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Abstract: In this paper, a Cournot game with two competing firms is studied. The two competing
firms seek the optimality of their quantities by maximizing two different objective functions. The
first firm wants to maximize an average of social welfare and profit, while the second firm wants
to maximize their relative profit only. We assume that both firms are rational, adopting a bounded
rationality mechanism for updating their production outputs. A two-dimensional discrete time
map is introduced to analyze the evolution of the game. The map has four equilibrium points and
their stability conditions are investigated. We prove the Nash equilibrium point can be destabilized
through flip bifurcation only. The obtained results show that the manifold of the game’s map can
be analyzed through a one-dimensional map whose analytical form is similar to the well-known
logistic map. The critical curves investigations show that the phase plane of game’s map is divided
into three zones and, therefore, the map is not invertible. Finally, the contact bifurcation phenomena
are discussed using simulation.

Keywords: cobweb model; dynamics; gradient mechanism; stability; bifurcation

1. Introduction

The duopoly market structure has been deeply studied and investigated as a significant
aspect of economic dynamics and game theory. This market consists of only two competing
firms in which each firm selects its strategy based on its own actions and the actions of
its competitor. In duopoly models, it is assumed that firms independently seek a level of
production that maximizes their profits. That is, all competing firms decide their output
productions simultaneously. Moreover, firms have the same visualization of the demand of
the market and they have familiar insight into their competitors’ operating costs. In such
a duopoly game, all the competitors decide to be more productive. This means that a
firm decides to update its output production depending on an increase or decrease in
its production based one the gained profit. Game theory is categorized as a branch of
applied mathematics, which refers to the process in which individuals or organizations can
interact so that they can achieve corresponding benefits. Game theory has been adopted to
study competitive behaviors amongst rivals and has been widely applied in management,
biology, economics, and other disciplines. It has been used in investigating static duopoly
models as well. The static models of this game may not provide more information or facts
about the evolution of the game as they concentrate on the static Nash point. This means
the competing firms in static models are not willing to change their strategic behaviors
because they understand that deviation from the Nash point is useless. More information
and studies on static models can be found in the literature [1–5].

Studying the dynamic characteristics of such games has given rise to some hidden
behaviors of maps describing its evolution. The structure of these maps is discrete and
depends on time steps. Examples of these hidden behaviors include stability, bifurcation,
basin of attraction, and global bifurcation. The first step to investigating these behaviors is
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the modeling process, which requires some assumptions for the inverse demand and cost
functions. Several investigations in the literature have analyzed the dynamic characteristics
of such models based on several types of inverse and cost functions including linear and
nonlinear ones. The first trial was used for discussing [6] these dynamic characteristics of an
oligopoly model. Another type of these games, called Cournot–Bertrand, was introduced
and its dynamics behaviors were discussed in [7]. Puu ([8,9]), a famous scientist who
passed away in 2020, studied the complex dynamics characteristics of many oligopoly
games. His works have become a central point for many studies in the literature and
provided this research field with several beneficial books and articles. Other studies in
the literature ([10–18]) have analyzed market structure and kinds of market competitions,
including several types of inverse demand and cost functions in addition to different
strategies used by competing firms for productions updating.The above studies and others
in the literature have reported that such games possess periodic, quasi-periodic, and
complex attractors with peculiar structures that route to chaos.

The literature reports several studies in addition to those cited above focusing on a
single-objective function to be maximized. This single-objective function was the firm’s
gained profit. Recently, few works on duopoly games have focused on maximizing another
single-objective function: an average weighting of two objective functions. For example,
the static game of quantity-setting was studied by Fanti et al. [19]. In this study, the authors
analyzed the game’s players that followed corporate social responsibility (CSR), which
depended on managerial delegation.In [20], the weighted average between two objective
functions, profit and social welfare, was maximized to seek the equilibrium points of
Cournot–Bertrand model, whose productions are differentiated. Recalling the relation
between R&D expenditure, a static duopoly game with players seeking to maximize
their own and relative profits was investigated in [21]. Maximizing social welfare as a
single-objective function of a Cournot duopoly game was analyzed and its dynamics were
discussed [22]. Ref. [22] carried out an intensive local and global analysis for exploring the
stability conditions of the Nash point and the types of bifurcations that lead this point to be
unstable. Several investigations on a hybrid model of oligopoly with privatization policies
and CSR have shown that the optimality of private policies are impacted by both CSR and
the heterogeneity of private company objectives [23]. In [24], a multistability process was
discussed in a two-stage production-setting duopoly game with differentiated products
and R&D spillover. Recently, ref. [25] carried out an analysis of the Cournot duopoly model
with players seeking the maximization of a weighted single objective of firm profit and
consumer surplus.

