,kzi(x̂k) + w◦∗Ti uk, i = 1, 2, · · · , n. (12)

where x̂k is the estimate of xk and ŵi,k is the estimate of w∗i . Furthermore, in (12), it is
assumed that the value of w◦∗i can be estimated offline. This can be conducted for a large class
of systems in affine form since w◦i,k is constant. The RHONN weight estimation error is

w̃i,k = w∗i − ŵi,k, i = 1, · · · , n, ∀ k ∈ N (13)

and its dynamics are

w̃i,k+1 − w̃i,k = ŵi,k − ŵi,k+1, i = 1, · · · , n, ∀ k ∈ N (14)

since w∗i is constant.
The synaptic weights ŵi,k in (12) are online adapted by an extended Kalman filter

(EKF) [13–15]. The main objective of the EKF is to find the optimal values for the weight
vector ŵT

i,k, such that the identification errors

ei,k = xi,k − x̂i,k, i = 1, . . . , n (15)

are minimized. The EKF solution to the training problem is [23,24]

ŵi,k+1 = ŵi,k + ηi,kKi,kei,k i = 1, . . . , n (16)
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where
Ki,k = Pi,k Hi,k Mi,k ∈ R`i (17)

is the Kalman gain matrix, i = 1, . . . , n and ηi,k ∈ [0, 1] is the selected learning rate, such
that

ηi,k <
1

‖Ki,k‖
, ∀k ∈ N, i = 1, · · · , n. (18)

Here, Pi,k ∈ R`i×`i is the predictive error associated covariance matrix defined as

Pi,k+1 = Pi,k − Ki,k HT
i,kPi,k + Qi,k (19)

for i = 1, . . . , n, where Qi,k ∈ R`i×`i is the state noise-associated covariance matrix. More-
over, the global scaling matrix Mi,k is given by

Mi,k =
(

Ri,k + HT
i,kPi,k Hi,k

)−1
(20)

for i = 1, . . . , n, where Ri,k ∈ R and Hi,k ∈ R`i is a matrix for which each entry

hi,j,k =

(
∂x̂i,k

∂ŵi,j,k

)
ŵi,k=ŵi,k+1

,
i = 1, · · · , n,

j = 1, · · · , `,
(21)

is the derivative of one of the neural network output x̂i,k with respect to one neural network
weight ŵi,j. Note that Hi,k, Ki,k and Pi,k are bounded [25]. The dynamics of (13) can be
expressed as

w̃i,k+1 = w̃i,k − ηi,kKi,kei,k (22)

On the other hand, the dynamics of (15) is

ei,k+1 = w̃T
i,kzi(x̂k) + εi,k. (23)

The RHONN identifier presented in this work takes measurements from CarSim® only
for the longitudinal and lateral accelerations ax,k and ay,k and the yaw rate ωz,k. Conversely,
the identification of the longitudinal and lateral velocities v̂x,k and v̂y,k and roll position
and velocity α̂x,k and ω̂x,k are made using their estimations ṽx,k, ṽy,k, α̃x,k and ω̃x,k, given
by the observer in (5). The proposed neural model is the following:

v̂x,k+1 = ŵ11 tanh(v̂x,k) + ŵ12 tanh(ax,k)

v̂y,k+1 = ŵ21 tanh(v̂x,k) tanh(ω̂z,k) + ŵ22 tanh(ay,k)

+ ŵ23 tanh(αx,k) + ŵ24 tanh(ωx,k) + w◦25δc,k

ω̂z,k+1 = ŵ31 tanh(δd,k) + ŵ32 tanh(ay,k) + ŵ33 tanh(ax,k)

+ ŵ34 tanh(β̂k) + ŵ35 tanh(ω̂x,k) + w◦36Mz,k

α̂x,k+1 = ŵ41 tanh(α̂x,k)

ω̂x,k+1 = ŵ51 tanh(α̂x,k) + ŵ52 tanh(ω̂x,k)

(24)

where w◦25 and w◦36 are constants tuned by the designer.
In (24), the AFS and TV inputs δc,k and Mz,k appear. It is worth noting that δc,k appears

linearly in the model and not implicitly in the lateral front force, as in the discrete–time
bicycle model (1). Furthermore, the lateral and yaw dynamics are considered as ideally
uncoupled.

It is also important to remind that a neural model is not unique. Model (24) has shown
good quality and performance in the identification of CarSim® measurements, including
noise and perturbations when tracking the reference signals.
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The stability of the identification errors

êvx,k = v̂x,k − ṽx,k; êvy,k = v̂y,k − ṽy,k; êωz,k = ω̂z,k −ωz,k;

êαx,k = α̂x,k − α̃x,k; êωx,k = ω̂x,k − ω̃x,k;
(25)

as well as the stability of the synaptic weight errors

w̃1,k = w∗11 − ŵ11,k; w̃2,k =


w∗21 − ŵ21,k
w∗22 − ŵ22,k
w∗23 − ŵ23,k
w∗24 − ŵ24,k

; w̃3,k =


w∗31 − ŵ31,k
w∗32 − ŵ32,k
w∗33 − ŵ33,k
w∗34 − ŵ34,k
w∗35 − ŵ35,k


w̃4,k = w∗41 − ŵ41,k; w̃5,k =

(
w∗51 − ŵ51,k
w∗52 − ŵ52,k

)
(26)

are discussed in the following theorem.

Theorem 2. The RHONN identifier (24), trained by the EKF algorithm (15)–(17) and (19)–(21) to
identify longitudinal and lateral vehicle velocities ṽx,k and ṽy,k, as well as roll position and velocity
α̃x,k and ω̃x,k, from the reduced order observer (5) and to identify the vehicle yaw rate ωz,k from
CarSim®, ensures the identification errors (25) to be SGUUB and the weight estimation errors (26)
to remain bounded if, for a sufficiently small εi,k, there exists a constant φi,k such that

0 < φi,k <

√
1− η2

i ‖Ki,k‖2 − η2
i

2(1 + η2
i )

where the learning rate factor ηi is selected satisfying

0 < η2
i <

1
‖Ki,k‖2 + 1

∀ i = 1, . . . , 5.

