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Abstract: Many studies have underlined the importance of the log-normal distribution in the mod-
eling of phenomena occurring in biology. With this in mind, in this article we offer a new and
motivated transformed version of the log-normal distribution, primarily for use with biological
data. The hazard rate function, quantile function, and several other significant aspects of the new
distribution are investigated. In particular, we show that the hazard rate function has increasing,
decreasing, bathtub, and upside-down bathtub shapes. The maximum likelihood and Bayesian
techniques are both used to estimate unknown parameters. Based on the proposed distribution, we
also present a parametric regression model and a Bayesian regression approach. As an assessment
of the longstanding performance, simulation studies based on maximum likelihood and Bayesian
techniques of estimation procedures are also conducted. Two real datasets are used to demonstrate
the applicability of the new distribution. The efficiency of the third parameter in the new model is
tested by utilizing the likelihood ratio test. Furthermore, the parametric bootstrap approach is used
to determine the effectiveness of the suggested model for the datasets.

Keywords: log-normal distribution; DUS transformation; maximum likelihood estimation; Bayesian
estimation; regression

1. Introduction

In practice, the log-normal (LN) distribution has a wide variety of applications in
an empirical sense for fitting data. In biology, too, there are diverse applications for
the LN distribution. The presence of the LN distribution in biological science has been
highlighted on numerous occasions. Earlier, in a study of the relationship between genes
and characters in quantitative inheritance, [1] utilized the LN theory. The bivariate LN
distribution has been examined by [2] in specific references to allometry, the study of
biological scaling. In terms of statistical data derived from biological and agricultural
sources, [3] provided much more general references. According to [4], a study on the
intricacy of the biochemical processes involved in gene expression has induced an emergent
LN distribution of expression levels. Again, ref. [5] discovered that a form of the LN
distribution fit the postpartum blood loss data from several geographical areas quite well,
implying that the LN distribution may fit postpartum blood loss globally.

In real life, the traditional basic distributions often fail to characterize and do not
accurately predict most of the real-life datasets arising from complicated phenomena.
Since the quality of results by statistical analysis heavily depends on the assumed model,
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there is huge importance in the selection of an adaptive model for analyzing the data.
For this reason, it is necessary to find more allied distributions to get better quality and
more accurate results. Since the LN distribution has superior importance in the field of
biological sciences, it is inevitable to derive a new extended version of the LN distribution
not only for modelling the biological data but also for the variety of datasets from other
study areas where the LN distribution has the best fit. Note that, the LN distribution has
been utilized in a range of domains which includes most of the applied areas, such as
economics, sociology, and meteorology, to name just a few examples. For more applications
of LN distribution in biology as well as in various study areas, one can go through the
references [6,7].

On the mathematical side, the probability density function (pdf) for a LN random
variable W is given by

q(w) =
1√

2πσw
exp

[
− (log w− µ)2

2σ2

]
, w > 0, µ ∈ R, σ > 0.

Thus, the LN distribution depends on two parameters, a scale parameter µ and a
shape parameter σ. Recently, there has been a surge in interest in the art of adding
parameters to well-known existing distributions in order to get different shapes of haz-
ard/failure rate functions (i) for applying them in various real-life situations and (ii) for
analyzing data with a high degree of skewness and kurtosis. A fair review of some of the
extended models is presented in [8]. As in the context of extending or generalizing baseline
distributions, several authors have started to develop families of distributions based on
conventional distributions or using some other techniques. Thus, in this article we propose
a new extended version of the LN distribution by using a transformation technique that
includes an additional shape parameter. We aim to reveal some statistical properties of the
proposed model and apply them to real-life data. The chief motivations for introducing
this extended lifetime model are to (i) propose a new flexible version of the LN distribution
that can be used, especially to model biological data, since the LN distribution has eminent
superiority in biological sciences and its related fields, and also to be applied in a wider
class of other reliability problems, and (ii) to possess some new additional shapes on the
hazard/failure rate.

The remaining part of the article is structured as follows. Section 2 reveals the method
of construction of the distribution. In Section 3, we define the considered distribution
and examine the hazard rate function. The quantile function and some of its associated
measures are derived in Section 4. In Section 5, the maximum likelihood (ML) and Bayesian
estimation techniques are used to estimate the unknown parameters of the new model.
Furthermore, a parametric bootstrap method of simulation using the ML estimates (MLEs)
is presented in Section 6. A parametric regression model associated with the new distribu-
tion is defined in Section 7. Again, a Bayesian regression method is presented in Section 8.
To analyze the consistency of ML and Bayesian estimates of the model parameters, two
types of simulation studies are conducted in Section 9. In Section 10, we compare the
potentiality of the proposed distribution to competing distributions using two real datasets,
one univariate uncensored dataset, and one censored dataset, both based on biological
science. Finally, Section 11 covers the penultimate concluding remarks.