Market information means information on quantity, quality, packaging, and/or prices
of marketed, imported, and/or exported products. Such information can help firms to use
an appropriate adjustment rule by which productions can be updated. Identifying the rule
of adjustment can be used for the evolution of a game and for building a discrete time map
responsible for describing the evolution. Several adjustment rules have been described
in the literature for that purpose. For example, bounded rationality approach has been
intensively adopted in several studies for the modeling process. It is considered a gradient
approach based on the maximization of the marginal objective function. In addition,
there are other rules that have been used in the modeling process and are reported in
the literature, such as naïve expectation, the tit-for-tat rule, and the local monopolistic
approximation (LMA) rule. For more information on the properties of such rules, the
reader is referred to some works in the literature ([26–30]).

The current paper proposes a game of duopoly that belongs to the above discussed
categories. Its players (or firms) seek optimal quantities of their productions according to
the maximization of two different objective functions. The first firm wants to maximize
a weighted objective function between its social welfare and profit. The second firm
wants to maximize its relative profit. As in th literature, we adopt a simple linear price
function in the modeling process. Then, the evolution of game is described by a nonlinear
noninvertible map. It possesses four equilibrium points, one of which is interior and is
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considered a Nash equilibrium point. We conduct a local and global analysis of these
points and focus on the dynamics of the Nash point including its stability conditions,
contact bifurcation, and attractive basins of some periodic cycles and chaotic attractors
using numerical simulation experiments. The critical curves analysis shows the map of
game belongs to the Z4 − Z2 − Z0 type.

The remainder of this paper is structured as follows: The model is introduced in
Section 2. In Section 3, local analysis of the equilibrium points is discussed. The invariant
manifold is investigated in Section 4, while the global bifurcation phenomena are discussed
using numerical simulation in Section 5. The case of equal speed of adjustments is studied
in Section 6. Finally, Section 7 concludes our findings.

2. The Model

Let us suppose two competing firms (or players) producing homogeneous com-
modities. These commodities represent the firms’ decision variables and are set by q1
and q2. The cost of production for each firm is taken as linear function in the form
Ci(qi) = ciqi, i = 1, 2, where ci > 0, i = 1, 2 is called the marginal cost ( ∂Ci

∂qi
, i = 1, 2) and is

constant. Both firms adopt a linear inverse demand function given by

p = g(Q) = a− bQ (1)

where p is the price of production, the parameter b > 0 is used to represent firms’ sensitive
price coefficient to their own productions, and Q = q1 + q2 is the total supply by firms
to the market. The parameter a > 0 is set for the largest price in the market when q1 = 0
and q2 = 0, which means that no productions of the two firms is provided to the market.
The total profit by each firm is given by πi = pQ− Ci(qi), i = 1, 2; so, using (1) we obtain

πi = (a− ci − bQ)qi , a > ci, i = 1, 2. (2)

Unlike many studies in the literature, we examine the case when the two firms want to
maximize two different objective functions. Due to the lack of market information provided
to each firm (or competitor), the first firm seeks the maximization of its profit according
to some social responsibility. Such responsibility, from an economic perspective, may be
described by the social welfare (SW) that is given by

SW = TR + CS. (3)

where TR and CS represent total revenues and consumer surplus, respectively. The total
revenue is equal to π1 + π2 while CS is calculated by the following relation:

CS =
∫ Q

0
g(Q̄)dQ̄− pQ =

b
2

Q2; Q̄ ∈ (0, Q) (4)

Substituting (1) and (5) in (3), we obtain,

SW = aQ− c1q1 − c2q2 −
b
2

Q2. (5)

So, the first firm wants to maximize the following weighted-sum objective,

f1 = (1−ω)SW + ωπ1 (6)

where the parameter ω denotes a certain weight and is restricted to the interval ω ∈ [0, 1].
At ω = 1, the first firm focuses on maximizing its profit only, as in many studies in the
literature, and ω = 0 means that it focuses only on the social welfare, which economically
may put it at risk. On the other hand, the second firm seeks maximization of its relative
profit given by f2 = π2 − επ1 and ε ∈ [0, 1]. At ε = 0, the second firm concentrates on
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maximizing its profit only and ε = 1 means it focuses on maximizing its relative profit.
Now, the following two objective functions take the form

f1 = (1−ω)
(

aQ− c1q1 − c2q2 − b
2 Q2

)
+ ωq1(a− c1 − bQ),

f2 = (a− c2 − bQ)q2 − εq1(a− c1 − bQ)
(7)

So, the marginal objectives
(

∂ fi
∂qi

, i = 1, 2
)

can be

∂ f1
∂q1

= a− c1−(1−ω)bq1−bq2,
∂ f2
∂q2

= a− c2 − 2bq2−(1− ε)bq1
(8)

The market possesses many characteristics that can support firms with information
about their output updates; such information is not complete but provides firms expecta-
tions about their rivals’ decisions. Complete information is rare and if it exists, it may affect
the firms’ profits as it requires increased costs for collecting data. So, due to the limited
information on the market, firms must be rational and estimate their marginal objective for
updating their production in the next period in the production cycle. This means that if
∂ fi
∂qi