�

Proof of Theorem 2 is given in Appendix B.

2.6. The Inverse Optimal Control for Reference Tracking

The input control laws used for tracking safe references vy,k,ref and ωz,k,ref are the
active front steering δc,k (AFS) and the torque vectoring Mz,k (TV). No control strategy
is presented for the longitudinal velocity vx,k, this being a bounded signal, as explained
in [11,12].

Based on the structure given in [14,15], the inverse optimal control laws are expressed
in matrix form

u∗k =

(
δc,k

Mz,k

)
= −1

2
(R + P2)

−1P1,k (27)

where
P1,k = gT P( f (x̂k)− xk+1,ref), P2 =

1
2

gT Pg (28)

and:

x̂k+1 =


v̂x,k+1
v̂y,k+1
ω̂z,k+1
α̂x,k+1
ω̂x,k+1

, x̂k =


v̂x,k
v̂y,k
ω̂z,k
α̂x,k
ω̂x,k

, xk+1,ref =

(
vy,k+1,ref

ωz,k+1,ref

)
, xk,ref =

(
vy,k,ref

ωz,k,ref

)
(29)
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f (x̂k) =


ŵ21 tanh(v̂x,k) tanh(ω̂z,k) + ŵ22 tanh(ay,k)

+ŵ23 tanh(α̂x,k) + ŵ24 tanh(ω̂x,k)

ŵ31 tanh(δd,k) + ŵ32 tanh(ay,k) + ŵ33 tanh(ax,k)

+ŵ34 tanh(β̂k) + ŵ35 tanh(ω̂x,k)

 (30)

R =

(
r11 0
0 r22

)
, P =

(
p11 p12

p21 p22

)
, g =

(
w◦25 0

0 w◦36

)
. (31)

Notice that, from [14,15], it is here considered that g(x̂k) = g constant, ensuring
controllability of the system.

Now, along the same lines of theorem (4.7) of [15], we can state the following theorem.

Theorem 3. Let xk,ref be a bounded reference with bounded increments xk+1,ref. If there exists a
matrix P = PT > 0 such that

1
2

P3,k +
1
2

xT
k+1,refPxk+1,ref −

1
2

x̂T
k Px̂k −

1
2

xT
k,refPxk,ref −

1
4

PT
1,k(R + P2)

−1P1,k

≤ −1
2
||P|| || f (x̂k)||2 −

1
2
||P|| ||xk+1,ref||2 −

1
2
||P|| ||x̂k||2 −

1
2
||P|| ||xk,ref||2

(32)

where
P1,k = gT P

(
f (x̂k)− xk+1,ref

)
; P2 =

1
2

gT Pg; P3,k = f T(x̂k)P f (x̂k); (33)

then the control law (27), based on the neural identifier (24), ensures global asymptotic convergence
to zero of the tracking errors evy,k = v̂y,k − vy,k,ref and eωz,k = ω̂z,k − ωz,k,ref. Moreover, this
control law is inverse optimal, i.e., it minimizes the cost functional J (ξk) = V(ξk), with l(ξk) =
−V∗(ξk+1) + V∗(ξk)− u∗Tk Ru∗k . �

Furthermore, to obtain better performances in terms of tracking errors evy,k and eωz,k ,
the authors utilized an offline nature–inspired optimization process known as particle
swarm optimization (PSO) for the P matrix determination in Theorem 3 [26,27].

2.7. TV Conversion

In the following, the yaw moment conversion into electric motor torques is discussed.
It is worth mentioning that this strategy does not constitute the originality of this paper.
Hence, a simple, intuitive transformation is considered.

The inverse optimal controller (28) provides the amount of yaw moment Mz,k needed
to maintain the vehicle in safety at any time. Then, Mz,k is converted into electric motor
torque under the following assumptions.

Assumption 2. Front and rear wheels on the same side move with equal electric motor torque
supposed to be symmetric on left and right, i.e., τl,c,k = −τr,c,k.

Making use of Assumption 2, it is possible to consider the successive transformation
(see Figure 4)

Mz,k =
W
2
(Fx,r − Fx,l), τl,c,k = −

R
W

Mz,k, τr,c,k =
R
W

Mz,k (34)

obtained considering τi,c,k = RFx,i, for i = r, l.
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Figure 4. Yaw moment conversion scheme.

The electric motor torques to be given for the maneuver execution are determined as
in [6,28–30].

τi,k − τL,i,k − αi,k fm = Jα̇i,k i = r, l, (35)

where τL,i,k is the external resistance moment, J is the motor total inertia, fm is the viscous
friction coefficient and αi,k is the wheel angular velocity defined as follows:

αl,k =
vx,k −ωz,k(

W
2 + lrβk)

R
, αr,k =

vx,k + ωz,k(
W
2 − lrβk)

R
(36)

2.8. In–Wheel Electric Machines

The present study exploits an all–wheel drive constituted by four in–wheel motors. As
a reference, outrunner permanent magnet synchronous motors (PMSMs) from the Elaphe
M700 series were taken into account [31]. The electrical parameters are listed in Table 1.

Table 1. In–wheel motor electrical parameters.

Description Symbol Value Unit

Number of pole pairs p 28 –
PM flux linkage λp 17.7 mWb
Phase resistance R 10 mΩ

Direct–axis inductance Ld 17 µH
Quadrature–axis inductance Lq 17 µH

In particular, field–oriented current control is assumed. For this purpose, the electric
machine equations can be written in the rotor reference frame.