2. Construction of the New Distribution

Ref. [9] suggested a transformation method known as the DUS transformation, which
utilizes exponential as the baseline distribution and is termed the DUS exponential (DUSE)
distribution. If G(x) is the cumulative distribution function (cdf) of some baseline continu-
ous distribution, then the DUS transformation yields a new cdf given by

F(x) =
exp[G(x)]− 1

e− 1
, x ∈ R.
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The benefit of utilizing this transformed modification is that the new distribution will
generate a computation-efficient distribution as it never contains any new parameter other
than the parameter(s) involved in the baseline distribution. Again, ref. [10] introduced a
new generalized form of DUS transformation and the authors took the exponential distri-
bution as the baseline distribution. The cdf of the generalized DUS (GDUS) transformation
is given by

F(x) =
exp[Gα(x)]− 1

e− 1
, x ∈ R, α > 0.

Considering the immense applicability of the LN distribution as specified in the previ-
ous section, we propose to apply it as the baseline distribution in the GDUS transformation.

3. Definition of the Distribution

The definition of the new distribution, as well as several key features, are presented in
this section. Henceforth, we call the new distribution the generalized DUS transformed
log-normal (GDUSLN) distribution, and it is defined as follows:

Definition 1. We say that a random variable X follows the GDUSLN distribution with parameters
α, µ and σ if its cdf is given by

F(x) =
exp

[
Φα
(

log x−µ
σ

)]
− 1

e− 1
(1)

and its pdf is given by

f (x) =
α

σx(e− 1)
φ

(
log x− µ

σ

)
Φα−1

(
log x− µ

σ

)
exp

[
Φα

(
log x− µ

σ

)]
, (2)

where x > 0, µ ∈ R and α, σ > 0. Furthermore, Φ(.) and φ(.) are the cdf and pdf of the standard
normal distribution, respectively. It is understood that F(x) = f (x) = 0 for x ≤ 0.

The plots in Figures 1 and 2 portray the corresponding cdf and pdf of the GDUSLN dis-
tribution.

We observe that the pdf may be decreasing and unimodal with a certain flexibility in
the mode and tails. It is, however, mainly right-skewed or almost symmetrical.

The cdf of the GDUSLN distribution in (1) is mitigated to the cdf of the DUS trans-
formed log-normal (DUSLN) distribution, once α = 1. It is worth mentioning that the
DUSLN distribution is not discussed in the available literature.

Hazard Rate Function

The hazard rate function of the GDUSLN distribution is given by

h(x) =
f (x)
S(x)

,

where S(x) = 1− F(x) is the survival function specified by

S(x) =
e− 2− exp

[
Φα
(

log x−µ
σ

)]
e− 1

.

Thus, the hazard rate function gets the form

h(x) =
αφ
(

log x−µ
σ

)
Φα−1

(
log x−µ

σ

)
exp

[
Φα
(

log x−µ
σ

)]
σx
{

e− 2− exp
[
Φα
(

log x−µ
σ

)]} .
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Figure 1. Plots of the cdf of the GDUSLN distribution.
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Figure 2. Plots of the pdf of the GDUSLN distribution.

Furthermore, plots in Figure 3 refer to the shapes of the hazard rate function.
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Figure 3. Plots of the hazard rate function of the GDUSLN distribution.

It is observed that the hazard rate function possesses all the common shapes, such
as increasing, decreasing, bathtub, and upside-down bathtub shapes. In this context, one
of the innovative features of our model is the ability to design a bathtub-shaped failure
rate function with a long flat region. This region, nevertheless, is extremely important in
real-world applications, emphasizing the need for proper flat region modeling (see [11]).
Furthermore, from Figure 3, it is fascinating to observe that the GDUSLN distribution has a
new decreasing–increasing–decreasing shape, which we call the inverted N-shaped hazard
rate function, and again possesses a special shape starting with a flat region and continuing
with an increasing–decreasing shape, which we call the constant-increasing–decreasing
shaped hazard rate function. More elaborately, the following results are observed from
Figure 3: The hazard rate function graphs for various combinations of parameters reveal
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a variety of shapes including increasing (α = 0.1, µ ≥ 0.9, σ = 0.09), decreasing (α = 1.5,
µ = 0.7, σ ≥ 1.5), bathtub (α = 0.0001, µ = 1.5, 0.04 ≤ σ ≤ 0.12), and upside-down bathtub
(α = 0.2, 0.5 ≤ µ ≤ 1.5, σ = 0.5). Furthermore, it can be found that the shapes vary from
decreasing to increasing via upside-down bathtub when α ≥ 0.1, µ = 0.01, and σ = 1.1.