> 0; i = 1, 2, both firms will provide the market with extra production in the next time
period; otherwise, they may reduce their production. This discussion about updating firm
production can be described by the bounded rationality rule [26–30] given by

qi(t + 1) = qi(t) + ki(qi)
∂ fi
∂qi

; i = 1, 2 (9)

The function ki(qi) may be used to measure a range on which a firm’s production
can be varied depending on the sign of the marginal objective. Here, we follow many
studies in the literature and take it as ki(qi) = νiqi; i = 1, 2 and νi > 0, i = 1, 2. This
means that qi(t+1)−qi(t)

qi(t)
∝ ∂ fi

∂qi
; hence, there is a direct proportional relationship between

the relative production and the marginal objective function. Substituting (8) into (9), a
nonlinear two-dimensional discrete dynamic map that is used to describe the game’s
evolution is obtained.

T(q1, q2):
{

q1(t + 1) = q1(t) + ν1q1(t)(a− c1−(1 + ω)bq1−bq2),
q2(t + 1) = q2(t) + ν2q2(t)(a− c2 − 2bq2−(1− ε)bq1)

(10)

The parameter t, t = 0, 1, 2, . . . denotes the time steps. Inputting the condition for fixed
points T(q1, q2) = (q1, q2) into (10), we obtain four fixed points given by

eo= (0, 0),
e1=

(
a−c1

b(1+ω)
, 0
)

, e2=
(

0, a−c2
2b

)
e∗=(q̄1, q̄2)=

(
a−2c1+c2

b(1+ε+2ω)
, a(ε+ω)+(1−ε)c1−(1+ω)c2

b(1+ε+2ω)

) (11)

We can see that e1, e2 and the Nash point e∗ are positive points.

3. Local Analysis

In order to investigate the local stability of the above fixed points, we must recall the
Jacobian matrix for map (10) as follows:

J(q1, q2) =

[
1 + ν1(a− c1−2b(1 + ω)q1−bq2) −bν1q1

−b(1− ε)ν2q2 1 + ν2(a− c2−4bq2−b(1− ε)q1)

]
(12)

It is clear that (10) is a 2D map and then (12) has two eigenvalues, λ1 and λ2, corre-
sponding to each fixed point. This means that a fixed point is stable if |λi| < 1, i = 1, 2.
Now, the following propositions are raised (see the proofs in Appendix A):
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Proposition 1. The point eo is an unstable node.

Proposition 2. The point e1 possesses two possibilities:

• It is a saddle point if 0 < ν1 < 2
(a−c1)

and λ2 > 1.

• It is an unstable node if ν1 > 2
(a−c1)

.

The stability of e2 is the same as that of e1. It is saddle provided that 0 < ν2 < 2
(a−c2)

and λ2 > 1 and unstable node provided that ν2 > 2
(a−c2)

. From an economic point of view,
it is known that eo represents a bankrupting financial issue affecting each firm. The two
points e1 and e2 represent a monopoly case; one firm dominates the market and the other
one leaves it.

Proposition 3. The point e∗ is stable if

0 <
−(a− 2c1 + c2)[a(ε + ω)− 2(1 + ω)c2 + (1− ε)c1]ν1ν2

1 + ε + 2ω

+
2(1 + ω)(a− 2c1 + c2)ν1 − 4[(1 + ω)c2 − (1− ε)c1 − a(ε + ω)]ν2

1 + ε + 2ω
< 4

(13)

According to the jury conditions given in (A6), the Nash point becomes stable under
condition (13). In order to confirm this theoretical result, we must plot the region of the
Nash stability and instability as shown in Figure 1a, depicted by the values of parameters
a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2 and ω = 0.95 in the (ν1, ν2) plane. It presents the
region in which flip bifurcation can only exist.
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Figure 1. (a) Stability region of the Nash point in the (ν1, ν2) plane at: a = 0.9, b = 0.8, c1 = 0.3, c2 =

0.4, ε = 0.2 and ω = 0.95. (b) The value of φ2 at: a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, and
ω = 0.95. (c) The 1D bifurcation diagrams with varying ν1 and ν2. (d) The 2D bifurcation diagram on
the (ν1, ν2)plane.