Vd = Ld
did
dt
− pLqωiq + Rid

Vq = Lq
diq

dt
+ pLdωid + pλpω + Riq

(37)

where subscripts d (direct) and q (quadrature) denote the rotor axes and label voltages
(Vd,q), currents (id,q) and inductances (Ld,q). Furthermore, p is the number of pole pairs, R
is the phase resistance, λp is the flux linkage of the rotor permanent magnets (PMs) and ω
is the rotor angular speed. Equation set (37) describes the dynamic behavior of direct and
quadrature currents in the machine. These can be related to the electromagnetic torque,
which is the variable of interest in a traction application.

T =
3
2

piq
[
λp +

(
Ld − Lq

)
id
]

(38)

This equation contains a contribution due to PM alignment (left) and a reluctance
term (right). Note that, as in this case, when the rotor is perfectly isotropic, Ld = Lq and the
torque is given only by PM alignment. To attain traction control, the reference quadrature
current is calculated from the desired torque as
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iq,re f =
2

3pλp
Tre f (39)

whereas the direct axis current is set to id,re f = 0. However, when angular speed escalates
and the back electromotive force of the machine exceeds the source voltage capability,
negative direct–axis current is injected, while quadrature current is reduced to extend the
speed range of the machine, at the cost of reducing its torque. This operation is known as
field weakening and, in this case, is accomplished by means of a maximum torque per volt
(MTPV) strategy [32]. Current references are set to separate current proportional–integral
(PI) controllers for each rotor axis, as depicted in Figure 5. Then, rotor–frame variables
are converted to stator–frame ones and vice versa through phase transformations, which
require the electrical angle of the rotor θe. These conversions aim at establishing the phase
voltages in the stator frame and then deciding the switching strategy for the inverter
transistors. In this case, a space vector modulation (SVM) switching strategy is assumed.
For feedback purposes, a transformation is also required to determine the values of the
currents in the rotor frame. Due to causality, the four motors impose a traction torque,
while rotor speed is attained as a consequence of vehicle dynamics.

Figure 5. Field–oriented current control strategy.

3. Simulation Results

To better test the control quality and performances, the authors made use of the
CarSim® extended model simulator. This tool is able to very closely reproduce the behavior
of ground vehicle dynamics. The latest versions of this software allow users to utilize
electric powertrains, as well as in–wheel electric motor configurations. For this specific case,
several modifications to the CarSim® basic dataset were needed. As shown in Figure 6,

IMP_MY_OUT_Di_j (i=1,2 and j=L,R)

are the signals to be imported. The use of an in–wheel powertrain implies a direct equiv-
alence between the speeds of the electric motor and the vehicle wheel (ωk = αk). While
the vehicle model ran in CarSim®, the control strategy was executed in Simulink®in co–
simulation.

Performance of the proposed nonlinear inverse optimal controller was tested in the
interesting case in which the vehicle performed a double–lane change (DLC) maneuver.
The DLC maneuver is described in the standard ISO 3888. It represents a vehicle moving
with an initial speed set to 27.8 m/s (about 100 km/h), with a released throttle pedal and
without braking. To reach the required longitudinal speed given by the DLC standard, the
vehicle accelerates uniformly from standstill to 100 km/h in 10 s, as shown in Figure 7a.

A further challenge was taken into account by considering an abrupt change of the
tire–road friction coefficient from µy,k = 0.9 to µy,k = 0.5. These values correspond to dry
and wet surfaces, respectively, as represented in Figure 7b. In addition, Figure 7c shows
the driver steering angle.
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Figure 6. CarSim® dataset configuration: four independent torque signals. Involved variables are
indicated.
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Figure 7. Vehicle open–loop behavior. (a) Vehicle longitudinal velocity vx,k. (b) Tire–road friction
coefficient µy,k. (c) Driver steering wheel angle δs,w

d,k .

The driver steering wheel angle δs,w
d,k and the steering angle δd,k are related by a steering

ratio of 16:1.
Figure 8 illustrates, with the red vehicle, the behavior when the controller is disabled

(open–loop system). The yellow vehicle denotes the case when the controller is enabled
(closed–loop system). Note that the controlled vehicle progresses on a safer driving
condition, contrary to the uncontrolled vehicle, which shows evident drifting due to
adhesion loss.

Figure 8. CarSim® DLC maneuver: open–loop vehicle (red), closed–loop vehicle (yellow).

The obtained results are summarized in Figure 9. Specifically, the behavior of the open–
loop system is described in Figure 9a,c for the vehicle lateral velocity vy,k and yaw rate ωz,k,
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respectively. On the other hand, Figure 9b,d present the tracking of safe references. Note
the favorable shape of the reference tracking, even in presence of unmodeled dynamics
when using the CarSim® full vehicle model.

0 5 10 15 20

time (s)

-40

-20

0

20

40

60

v
eh

ic
le

 l
at

er
al

 v
el

o
ci

ty
 (

k
m

/h
)

(a)

0 5 10 15 20

time (s)

-4

-2

0

2

4

6

v
eh

ic
le

 l
at

er
al

 v
el

o
ci

ty
 (

k
m

/h
)

(b)

0 5 10 15 20

time (s)

-30

-20

-10

0

10

20

30

v
eh

ic
le

 y
aw

 r
at

e 
(d

eg
/s

)

(c)

0 5 10 15 20

time (s)

-15

-10

-5

0

5

10

15

v
eh

ic
le

 y
aw

 r
at

e 
(d

eg
/s

)

(d)

Figure 9. Open–loop versus closed–loop system comparison in terms of vehicle lateral velocity
vy,k and yaw rate ωz,k. (a) Open–loop system. (b) Closed–loop system. (c) Open–loop system.
(d) Closed–loop system.