4. Quantile Function and Associated Measures

In this section, we derive an analytical expression for the quantile function of the
GDUSLN distribution and some of its associated measures.

Theorem 1. Let p ∈ (0, 1). If X follows the GDUSLN distribution as given in (1), then the pth

quantile of the distribution is given by Qp = F−1(p), and, more explicitly,

Qp = exp
{

µ + σ Φ−1[log(u(e− 1) + 1)]1/α
}

, (3)

where Φ−1(.) is the quantile function of a standard normal distribution.

Proof. For the GDUSLN distribution, Qp is the solution of the equation

exp
[
Φα
(

log(Qp)−µ
σ

)]
− 1

e− 1
= p,

⇒ Φ
(

log(Qp)− µ

σ

)
= {log[p(e− 1) + 1]}1/α. (4)

On simplifications, (4) reduces to

log(Qp)− µ

σ
= Φ−1

(
{log[p(e− 1) + 1]}1/α

)
⇒ Qp = exp

[
µ + σ Φ−1

(
{log[p(e− 1) + 1]}1/α

)]
.

As a remark, since Φ−1(.) is the quantile function of a standard normal distribution,
Qp in Equation (3) also gets the form

Qp = exp
[
µ + σ

√
2 erf−1

(
2{log[p(e− 1) + 1]}1/α − 1

)]
, (5)

where erf−1(.) is the inverse error function.
Now, by putting p = 0.5, in Equation (5), we get the median of the GDUSLN distribu-

tion, and it is given by

M = Q0.5 = exp

[
µ + σ

√
2 erf−1

(
2
{

log
[

1
2
(e− 1) + 1

]}1/α

− 1

)]
.

Equation (5) delivers the first and third quartiles of the distribution (Q0.25 and Q0.75)
for p = 1/4 and p = 3/4, respectively.

5. Estimation of Parameters

In this section, we discuss how to estimate the parameters of the GDUSLN distribution
by employing two well-known methods, namely the ML and the Bayesian methods.

5.1. ML Estimation

In this subsection, we consider the ML estimation for the GDUSLN model parameters
α, µ and σ. Let X1, X2, ..., Xn symbolize a random sample from the GDUSLN distribution,
and let x1, x2, ..., xn reflect the observed values. Then the log-likelihood function can then
be written in the following form:
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Ln =n log(α)− n log(σ)− n log(e− 1)−
n

∑
i=1

log(xi) +
n

∑
i=1

log
[

φ

(
log(xi)− µ

σ

)]
+ (α− 1)

n

∑
i=1

log
[

Φ
(

log(xi)− µ

σ

)]
+

n

∑
i=1

Φα

(
log(xi)− µ

σ

)
. (6)

The score function associated with the log-likelihood function is

U =

(
∂Ln

∂α
,

∂Ln

∂µ
,

∂Ln

∂σ

)T
.

Now, the associated nonlinear log-likelihood equations are given by ∂Ln/∂α = 0,
∂Ln/∂µ = 0 and ∂Ln/∂σ = 0, which can be explicated as

n
α
+

n

∑
i=1

log
[

Φ
(

log(xi)− µ

σ

)]
+

n

∑
i=1

Φα

(
log(xi)− µ

σ

)
log
[

Φ
(

log(xi)− µ

σ

)]
= 0, (7)

n

∑
i=1

log(xi)− µ

σ2 − α− 1
σ

n

∑
i=1

φ
(

log(xi)−µ
σ

)
Φ
(

log(xi)−µ
σ

)
− α

σ

n

∑
i=1

Φα−1
(

log(xi)− µ

σ

)
φ

(
log(xi)− µ

σ

)
= 0 (8)

and

− n
σ
+

n

∑
i=1

(log(xi)− µ)2

σ3 − α− 1
σ2

n

∑
i=1

 (log(xi)− µ) φ
(

log(xi)−µ
σ

)
Φ
(

log(xi)−µ
σ

)