Proposition 4. The Nash point can be destabilized due to flip bifurcation only.
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As it can be seen that φ2 in (A7) depends on several parameters, some numerical
experiments were carried out to confirm that it is a non-negative value. At the parameters
values a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, and ω = 0.95, it is clear that this
value is non-negative, as plotted in Figure 1b. This also confirms that Neimark–Sacker
does not occurr. Other simulation experiments for different values of those parameters
confirmed that we can only obtain Jacobian (12) at the Nash point of two real eigenvalues.
Our obtained results indicate that the point e∗ is locally stable within a certain interval in
the speed of adjustments (ν1, ν2)plane. Then, it becomes unstable due to flip bifurcation.
So, we performed some numerical simulations in order to investigate the influences of
these adjustment parameters on the map’s dynamics. Let us fix the parameters values to
a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ν2 = 0.3, and ω = 0.95. Figure 1c depicts the
1D bifurcation diagram with varying ν1. As shown, the Nash point becomes stable until it
reaches the value of ν1, where the period-2 cycle starts and then followed by other high
periodic cycles, and routes to chaos exist. The same result can be obtained by varying the
parameter ν2 at the parameters values a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ν1 = 0.2,
and ω = 0.95, as shown in Figure 1c. In Figure 1d, the 2D bifurcation diagram presents
the stable region of the Nash point colored in gray, while the other colors denote the
period 2 cycle and higher periodic cycles. It is plotted with the parameters values a = 0.9,
b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, and ω = 0.95. Furthermore, the simulation experiments
with these values showed that the 1D bifurcation diagrams depicted in Figure 1c confirm
the stability of the Nash point when the following conditions are imposed on the speed
parameters: 0 < ν1 < 4.4957 and 0 < ν2 < 6.2040. Above these restrictions on ν1 and ν2,
the period 2 cycles appear to be followed by higher periodic cycles through flip bifurcation.

4. The Invariant Manifold

The map T defined in (10) has a trapping point, which is the origin (0, 0). The trapping
point means that q1(t) = 0 or q2(t) = 0 makes q1(t + 1) = 0 or q2(t + 1) = 0. That is, the
coordinate axes q1 and q2 are invariant axes for the map T. So, the invariant set made of
axis q1 (and q2) forms an invariant manifold for T.Now, substituting q1 = 0 in (10) produces

q1(t + 1) = (1 + (a− c1)ν1)q1(t)
[

1− b(1 + ω)ν1

1 + (a− c1)ν1
q1(t)

]
(14a)

and substituting q2 = 0 in (10) provides

q2(t + 1) = (1 + (a− c2)ν2)q2(t)
[

1− 2bν2

1 + (a− c2)ν2
q2(t)

]
(14b)

One can see that (14a) and (14b) are topologically equivalent to

ui(t + 1) = µiui(t)(1− ui(t)) , i = 1, 2 (15)

depending on the following transformations

q1 =
1 + (a− c1)ν1

b(1 + ω)ν1
u1,

q2 =
1 + (a− c2)ν2

2bν2
u2

(16)

and µi = 1 + (a− ci)νi , i = 1, 2. This indicates that analyzing the dynamics of trajectories
for the map T that commence at q1 (or q2) can be investigated from maps (14a) or (14b).

4.1. Dynamic Analysis (Monopoly Case)

Let us start with (14a), which can be rewritten as

σ(u) = µ1u(1− u) (17)
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Equation (17) represents a logistic map and the parameter µ1 is responsible for its
dynamics. The function σ(u) has a derivative, σ′(u) = µ1(1− 2u). Setting σ′(u) = 0
gives the point u = 1/2 and, hence, σ(u) has its maximum value, µ1/4. Furthermore,
σ(0) = 0 and σ(1) = 0, which means that restricting µ1 in (0, 4) imposes σ(u) ∈ [0, 1) for all
u ∈ [0, 1]. In addition, qw can see that map (15) has two fixed points, ū = 0 and ū = 1− 1

µ1

and µ1 > 1. So, σ′(0) = µ1, and then ū = 0 is stable if µ1 ∈ (0, 1), and unstable otherwise.
The other fixed point, ū = 1− 1

µ1
, is stable if µ1 ∈ (1, 3) and unstable if µ1 > 3. The same

discussion and analysis can be carried out for map (14b). The numerical simulation shown
in Figure 2a is a 1D bifurcation diagram with respect to the parameter µ, which confirms
that the fixed point ū = 1− 1

µ1
is stable in the interval µ1 ∈ (1, 3). In Figure 2b, the cobweb

diagram is plotted for the value µ1 = 2.99 in the interval of stability and shows a stable
fixed point; in Figure 2c, it is plotted at the value µ1 = 3.75, which lies in the instability
region, thereby confirming the instability of the fixed point. The same discussion and
analysis can be obtained for map (14b).
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Figure 2. (a) The 1D bifurcation diagram of map σ(u) with respect to µ1. Iterations of σ(u) at
(b) µ = 2.99 and (c) µ = 3.75. (d) The lines ξ1 and ξ2 and their inverses at: a = 0.9, b = 0.8, c1 = 0.3,
c2 = 0.4, ε = 0.2, ω = 0.998, ν1 = 6.26, and ν2 = 1.96.

Proposition 5. If the critical value νi =
2

(a−ci)
, i = 1, 2 exists, then the trajectories of T on the

invariant axes diverge when νi ∈
(

2
(a−ci)

,+∞
)

, i = 1, 2.