Non–negligible vehicle dynamics were estimated by the discrete–time state observer (5)
and then utilized by the neural identifier (24) to provide the neural model for control pur-
poses. Quality and performance of both the observer and the identifier can be observed in
Figure 9 in terms of vehicle lateral and yaw dynamics, whereas the longitudinal velocity,
roll angle and roll rate are presented in Figure 10a–c, respectively.

The robustness of the observer was tested by applying different initial conditions
of the nominal parameters, such as the initial longitudinal velocity, vx,k=0 = 0 and
v̂x,k=0 = 18 km/h. Strong and fast convergence was obtained in one time step, as shown in
Figure 10a.

To assess the capability of the powertrain, the in–wheel machines were tested while con-
trolled with the strategy described in Section 2.8. Torque and current time histories—both
reference and measured signals—are compared against speed profiles in Figure 11. In particular,
a specific torque profile was given for left and right machines, while a speed ramp was imposed
on their rotors (rate, 93 rpm/s; maximum value, 930 rpm). The torque profiles held a maximum
value around 270 Nm as speed escalated. Then, they followed a profile with high dynamic
content, while the speed remained constant at its maximum value. The current control demon-
strated to provide sufficient bandwidth, as it followed the given reference profiles. Another
important aspect is field weakening action at high speed. This was particularly noticeable
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between 8 and 10 s, where the current reference generator started injecting a component in the
negative direct axis, thus allowing the machine to attain the maximum speed. These results
demonstrate the validity of the in–wheel electric machines and their control strategy.
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Figure 10. Observer (5) and neural identifier (24) performances in terms of longitudinal velocity vx,k,
roll angle αx,k and roll rate ωx,k. (a) Vehicle longitudinal velocity. (b) Vehicle roll angle. (c) Vehicle
roll rate.
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Figure 11. Time histories of the current–controlled electric motors. Measured signals (solid) are
compared to the references (dashed). (a) Left motor: direct– and quadrature–axis currents. (b) Right
motor: direct– and quadrature–axis currents. (c) Left motor: torque and angular speed. (d) Right
motor: torque and angular speed.

Figure 12 presents the combined control efforts such as active front steering (AFS) and
Torque Vectoring (TV). Figure 12a shows the AFS activity, whereas Figure 9b depicts the
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electric motor torques. The term “command” refers to the fact that these quantities were
commanded by the controller. Figure 12c provides a total measure of electric motor torques,
the amount needed for the maneuver and the amount needed for stability purposes.
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Figure 12. Control actions: active front steering δc,k, command motor torques τl,c,k, τr,c,k and total
motor torques τl,k, τr,k. (a) Control action: active front steering δc,k. (b) Control action: motor
command torques. (c) Total in–wheel motor torques.

The simulation results show that the control action added to the maneuver did not
induce tire instability; in fact, the longitudinal slip angles remained under 8%, whereas
the lateral slip angles remained under 3 deg, thus ensuring linear behavior of the tire
longitudinal and lateral characteristics.

Finally, Figure 13 presents the synaptic neural weights ŵ11,k, . . . , ŵ52,k during the
online adaptation in the neural identifier (24).
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Figure 13. Synaptic weights of the neural identifier (24).

The parameters used in the observer (5), neural identifier (24) and inverse optimal
controller (27) are listed in Table 2.
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Table 2. Parameters used in the control scheme.

Symbol Value Unit Symbol Value Unit
Dy, f ,ref 10,500 (N) ηi 0.99 (-)
Cy, f ,ref 2.48 (-) Pi,k=0 1 (-)
By, f ,ref 1.00 (-) w◦26 2797× 10−3 (-)
Dy,r,ref 9250 (N) w◦36 2497× 10−2 (-)
Cy,r,ref 3.69 (-) T 0.001 (s)
By,r,ref 2.35 (-) wi,k=0 1 (-)

µref 0.9 (-) Q1 0.1× I2 (-)
mref = m 1259 (kg) Q2 0.5× I4 (-)
Jz,ref = Jz 1343.1 (kg m2) Q3 2× 10−4 × I5 (-)

ρ0 1× 109 (-) Q4 1 (-)
p11 1.6459683× 10−3 (-) Q5 I2 (-)
p12 82.299 (-) l f 1.04 (m)
p22 8.43570× 105 (-) lr 1.56 (m)
R 0.287 (m) bx 9000 (Ns/m)
h 0.54 (m) kx,0 86,000 (N/m)

W 1.485 (m) τL,i 11.5 (N)
fm 26.6 (Nm/rad)

The P2 matrix in Theorem 3, with P2 > 0 and P2 = PT
2 , as well as the constant weights

associated to the input control laws w◦25 and w◦36 in (24), were calculated making use of a
nature–inspired optimization process PSO. This algorithm, executed offline, is able to find
the optimal value of the P2 matrix and the control gains w◦25 and w◦36, depending on the
tracking mean square errors, as explained in [26,27].

To verify the advantages of using the proposed control approach, a comparison against
other existing strategy was necessary. In this case, the authors propose a fair comparison
between optimal and non–optimal methods.

The non–optimal control law utilized for comparison purposes is discussed in [11,12],
where a Lyapunov–based control method inverts the lateral tire characteristic, thus yielding
the control expressions for AFS and RTV.

The obtained results are shown in Figure 14. The numerical results, in terms of
command activity and root mean square error, are also presented for both optimal and
non–optimal control techniques in Table 3. Notice that both methods provided a favorable
shape in terms of reference tracking errors, as shown in Figure 14. The inverse optimal
control approach presented in this work provided better yaw rate tracking, whereas the
non–optimal approach led to improved lateral velocity tracking. However, in terms of
command activity, the non–optimal method involved significantly larger energy spectral
densities of both control actions. Moreover, from a practical standpoint, the non–optimal
strategy requires the measurement of the lateral tire forces.
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Figure 14. Optimal and non–optimal control strategy comparison. (a) Vehicle lateral velocity tracking.
(b) Vehicle yaw rate tracking.
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Table 3. Comparison between optimal and non–optimal control efforts in terms of command energy
spectral density E(·) and root mean square error RMS(·).