− α

σ2

n

∑
i=1

(log(xi)− µ) Φα−1
(

log(xi)− µ

σ

)
φ

(
log(xi)− µ

σ

)
= 0, (9)

respectively.
One should get the MLEs (α̂, µ̂, σ̂) of the GDUSLN model parameters (α, µ, σ) by

synergistically solving the nonlinear Equations (7)–(9).
In this paper, for the numerical optimization, we maximize the log-likelihood function

for finding the MLEs. For fixing a lower and upper bound for each parameter, the numer-
ical optimization technique “L-BFGS-B” in fitdistrplus package of the RStudio software
is used. The package provides a set of functions such as fitdist and mledist for fitting uni-
variate distributions to various types of datasets. When the log-likelihood is maximized,
one should carefully choose the initial values and remove the constraints of parameters
(see [12]). Fitdistrplus is a very handy package that gives unique solutions for MLEs when-
ever there are questions about the initial guesses and convergence of the algorithm. As a
result, we use the prefit function of this package, which delivers good starting values for
the algorithm. As one of the returning components of the mledist function, the indication
of convergence is done by using some integer codes, such that “0” indicates successful
convergence, and “1” indicates that the maximum iteration limit has been reached. As
such, “10” indicates the degeneracy of the algorithm, and “100” indicates that the algorithm
encountered an internal error. For more details on this package, one should go through the
link “https://CRAN.R-project.org/package=fitdistrplus (accessed on 4 September 2021)”.

https://CRAN.R-project.org/package=fitdistrplus
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The asymptotic confidence intervals for the parameters α, µ and σ are now executed.
When it comes to the second partial derivatives of Ln taken at Θ̂ = (α̂, µ̂, σ̂), the Hessian
matrix of the GDUSLN distribution can be obtained, and it is given by

H(Θ̂) =



∂2Ln

∂α2
∂2Ln

∂α ∂µ

∂2Ln

∂α ∂σ

∂2Ln

∂µ ∂α

∂2Ln

∂µ2
∂2Ln

∂µ ∂σ

∂2Ln

∂σ ∂α

∂2Ln

∂σ ∂µ

∂2Ln

∂σ2


.

Now, the observed Fisher’s information matrix J(Θ̂) can be obtained by taking nega-
tive of the Hessian matrix. That is,

J(Θ̂) = −H(Θ̂).

In the case of α = 1, we derive the second partial derivatives of (6) by concerning the
parameters µ and σ, and are given as follows:

∂2Ln

∂µ2 = − 1
σ2

[
n +

n

∑
i=1

(
log(xi)− µ

σ

)
φ

(
log(xi)− µ

σ

)]
,

∂2Ln

∂σ2 =
n
σ2 −

3
σ2

n

∑
i=1

(
log(xi)− µ

σ

)2

− 1
σ2

n

∑
i=1

(
log(xi)− µ

σ

)3

φ

(
log(xi)− µ

σ

)
+

2
σ2

n

∑
i=1

(
log(xi)− µ

σ

)
φ

(
log(xi)− µ

σ

)
and

∂2Ln

∂µ ∂σ
=

1
σ2

n

∑
i=1

φ

(
log(xi)− µ

σ

)
− 2

σ2

n

∑
i=1

(
log(xi)− µ

σ

)

− 1
σ2

n

∑
i=1

(
log(xi)− µ

σ

)2

φ

(
log(xi)− µ

σ

)
.

Clearly, E[∂2Ln/∂µ2] = −n/σ2 < 0, and E[∂2Ln/∂σ2] = −2n/σ2 < 0. Hence, the
information matrix is non-singular, thus following the result for the GDUSLN model also.
Thus, we verified that the MLEs of the GDUSLN model parameters are unique.

Now, the inverse of the observed Fisher’s information matrix provides the variance-
covariance matrix of the MLEs, which is given by

Σ = J−1(Θ̂) =

Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

,

and Σij = Σji for i 6= j = 1, 2, 3.
The asymptotically normal distribution of MLEs have been thoroughly established.

That is, Θ̂−Θ follows asymptotically the multivariate normal distribution N3(0, Σ).
Using the following formulae, we calculate the 100× (1− δ)% asymptotic confidence

intervals for parameters.

α ∈
{

α̂∓ Zδ/2
√

Σ11

}
, µ ∈

{
µ̂∓ Zδ/2

√
Σ22

}
and σ ∈

{
σ̂∓ Zδ/2

√
Σ33

}
,
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where Zδ is the upper δth percentile of the standard normal distribution.