Proof. The above discussion confirms the topological equivalence between the map T
given in (10) with (14a) and (14b), and hence the trajectories of (14a) or (14b) are divergent
if µi > 3, i = 1, 2. The proof is straightforward as µi = 1 + (a− c)νi.

4.2. Basin of Attraction

The topological structure of the basin of attraction was studied to explore the phase
plane of the map’s dynamics. Following to Cavalli [17] and Fanti [19], it possible to analyze
coordinate axes and their preimages of any rank from the boundaries for any initial state of
any nondiverging trajectory.
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Suppose that H ⊂ R2 refers to an attractor for T, and let there exist a neighborhood
V of H such that T(V) ∈ V and T(m)(q1, q2) → H as m → ∞ and (q1, q2) ∈ V. Then, the
basin of attraction H denoted by B(H) is defined as the set of all points whose orbits in H
converge to H after a finite number of iterations. That is,

B(H) =
{
(q1(0), q2(0))

∣∣∣T(m)(q1(0), q2(0))→ H, m→ ∞
}

Conversely, the infinite basin of attraction that is denoted by B(∞) is defined as a
domain whose points form a divergent locus. Investigating B(H) requires us to first
calculate its boundary, ∂B(H). Therefore, let F refer to a boundary that separates the two
basins B(H) and B(∞); then, F = ∂B(H) = ∂B(∞). The above discussion on the map T
shows that (0, 0) is a trapping point and the coordinate axes q1 and q2 form an invariant
manifold. Furthermore, the dynamics of T on those axes can be studied using both (14a)
and (14b), which can be rewritten by

q́1 = g1(q1) = q1 + ν1q1(a− c1−(1 + ω)bq1),
q́2 = g2(q2) = q2 + ν2q2(a− c2 − 2bq2)

(18)

that has the two positive fixed points, q̄1 = a−c1
b(1+ω)

and q̄1 = a−c2
2b . If νi(a− ci) < 1, i = 1, 2,

then gi is an increasing concave function and for any q1 > 0, q2 = 0 (resp. q1 = 0, q2 > 0),
we obtain q́1 > 0, q́2 = 0 (resp. q́1 = 0, q́2 > 0). On the other hand, if νi(a − ci) < 1,
i = 1, 2, then gi is concave and a unimodal function. Letting q́i = 0, gi = 0, i = 1, 2,
we obtain q̂bo

1 = 1+ν1(a−c1)
bν1(1+ω)

, q̂bo
2 = 1+ν2(a−c2)

2bν2
, q̂cr

1 = 1+ν1(a−c1)
2bν1(1+ω)

, q̂cr
2 = 1+ν2(a−c2)

4bν2
, which are

non-negative points. If gi(q̂cr
i ) < q̂bo

i , i.e., if νi <
2

(a−ci)
, i = 1, 2, then bounded trajectories

on invariant axes q1 and q2 are obtained provided that the initial state of map (18) lies
on the line segment ξi = [O, O−1

i ], i = 1, 2, where O−1
i , i = 1, 2 is the rank 1 preimage

corresponding to each axis and is given by

O−1
1 = q̂bo

1 =
1 + ν1(a− c1)

bν1(1 + ω)
,

O−1
2 = q̂bo

2 =
1 + ν2(a− c2)

2bν2

In contrast, for initial states beginning outside ξi, i = 1, 2, their trajectories diverge
(become infeasible) to infinity as time goes to infinity. For the points in the form (p, 0) ∈ ξ1,
(0, q) ∈ ξ2, where 0 < p < q̂bo

1 and 0 < q < q̂bo
2 , their rank 1 preimages denoted by

ξ−1
i = T−1(ξi), i = 1, 2 can be obtained by algebraically solving the following:

q1(t) + ν1q1(t)(a− c1−(1 + ω)bq1−bq2) = p,
q2(t) + ν2q2(t)(a− c2 − 2bq2−(1− ε)bq1) = 0

(19)

and
q1(t) + ν1q1(t)(a− c1−(1 + ω)bq1−bq2) = 0,
q2(t) + ν2q2(t)(a− c2 − 2bq2−(1− ε)bq1) = q

(20)

Solving (19) and (20) results in{
ξ1 : q2 = 0,
ξ−1

1 : 1 + ν2[a− c2 − 2bq2−(1− ε)bq1] = 0
(21)

{
ξ2 : q1 = 0,
ξ−1

2 : 1 + ν1[a− c1−(1 + ω)bq1−bq2] = 0
(22)

Solving (21) and (22) algebraically produces two rank 1 preimages. These preimages
are ξ1 (and ξ2), and their inverses are ξ−1

1 (and ξ−1
2 ). Due to the complicated forms of these

points, some numerical simulations were investigated. Figure 2d depicts these lines and
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their preimages at a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, ν1 = 6.26, and
ν2 = 1.96. We can see that ξ−1