Control Technique E(δc,k) E(Mz,k) RMS(evy) RMS(eωz)
(deg2s) (N2m2s) (km/h) (deg/s)

Optimal 0.812 2.587× 105 0.293 0.617
Non–optimal 76.58 1.75× 106 0.111 1.003

4. Conclusions and Future Works

This paper developed an active controller for the improvement of the stability of
electric vehicles equipped with four in–wheel electric motors. The proposed approach
offers significant advantages with respect to other conventional methods due to its ability
to perform TV without the identification or estimation of the lateral tire forces and the
Pacejka’s tire parameters. This contribution represents an important simplification in terms
of measured signals when compared to the state of the art.

The control strategy is based on a neural identifier based on RHONN, in which the
synaptic weights are trained by an EKF, providing a neural model input–affine. The
neural model is then utilized by an inverse optimal controller that ensures asymptotic
convergence to the given references. Furthermore, a discrete–time reduced–order state
observer is used for the estimation of the lateral velocity and roll position and velocity. This
observer ensures exponential stability of the origin of the error system obtained through
the Lyapunov theory. Safe references are given for the vehicle lateral velocity and yaw rate
based on non–decreasing tire lateral characteristics. Optimal gain settings are ensured by
the PSO algorithm, used offline to yield better performances. The mathematical model
of the in–wheel electric motor reproduces a realistic behavior of the Elaphe M700 electric
machines using field oriented control.

The described approach was tested numerically within a DLC maneuver using a
CarSim® full vehicle model. The obtained results demonstrate enhanced quality and
performances of the control action, even in the presence of sudden parametric variation
of the tire–road friction coefficient. In addition, the proposed strategy was compared
to a non–optimal approach, where improved results in terms of yaw rate tracking and
command activity were identified.

Future works should include optimal torque distribution for an all–wheel drive vehicle
model, as well as the saturation of the control efforts when reaching full slip.
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Abbreviations
The following acronyms are used in this manuscript:

AFS active front steering
AI artificial intelligence
EKF extended Kalman filter
HJB Hamilton–Jacobi–Bellmann
ICC Integrated Chassis Control
MTPV maximum torque per volt
MIMO multiple input multiple output
PI proportional integral
PM permanent magnet
PMSM permanent magnet synchronous motor
PSO particle swarm optimization
RHONN recurrent high–order neural network
SGUUB semi–globally uniformly ultimately bounded
SVM space vector modulation
TV torque vectoring

The following symbols are used in this manuscript:

vx, ṽx, v̂x longitudinal velocity: vehicle, observed and identified
vy, ṽy, v̂y lateral velocity: vehicle, observed and identified
ωz, ω̂z yaw rate: vehicle and identified
αx, α̃x, α̂x roll position: vehicle, observed and identified
ωx, ω̃x, ω̂x roll velocity: vehicle, observed and identified
βk, β̂k side slip angle: vehicle and identified
ek, ẽk, êk tracking, observer and identifier errors
ax, ay vehicle longitudinal and lateral acceleration
δd,k steering wheel angle
δc,k active front steering (AFS)
Mz torque vectoring (TV)
τr, τl electric motor torque command right wheel and left wheel
ko,i ∀i = 1, . . . , 4 observer gains
ŵk, w◦k adaptive and constant synaptic weights
αl,k, αr,k wheel angular velocity left and right
T electromagnetic torque
Tre f electromagnetic torque reference
ω motor angular speed
Vd, Vq motor voltage: d axis and q axis
id, iq motor current: d axis and q axis
id,re f , iq,re f motor current references: d axis and q axis

Appendix A. Proof of Theorem 1

For the estimation errors in (8) and their increments

ẽvx ,k+1 = ẽvx ,k + T
(

ωz,k ẽvy ,k −
msh
m

ωz,k ẽωx ,k

)
− ko,1 ẽvx ,k

ẽvy ,k+1 = ẽvy ,k + T
(
− kx,e

Jx,s
ẽαx ,k −

bx

Jx,s
ẽωx ,k

)
− ko,2 ẽvx ,k

ẽαx ,k+1 = ẽαx ,k + Tẽωx ,k − ko,3 ẽvx ,k

ẽωx ,k+1 = ẽωx ,k + T
(
− kx,e

Jx,s
ẽαx ,k −

bx

Jx,s
ẽωx ,k

)
− ko,4 ẽvx ,k

(A1)

it is possible to consider the following Lyapunov candidate function:

Vo,k = ψ1 ẽ2
vx ,k + ẽ2

vy ,k − κSωz,k ẽvx ,k ẽvy ,k + (ẽαx ,k ẽωx ,k) Q2 (ẽαx ,k ẽωx ,k)
T (A2)
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where Sωz,k is the classical sign function

Sωz,k = sign(ωz,k) =


1 if ωz,k > 0
0 if ωz,k = 0
−1 if ωz,k < 0.

and Q2 is a symmetric positive definite matrix Q2 = QT
2 > 0 of the form

Q2 =

(
q11 q12

q12 q22

)
(A3)