5.2. Bayesian Estimation

In this subsection, we perform the Bayesian analysis for the GDUSLN model parame-
ters. To do so, each parameter should have a prior density. We employ two types of priors
for this: the half-Cauchy (HC) and the normal (N) priors. The pdf of the HC distribution
with scale parameter a is defined as

fHC(x∗) =
2a

π(x2∗ + a2)
, x∗ > 0, a > 0. (10)

The HC distribution has no mean nor variance. Meanwhile, its mode is equal to 0.
Since the pdf of the HC is virtually flat but not totally flat at scale value equals 25, which
verges on acquiring adequate information for the numerical approximation algorithm to
continue looking at the target posterior pdf, the HC distribution with a = 25 is recom-
mended as a noninformative prior. Ref. [13] suggested that the uniform distribution, or
whether more information is required, is a superior alternative to the HC distribution.
As a result, for the parameters α and σ, the HC distribution with a = 25 is chosen as a
noninformative prior distribution in this article. Thus, we set the prior distributions of the
parameters to be

µ ∼ N(0, 1000)

α, σ ∼ HC(25). (11)

The log-likelihood function of the GDUSLN distribution is given in Equation (6). Now,
using (6) and (11), we obtain the joint posterior pdf as given by

π(µ, α, σ|x) ∝ Ln × π(µ)× π(α)× π(σ). (12)

From (12), it is obvious that there is no analytical solution to find out the Bayesian
estimates. Thus, we use a remarkable method of simulation, namely the Metropolis-
Hastings algorithm of the Markov Chain Monte Carlo (MCMC) method.

6. Bootstrap Confidence Intervals

In this section, we use the parametric bootstrap method to approximate the distri-
bution of MLEs of the GDUSLN model parameters. Then, we can use the bootstrap
distribution to estimate confidence intervals of each parameter for the fitted GDUSLN
distribution. Let Θ̂ be a MLE on the set of parameters of interest Θ = (α, µ, σ) using a given
dataset {x1, x2, ..., xn}. The bootstrap is a method to estimate the distribution of statistic
Θ̂ by getting a random sample Θ∗1 , Θ∗2 , ..., Θ∗B for Θ based on B random samples that are
drawn with replacement from {x1, x2, ..., xn}, see [14]. The bootstrap sample Θ∗1 , Θ∗2 , ..., Θ∗B
can be used to construct bootstrap confidence intervals for the parametric set Θ = (α, µ, σ)
of the GDUSLN distribution.

Thus, using the following formulae, we calculate the 100× (1− δ)% bootstrap confi-
dence intervals for parameters:

α ∈
{

α̂∓ zδ/2 ŝeα,boot
}

, µ ∈
{

µ̂∓ zδ/2 ŝeµ,boot

}
, σ ∈

{
σ̂∓ zδ/2 ŝeσ,boot

}
,

where zδ denotes the δth percentile of the bootstrap sample and, for θ ∈ {α, µ, σ},

ŝeθ,boot =

√√√√ 1
B

B

∑
b=1

(
θ∗b −

1
B

B

∑
b=1

θ∗b

)2

.
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7. GDUSLN Regression Model

In this section, we define a regression model based on the GDUSLN distribution
called the GDUSLN regression model. For finding the model based on the GDUSLN
distribution, we consider a random variable X following the GDUSLN distribution with
pdf as given in (2) and we define another random variable Y as Y = log(X). Then the Y
has the following pdf:

fY(y) =
α

σ(e− 1)
φ

(
y− µ

σ

)
Φα−1

(
y− µ

σ

)
exp

[
Φα

(
y− µ

σ

)]
, (13)

where y ∈ R, the shape parameter α > 0, the location parameter µ ∈ R, and the scale
parameter σ > 0. We allude to Equation (13) as the Log-GDUSLN (Log GDUS log-normal)
distribution or otherwise, GDUS normal (GDUSN) distribution. It is worth mentioning
that the GDUSN distribution is not covered in any of the existing literature. In this setting,
the standardized random variable Z = (Y− µ)/σ has the pdf given by

fZ(z) =
α

e− 1
φ(z) Φα−1(z) exp[Φα(z)]. (14)

Now, the linear location-scale regression model by linking the response variable, say
yi, and the explanatory variable vector, say vT

i = (vi1, vi2, ..., vip), is obtained as:

yi = µi + σzi, i = 1, 2, ..., n, (15)

where zi is the random error component, has the pdf as given in (14), µi = vT
i τ is the

location parameter of yi, where τ = (τ1, τ2, ..., τp)T , α and σ are unknown parameters. The
linear model µ = Vτ represents the location parameter vector µ = (µ1, µ2, ..., µn)T , where
V = (V1, V2, ..., Vn)T is a known model matrix.