1 intersects the axis (q1 = 0) in O−1
2 , and ξ−1

2 intersects the
axis (q2 = 0) in O−1

1 , but they intersect at the point O−1
3 . These points, O, O−1

1 , O−1
2 , and

O−1
3 , are the rank 1 preimages of the origin point. They take the form

O = (0, 0), O−1
1 =

(
1 + ν1(a− c1)

bν1(1 + ω)
, 0
)

, O−1
2 =

(
0,

1 + ν2(a− c2)

2bν2

)
O−1

3 =

(
(a− 2c1 + c2)ν1ν2 − ν1 + 2ν2

b(1 + ε + 2ω)ν1ν2
,
[(1− ε)c1 − (1 + ω)c2 + (ε + ω)a]ν1ν2 − (1− ε)ν2 + (1 + ω)ν1

b(1 + ε + 2ω)ν1ν2

)
It is clear that the origin point has a four real rank 1 preimages, as shown above.

This means the origin belongs to the Z4 zone, the zone possessing four different rank 1
preimages. Figure 3a shows these points with a chaotic attractor denoted by H occurring at
the parameters values a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, ν1 = 6.26, and
ν2 = 1.96. It can also be seen that these points form a quadrilateral shape OO(1)

−1O(2)
−1O(3)

−1
that contains this attractor and its attracting domain denoted by B(H) in white, while the
infeasible domain is denoted by B(∞) in gray. Furthermore, the line segments ξ−1

1 and ξ−1
2

separate these two domains. The figure also shows that some parts from the infeasible
domain are located in the attracting domain, and then the infeasible domain converts from
a connecting set to disconnecting one. In order to investigate this phenomenon, we need to
calculate the critical curves.

0 0.7
0

0.7

LC (a)
−1

LC (b)
−1

q
1

q
2

(b)
a=0.9,b=0.8,c

1
=0.3,c

2
=0.4,ε=0.2,ω=0.95,ν

1
=6.26,ν

2
=1.96

0 0.6
0

0.4
a=0.9,b=0.8,c

1
=0.3,c

2
=0.4,ε=0.2,ω=0.95,ν

1
=6.26,ν

2
=1.96

(c)

LC(b)

LC(a)

Z
4

Z
2

Z
0

q
1

q
2

Figure 3. At the parameter values of a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, ν1 = 6.26
and ν2 = 1.96. (a) Basin of attraction for a chaotic attractor. (b) The two branches of LC−1. (c) The
two branches of LC. (d) The change in the shape of B(∞) from a connecting set to a disconnecting
one for a chaotic attractor.

4.3. Critical Curves

For further visualization of the fractal structure of the attractive basin, one has to study
the critical curves and their characteristics. These curves are important as they provide a
better explanation of this structure. They were studied in detail in [8]. The above discussion
shows that the map T is a many-to-one map. That means any an unknown point in the form
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(p, 0) or (0, q) may own two real rank 1 preimages. In addition, the point (0, 0) has four
different real rank 1 preimages. For points other than those, there may exist no preimages
or more than two preimages. Consequently, the map T is a noninvertible map and belongs
to the Z4 − Z2 − Z0 type, where Zi, i = 0, 2, 4 divides its phase plane. The zone Z0 contains
no real rank 1 preimages, while the zone Z2 contains two different rank 1 preimages.
The critical curve is used to separate these zones from each other; it is denoted by LC and
separates zone whose number of preimages is equal. To calculate LC, we first must calculate
LC−1, which increases as the determinant of the Jacobian (12) decreases. It gives a hyperbola
curve in the coordinates (q1, q2) ∈ R2. An iteration of these coordinates using the map T, LC
(LC = T(LC−1)) forms the critical curve. Some numerical simulations were used to define
both LC and LC−1. At a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, ν1 = 6.26, and
ν2 = 1.96, Figure 3b shows that LC−1 consists of two branches, LC(a)

−1 and LC(b)
−1 . With the

same set of values, Figure 3c depicts the critical curve LC, which also consists of two
branches, LC(a) and LC(b). We can see that Z4, Z2 and Z0 divide the phase plane and are
separated by the two branches of LC.