The purpose of this proof is to reach negative definite Lyapunov increments

∆Vo,k = −ρ0

(
‖evx ,k‖2 + ‖evy ,k‖2 + ‖eαx ,k‖2 + ‖eωx ,k‖2

)
In order to ensure Vo,k in (A2) to be a Lyapunov candidate function, it is important to

maintain κ2

4 < ψ1.
The variation of the Lyapunov candidate function is defined as

∆Vo,k = Vo,k+1 −Vo,k

= ψ1

(
ẽvx ,k + T

(
ωz,k ẽvy ,k −

msh
m

ωz,k ẽωx ,k
)
− ko,1 ẽvx ,k

)2
− ψ1 ẽ2

vx ,k

+
(

ẽvy ,k + T
(
− kx,e

Jx,s
ẽαx ,k −

bx

Jx,s
ẽωx ,k

)
− ko,2 ẽvx ,k

)2
− ẽ2

vy ,k

− κSωz,k

(
ẽvx ,k + T

(
ωz,k ẽvy ,k −

msh
m

ωz,k ẽωx ,k
)
− ko,1 ẽvx ,k

)
×
(

ẽvy ,k + T
(
− kx,e

Jx,s
ẽαx ,k −

bx

Jx,s
ẽωx ,k

)
− ko,2 ẽvx ,k

)
+ κSωz ,k ẽvx ,k ẽvy ,k + (ẽαx ,k+1 ẽωx ,k+1) Q2 (ẽαx ,k+1 ẽωx ,k+1)

T

− (ẽαx ,k ẽωx ,k) Q2 (ẽαx ,k ẽωx ,k)
T

(A4)

obtaining
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(
ψ1k2

o,1 − 2ψ1ko,1 + k2
o,2 + κSωz ,kko,2κSωz ,kko,1ko,2 + q11k2

o,3 + 2q12ko,3ko,4 + q22ko,4

)
ẽ2

vx,k

+

(
ψ1T2ω2

z,k − κ|ωz,k|T
)

ẽ2
vy,k

+

(
− 2q12T

kx,e

Jx,e
+ T2 k2

x,e

J2
x,e

(1 + q22)

)
ẽ2

αx,k

+

(
q11T2 + 2Tq12 − 2T2 bx

Jx,e
q12 + q22T2 b2

x
J2
x,e
− 2Tq22

bx

Jx,e
+ T2 m2

s h2ψ1

m2

+ T2 b2
x

J2
x,e
− κT2Sωz ,k

mshbx

mJx,e

)
ẽ2

ωx,k

+

(
2ψ1Tωz,k − 2ψ1Tωz,kko,1 − 2ko,2 + κSωz ,kko,1 + Tκ|ωz,k|ko,2

)
ẽvx ,k ẽvy ,k

+

(
2T

kx,e

Jx,s
ko,2 + κTSωz ,k

kx,e

Jx,e
− κSωz ,kT

kx,e

Jx,e
ko,1 + 2q12Tko,3

kx,e

Jx,e

− 2q12Tko,4 + 2q22T
kx,e

Jx,e
ko,4

)
ẽvx ,k ẽαx ,k

+

(
2Tko,1

mshψ1

m
− 2T

mshψ1

m
+ 2T

bx

Jx,s
ko,2 + κTSωz ,k

bx

Jx,s
− κTSωz ,k

msh
m

ko,2

− κTSωz ,k
bx

Jx,s
ko,1 − 2Tq11ko,3 − 2q12ko,3 − 2q12Tko,4 + 2q22T

bx

Jx,e
ko,4 − 2q22ko,4

)
ẽvx ,k ẽωx ,k

+

(
κ|ωz,k|T2 kx,e

Jx,s
− 2T

kx,e

Jx,s
− 2q11ko,3

)
ẽvy ,k ẽαx ,k

+

(
− 2T2ψ1ωz,k

msh
m
− 2T

bx

Jx,s
+ κSωz ,kT

msh
m

+ κ|ωz,k|T2 bx

Jx,s

)
ẽvy ,k ẽωx ,k

+

(
2Tp11 − 2Tq12

bx

Jx,e
− 2T2q12

kx,e

Jx,e
+ 2q22

kx,ebx

J2
x,e
− 2Tq22

kx,e

Jx,e
+ 2T2 kx,ebx

J2
x,s

− κSωz ,kT2 mshkx,e

mJx,s

)
ẽαx ,k ẽωx ,k.

(A5)

After various simplifications, one obtains

q12 =
Jx,e

2Tkx,e

(
λ1 + T2 k2

x,e

J2
x,s

+ T2 k2
x,e

J2
x,e

q22

)
, q22 =

b
a
− T2

a
q11, q11 =

d
c

, (A6)

with

a =
Tkx,e

Jx,e
(T − T2 bx

Jx,e
) + T2 b2

x
J2
x,e
− 2T

bx

Jx,e

b = −λ2 + κT2 mshbx

mJx,s
Sωz ,k − T2 b2

x
J2
x,s
− T2 m2

s h2ψ1

m2 − Jx,e

Tkx,e
(λ1 + T2 k2

x,e

J2
x,s

)(T − T2 bx

Jx,e
)

c = 2T +
kx,eT3

J2
x,ea

(T2kx,e + Tbx)−
T2

a
(2

kx,ebx

J2
x,s
− 2T

kx,e

Jx,e
)

d = κSωz ,kT2 mshkx,e

Jx,s
− 2T2 kx,ebx

J2
x,s

+
b
a
(2T

kx,e

Jx,e
− 2

kx,ebx

J2
x,s

)

+
Jx,e

Tkx,e
(λ1 + T2 k2

x,e

J2
x,s

+ T2 k2
x,e

J2
x,e

b
a
)(T2 kx,e

Jx,e
+ T

bx

Jx,e
).