5. Global Bifurcation

It was shown above that the nonlinear map (10) is not invertible and its phase plane
is divided into three zones. Now, we investigate an important aspect for this map, which
is called global bifurcation. Different numerical simulation experiments on the map were
performed given that it possesses a contact bifurcation. This kind of bifurcation occurs
when there exists a contact between the critical curves and the boundaries of infinite basin
of attraction ∂B(∞). It causes a change in the shape of B(∞), which changes it from a
connecting set to a disconnecting one, as shown in Figure 3d, in which gray holes belong
to B(∞), which are located in the attracting domain. To make this visible, let us assume
the set of values, a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, ν1 = 6.26, and
ν2 = 1.96. As shown in Figure 3d, the basin of attraction of the chaotic attractor given in
Figure 4a is distributed along the three zones. Additionally, a region of the infinite domain
B(∞) enters from the Z0 zone to Z2 and is denoted by ho. It is located between ξ−1

2 and
LC(a) and its points possess two distinct real preimages. These preimages also belong to
the infinite basin of attraction. All points belonging to ho are responsible for creating the
main hole h−1 embedded in the attracting domain. This hole consists of two areas, h(1)−1

and h(2)−1, which are connected by LC(a)
−1 . The hole is entirely located in the Z2 zone. Every

point belonging to this main hole possesses two distinct real preimages and is responsible
for forming small holes belonging to B(∞) and in both zones Z2 and Z4. This is clarified
in Figure 3d, where points belonging to ho such as the red star point has two real rank 1
preimages denoted by a red circle in h(1)−1 and h(2)−1; hence, these points construct the main
hole located in Z2. Moreover, points belonging to the main hole h−1, such as the blue star
point, are responsible for forming points in the small holes, such as the two blue squire
points. Consequently, contact bifurcation exists and gives rise to disconnection in B(∞).
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Figure 4. (a) A 1D bifurcation diagram with respect to ν at a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2,
ω = 0.998. The attractive basin at a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, for (b) a
two-bands chaotic attractor at ν = 4.719, (c) period 6 cycle at ν = 4.723, and (d) one piece chaotic
attractor at ν = 4.95.

6. Equal Speed of Adjustments

Let us suppose ν1 = ν2 = ν represents the case of equal adjustment parameters.
The map T then becomes

T∗(q1, q2):
{

q1(t + 1) = q1(t) + vq1(t)(a− c1−(1 + ω)bq1−bq2),
q2(t + 1) = q2(t) + vq2(t)(a− c2 − 2bq2−(1− ε)bq1)

(23)

The influences of the speed of adjustment parameter v was tested using numerical
simulation. Assuming a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, Figure 4a
shows a 1D bifurcation diagram with respect to this parameter. We can see that the
Nash point is stable until the increase in the period 2 cycle where flip bifurcation exists.
It is also clear that the two competing firms are not synchronized. In Figure 4b, the
simulation gives rise to a chaotic attractor that consists of two bands at the parameter
values a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998, and ν = 4.719. The basin of
attraction of this chaotic attractor does not have any holes from the infinite basin, and the
infinite basin forms a connecting set. As ν increases to 4.723, we obtain a period 6 cycle
that is given in Figure 4c with the basin of attraction of the Nash point. As we can see,
the branch LC(a) of the critical curve points upward. Numerical experiments showed that
further increasing the speed parameter makes this branch tangential to the boundaries of
the infinite basin of attraction; therefore, contact bifurcation occurs. It can be also seen that
the basin of attraction of this cycle is included in the quadrilateral shape whose sides are
ξ1, ξ2 and their inverses ξ−1

1 , ξ−1
2 . At a = 0.9, b = 0.8, c1 = 0.3, c2 = 0.4, ε = 0.2, ω = 0.998,

and ν = 4.95; a chaotic attractor with its basin of attraction is given in Figure 4d. We can
see that the infinite basin of attraction becomes a disconnected set and holes are raised.
There is also an area from the infinite basin denoted by K0 that enters from zone Z0 to
zone Z2. So, the points in this area belong to the area K0 and possess two distinct real
rank 1 preimages. Moreover, this area is formed by two parts that are connected by the
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branch LC(b)
−1 . In addition, there is an area denoted by H0 that is connected by the same

branch of the critical curve and belongs to zones Z0 to Z2. The points belonging to K0 and
H0 are responsible for constructing the two different main holes denoted by K−1 and H−1,
as shown in Figure 4d. It can be seen that these main holes are connected by the branch
LC(a)
−1 . The points belonging to these two holes are used to create the small holes near to the

horizontal and vertical axes. It is also clear that the branch LC(a) passes through the point
O−1

1 and all the holes including the main one become tangents to the two axes q1 and q2.

7. Conclusions

Some important dynamic characteristics such as stability, invariant manifold and
global bifurcation for a duopoly game whose players adopt two different objective functions
were analyzed in this manuscript. The obtained results showed that the Nash point can be
destabilized through flip bifurcation only. Furthermore, the invariant manifold analysis
showed that the dynamics of the two-dimensional map describing the duopoly game can
be studied using a one-dimensional map that is similar to the well-known logistic map.
In addition, the global analysis showed that there is a contact bifurcation occurring in the
case of equal speed of adjustment parameters and gives rise to holes from the infinite basin
of attraction located in the attracting domain of some chaotic attractors. Such holes may
affect the evolution prediction if the initial states of the firms were selected from those holes.
Moreover, we observed that the adjusting parameters affect the dynamics of the game in
the long term. Finally, we found that adopting a high weight for profit may decrease the
firm’s social welfare.
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Appendix A

Proof of Proposition 1. Inputting eo = (0, 0) in (12), the Jacobian becomes

J(eo) =

[
1 + ν1(a− c1) 0

0 1 + ν2(a− c2)

]
(A1)

and the two eigenvalues are given by λi = 1 + νi(a − ci), i = 1, 2. Since a > ci, both
eigenvalues satisfy condition |λi| > 1, and then the point is an unstable node.