(A7)
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By choosing the observer gains ko,i for i = 1, 2, 3, 4, such that

ko,1 =
ko,2(2− κ|ωz,k|T − 2Tωz,kψ1)

κSωz ,k − 2Tωz,kψ1
, ko,2 =

2ko,3T
kx,e

Jx,e
q12 + n1

n2

ko,3 =
1
n3

(−n4ko,4 − n5), ko,4 =
−v2 ±

√
v2

2 − 4v1v3

2v1

(A8)

for

n1 = κSωz ,kT
kx,e

Jx,s
+

2κ|ωz,k|T2kx,eψ1

Jx,s(κSωz,k − 2Tωz,kψ1)

n2 = −2T
kx,e

Jx,s
+ κTSωz ,k

kx,e

Jx,s

(2− κ|ωz,k|T)
(κSωz ,k − 2Tωz,kψ1)

n3 =
2ckx,e

n2 Jx,e
+ 2q12T

bx

Jx,e
− 2q11T − 2q12

n4 =
c

n2
(

2Tq22kx,e

Jx,e
− 2q12) + 2Tq22

bx

Jx,e
− 2Tq12 − 2q22

n5 =
cn1

n2
−

2Tωz,kψ1

(κSωz,k − 2Tωz,kψ1)
(2T

msh
m

ψ1 − κTSωz,k

bx

Jx,s
)

+ κT
bx

Jx,s
Sωz,k − 2T

msh
m

ψ1

(A9)

with

m1 =
ψ1(2− κ|ωz,k|T)2

(κSωz,k − 2Tωz,kψ1)2 +
(2− κ|ωz,k|T)κSωz,k

(κSωz,k − 2Tωz,kψ1)
+ 1

m2 =
2ψ1(κ|ωz,k|T − 2)

(κSωz,k − 2Tωz,kψ1)2 +
4Tωz,kψ2

1(κ|ωz,k|T − 2)κSωz,k

(κSωz,k − 2Tωz,kψ1)

−
2κ|ωz,k|Tψ1

(κSωz,k − 2Tωz,kψ1)
+ κSωz,k

m3 =
4T2ω2

z,kψ3
1

(κSωz,k − 2Tωz,kψ1)2 +
4Tωz,kψ2

1
(κSωz,k − 2Tωz,kψ1)

+
q11n2

5
n2

3
+ ρ0

(A10)

and

v1 =
q11n2

4
n2

3
− 2q12n4

n3
+ (2Tq22

kx,e

Jx,e
− 2q12)

2 + 4m1q2
12T2 k2

x,en2
4

J2
x,en2

2n2
3

+
4m1q12n4kx,e

Jx,en2
2n3

(2q12 − 2Tq22
kx,e

Jx,e
)

v2 =
8n4n5m1q2

12T2k2
x,e

n2
2n2

3 J2
x,e

− 4n1n4m1q12Tkx,e

n2
2n3 Jx,e

− 2n4m2q12Tkx,e

n2n3 Jx,e

+
4n5m1q12Tkx,e

n3 Jx,e
(2q12 − 2Tq22

kx,e

Jx,e
) +

2n1m1

n3 Jx,e
(2Tq22

kx,e

Jx,e
− 2q12)

+
m2

n2
(2Tq22

kx,e

Jx,e
− 2q12) +

2q11n4n5

n2
3

− 2q12n5

n3
+ q22

v3 =
4m1q2

12T2n2
5kx,e

n2
2n2

3 Jx,e
− 4m1q12Tn1n5kx,e

n2
2n3 Jx,e

− 2m2q12Tn1n5kx,e

n2n3 Jx,e
+

m2n2
1

n2
2

+
m2n1

n2
+ m3

(A11)
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one obtains

∆Vo,k = −ρ0 ẽ2
vx ,k − ρ2 ẽ2

vy ,k − λ1 ẽ2
αx ,k − λ2 ẽ2

ωx ,k

+

(
κ|ωz,k|T2 kx,e

Jx,s
− 2T

kx,e

Jx,s
+ 2

q11

n3
(n4ko,4 + n5)

)
ẽvy ,k ẽαx ,k

+

(
κSωz,k T

msh
m

+ κ|ωz,k|T2 bx

Jx,s
− 2ωz,kT2ψ1

msh
m
− 2T

bx

Jx,s

)
ẽvy ,k ẽωx ,k.

(A12)

The cross terms can eliminated considering

± α1 ẽvy ,k ẽαx ,k ≤
|α1|
µ1

ẽ2
vy ,k + |α1|µ1 ẽ2

αx ,k ≤
α1,max

µ1
ẽ2

vy ,k + α1,maxµ1 ẽ2
αx ,k

± α2 ẽvy ,k ẽωx ,k ≤
|α2|
µ2

ẽ2
vy ,k + |α2|µ2 ẽ2

ωx ,k ≤
α2,max

µ2
ẽ2

vy ,k + α2,maxµ2 ẽ2
ωx ,k

(A13)

with
α1 = κ|ωz,k|T2 kx,e

Jx,s
− 2T

kx,e

Jx,s
+ 2

q11

n3
(n4ko,4 + n5)

α2 = κSωz,k T
msh
m

+ κ|ωz,k|T2 bx

Jx,s
− 2ωz,kT2ψ1

msh
m
− 2T

bx

Jx,s
.

(A14)

Setting

ρ2 = ρ0 +
α1,max

µ1
+

α2,max

µ2
; λ1 = ρ0 + α1,maxµ1; λ2 = ρ0 + α2,maxµ2; (A15)

for ρ0 > 0 and µ1, µ2 > 0, one obtains ∆Vo,k ≤ −ρ0‖e‖2; thus, the error system has the origin
exponentially stable and the estimation errors tend asymptotically to zero.

Appendix B. Proof of Theorem 2

Let us consider the following Lyapunov candidate function:

Vk =
5

∑
i=1

(êT
xi,k

êxi,k + w̃T
i,kw̃i,k − 2φizT

i,k−1w̃i,k êxi,k ) (A16)

verifying the condition ‖zi,k−1‖2 < 1
φ2

i
with ê1,k = êv̂x,k , ê2,k = êv̂y,k , ê3,k = êω̂z,k , ê4,k = êα̂x,k ,

ê5,k = êω̂x,k and with

z1,k =

(
tanh(v̂x,k)
tanh(ax,k)

)
, z2,k =


tanh(v̂x,k) tanh(ω̂z,k)

tanh(ay,k)
tanh(α̂x,k)
tanh(ω̂x,k)

, z3,k =


tanh δd,k
tanh ay,k
tanh ax,k
tanh β̂k

tanh ω̂x,k


z4,k = tanh(α̂x,k), z5,k =

(
tanh(α̂x,k)
tanh(ω̂x,k)

)
.

(A17)

Considering (15) and (23), the variation of Vk can be calculated as



Mathematics 2021, 9, 3120 25 of 27

∆Vk =Vk+1 −Vk

=
5

∑
i=1

(
[w̃T

i,kzi,k + εi,k]
T [w̃T

i,kzi,k + εi,k] + [w̃i,k − ηi,kKi,kexi,k ]
T [w̃i,k − ηi,kKi,kexi,k ]

− 2φizT
i,k[w̃i,k − ηi,kKi,kexi,k ][w̃

T
i,kzi,k + εi,k]− eT

xi,k
exi,k − w̃T

i,kw̃i,k + 2φizT
i,k−1w̃i,kexi,k

)
=

5

∑
i=1

(
zT

i,kw̃i,kw̃T
i,kzi,k + 2εi,kw̃T

i,kzi,k + ε2
i,k + w̃T

i,kw̃i,k − 2ηi,kexi,k KT
i,kw̃i,k

+ η2
i,ke2

xi,k
KT

i,kKi,k − 2φizT
i,kw̃i,kw̃T

i,kzi,k − 2φiεi,kzT
i,kw̃i,k + 2φiηi,kexi,k zT

i,kKi,kw̃T
i,kzi,k

+ 2φiηi,kεi,kexi,k zT
i,kKi,k − eT

xi,k
exi,k − w̃T

i,kw̃i,k + 2φizT
i,k−1w̃i,kexi,k

)
.

(A18)

Using the inequalities

2φiηi,kei,kzT
i,kKi,kw̃T

i,kzi,k ≤ φ2
i η2

i,ke2
i,k + λ2

i,max(Ki,kw̃T
i,k)‖zi,k‖4

2ηi,kei,kKT
i,kw̃i,k ≤ η2

i,ke2
i,k + w̃T

i,kKi,kKT
i,kw̃i,k

2εi,kw̃T
i,kzi,k ≤ ε2

i,kw̃T
i,kw̃i,k + zT

i,kzi,k

− 2φiεi,kzT
i,kw̃i,k ≤ φ2

i ε2
i,kw̃T

i,kw̃i,k + zT
i,kzi,k

2φiηi,kεi,kei,kzT
i,kKi,k ≤ η2

i,kφ2
i e2

i,k + ε2
i,kKT

i,kzi,kzT
i,kKi,k

2φizT
i,kw̃i,kei,k ≤ φ2

i e2
i,k + w̃T

i,kzi,kzT
i,kw̃i,k

2φizT
i,k−1w̃i,kei,k ≤ φ2

i e2
i,k + w̃T

i,kzi,k−1zT
i,k−1w̃i,k

(A19)

and considering

αi,k = 1− η2
i,k‖Ki,k‖2 − η2

i,k − 2η2
i,kφ2

i − 2φ2
i

βi,k = 2(φi − 1)‖zi,k‖2 − ε2
i,k − φ2

i ε2
i,k − ‖Ki,k‖2 − ‖zi,k−1‖2

γi,k = λ2
i,max

(
Ki,kw̃T

i,k

)
‖zi,k‖4 + ε2

i,k + ‖zi,k‖2
(

1 + ε2
i,k‖Ki,k‖2

) (A20)

it is possible to rewrite Equation (A18) as follows:

∆Vk ≤
5

∑
i=1

(
− ‖ek,i‖2αk,i − ‖w̃k,i‖2βk,i + γk,i

)
. (A21)

It is now necessary to ensure αi,k > 0 and βi,k > 0. Selecting ρi such that

min
<

(Ai,k) < φi < max
<

(Ai,k) (A22)

being

Ai,k =

(
−

√
1− η2

i ‖Ki,k‖2 − η2
i

2(1 + η2
i )

,

√
1− η2

i ‖Ki,k‖2 − η2
i

2(1 + η2
i )

)
(A23)

one obtains αi,k > 0. In order to verify βi,k > 0, one may select a specific value of ρi
depending on the continuous variation of the sign of the function. That is not convenient
at all; however, by calculating the roots

φi,1,2 =
‖zi,k‖2

ε2
i,k
± 1

ε2
i,k

√
‖zi,k‖4 − 2ε2

i,k‖zi,k‖2 − ε2
i,k‖Ki,k‖2 − ε2

i,k‖zi,k−1‖2 − ε4
i,k (A24)
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one can decide to take small enough values of εi,k, such that

lim
εi,k→0

φi,1,2 = lim
εi,k→0

(‖zi,k‖2

ε2
i,k
±
‖zi,k‖2

ε2
i,k

)
(A25)

obtaining φi,1 = 0 and φi,2 = +∞. Finally, for a εi,k small enough, there exists a φi ∈ Bk
such that βi,k > 0, being Bi,k = (0,+∞).

Both conditions αi,k > 0, βi,k > 0, ∀i = 1, . . . , 5 are verified when there exists a
non–null intersection between Ai,k and Bi,k. That is, by considering

min
<

(Bi,k) < φi < max
<

(Ai,k)

that represents the condition stated in Theorem 2.
Finally, there exist Ki,k, ηi,k and λi, such that ∆Vk < 0 when

‖w̃i,k‖ >

√
‖γi,k‖
‖αi,k‖

= κ1 OR ‖ei,k‖ >

√
‖γi,k‖
‖βi,k‖

= κ2 ∀i = 1, . . . , 5. (A26)

According to Theorem 2 the solutions of (25) are stable; hence, the identification errors
and the RHONN weights are SGUUB along κ1 or κ2.
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