Proof of Proposition 2. Inputting e1=
(

a−c1
b(1+ω)

, 0
)

in (12), the Jacobian becomes

J(e1) =

[
1− (a− c1)ν1 − a−c1

1+ω ν1

0 1 + a(ε+ω)+(1−ε)c1−(1+ω)c2
b(1+ε+2ω)

ν2

]
(A2)



Mathematics 2021, 9, 3119 13 of 14

and the eigenvalues are

λ1 = 1− (a− c1)ν1,
λ2 = 1 + a(ε+ω)+(1−ε)c1−(1+ω)c2

b(1+ε+2ω)
ν2

(A3)

Simple calculations show that |λ2| > 1 and |λ1| < 1 gives 0 < ν1 < 2
(a−c1)

, and then

the point e1 is a saddle point. If ν1 > 2
(a−c1)

, this means that |λi| > 1, i = 1, 2; hence, it an
unstable node.

Proof of Proposition 3. At e∗ the Jacobian becomes

J(e∗) =

[
1− (1+ω)(a−2c1+c2)

1+ε+2ω ν1 − a−2c1+c2
1+ε+2ω ν1

− a(ε+ω)−(1+ω)c2+(1−ε)c1
1+ε+2ω ν2 1− 2a(ε+ω)−2(1+ω)c2−2(1−ε)c1

1+ε+2ω ν2

]
(A4)

the trace T and determinant D take the form

T = 2− (1 + ω)(a− 2c1 + c2)ν1 + (2a(ε + ω)− 2(1 + ω)c2 + 2(1− ε)c1)ν2

1 + ε + 2ω
,

D = 1 +
(a− 2c1 + c2)(a(ε + ω)− (1 + ω)c2 + (1− ε)c1)ν1ν2 − (1 + ω)(a− 2c1 + c2)ν1

1 + ε + 2ω
−

− (2a(ε + ω)− 2(1 + ω)c2 + 2(1− ε)c1)ν2

1 + ε + 2ω

(A5)

According to jury conditions [30], the Nash point becomes locally stable if it satisfies
the following:

1− T + D =
(a− 2c1 + c2)[a(ε + ω)− (1 + ω)c2 + (1− ε)c1]ν1ν2

1 + ε + 2ω
> 0,

1 + T + D = 4 +
(a− 2c1 + c2)[a(ε + ω)− 2(1 + ω)c2 + (1− ε)c1]ν1ν2

1 + ε + 2ω
−

− 2(1 + ω)(a− 2c1 + c2)ν1

1 + ε + 2ω
+

4[(1 + ω)c2 − (1− ε)c1 − a(ε + ω)]ν2

1 + ε + 2ω
> 0,

1− D = − (a− 2c1 + c2)[a(ε + ω)− 2(1 + ω)c2 + (1− ε)c1]ν1ν2

1 + ε + 2ω
−

− (1 + ω)(a− 2c1 + c2)ν1 + 2[(1 + ω)c2 − a(ε + ω)− (1− ε)c1]ν2

1 + ε + 2ω
> 0

(A6)

It is easy to see that the first conditions in (A6) are always non-negative. Combining
the other conditions produces

0 <
−(a− 2c1 + c2)[a(ε + ω)− 2(1 + ω)c2 + (1− ε)c1]ν1ν2

1 + ε + 2ω
+

+
2(1 + ω)(a− 2c1 + c2)ν1 − 4[(1 + ω)c2 − (1− ε)c1 − a(ε + ω)]ν2

1 + ε + 2ω
< 4

(A7)

and then the Nash point is locally stable.

Proof of Proposition 4. The eigenvalues for (A4) take the form,

λ1,2 = 1
2(1+ε+2ω)

(
ϕ1 ±

√
ϕ2
)
,

ϕ1 = 2(1 + ε + 2ω)− (1 + ω)(a− 2c1 + c2)ν1 + 2[(1 + ω)c2 − (1− ε)c1 − a(ε + ω)]ν2,
ϕ2 = (1 + ω)2(a− 2c1 + c2)

2ν2
1 + 4[a(ε + ω)− (1 + ω)c2 + (1− ε)c1]

2ν2
2−

− 4(a− 2c1 + c2)(ε + ω)[a(ε + ω)− (1 + ω)c2 + (1− ε)c1]ν1ν2

(A8)
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