Ultimately, in this article, we propose the GDUSLN regression model from (15) and it
is given by

xi = exp(yi) = exp(µi + σzi), i = 1, 2, ..., n. (16)

Consider a sample (x1, v1), (x2, v2), ..., (xn, vn) of n independent observations. Here,
typical likelihood estimation approach can be used. Now, for the vector of parameters
ψ = (τT , α, σ)T from model (16), the total log-likelihood function for right censored has
the form

l(ψ) = log

{
n

∏
i=1

[ f (xi)]
δi [S(xi)]

1−δi

}

=
n

∑
i=1

δi log[ f (xi)] +
n

∑
i=1

(1− δi) log[S(xi)],

with δi = 1 if survival (uncensored) and δi = 0, if not (censored). Furthermore, for
i = 1, 2, ..., n, f (xi) and S(xi) are the pdf and survival function of the GDUSLN distribution
taken at xi, respectively.

8. Bayesian Regression Model

The Bayesian technique is shown to be particularly effective in analyzing survival
models in many practical circumstances. Ergo, in this section, we will look at how the
Bayesian approach fits the regression model based on the GDUSLN distribution when
prior pieces of information about the parameters are taken into account. Accordingly, for
the purpose of Bayesian analysis of this model, we implemented a simulation method.
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Now, to perform a Bayesian analysis, one should adopt prior distributions for the
parameters. Here, similar to Section 5.2, we utilized two different prior distributions, the
HC and N priors. The pdf of the HC distribution with a as the scale parameter is given in
Equation (10). Now, we write the right censored likelihood function as

L =
n

∏
i=1

[ f (xi)]
δi [S(xi)]

1−δi , (17)

with δi = 1, if survival (uncensored) and δi = 0, if not (censored). Furthermore, for
i = 1, 2, ..., n, f (xi) and S(xi) are the pdf and survival function of the GDUSLN distribution
taken at xi, , respectively. We use the link function specified by

µ = Vτ (18)

as a linear combination of explanatory variables. Thus, we set the prior distributions of the
parameters to be

τj ∼ N(0, 1000); j = 1, 2, ..., J

α, σ ∼ HC(25). (19)

Now, using (17)–(19), the joint posterior pdf is obtained as

π(τ, α, σ|x, V) ∝ L(x|V, τ, α, σ)× π(τ)× π(α)× π(σ). (20)

From Equation (20), it is clear that the analytical solution is not possible to find out the
Bayesian estimates. Thus, similar to Section 5.2, we use the method of simulation, namely,
the Metropolis–Hastings algorithm of the MCMC method.

9. Performance of the Estimates Using Simulation Study

In this section, we conduct simulation experiments to assess the long-run performances
of ML and Bayesian estimates of the GDUSLN distribution parameters for some finite
sample sizes. We have generated samples of sizes n = 50, 100, 250, 500, 750, and 1000 from
the GDUSLN distribution using various values of parameters.

9.1. Simulation Study for the MLE

Here, the iteration is conducted 1001 times. Thus, we computed the average of the
biases, mean squared errors (MSEs), coverage probabilities (CPs), and average lengths
(ALs) of each parameter estimate for all replications in the respective sample sizes.

The analysis computes the values for the average biases and MSEs of the simulated
estimates by the following formulae:

• Average bias =
1

1001

1001
∑

i=1
(θ̂i − θ), and

• Average MSE =
1

1001

1001
∑

i=1
(θ̂i − θ)2,

where i is the number of iterations, and θ ∈ {α, µ, σ} and θ̂ is the estimate of θ. The results
of each parameter set are reported in Tables 1–4.
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Table 1. The MLE simulation results for (α = 0.01, µ = 0, σ = 1).

Parameters n MLE Bias MSE CP AL

α

50 0.0265 0.0165 0.0117 0.9860 0.1884
100 0.0171 0.0071 0.0029 0.9900 0.0703
250 0.0128 0.0028 0.000062 0.9980 0.0285
500 0.0118 0.0018 0.000025 0.9999 0.0170
750 0.0118 0.0018 0.000011 0.9999 0.0138
1000 0.0117 0.0017 8.722× 10−6 0.9999 0.0118

µ

50 −0.2877 −0.2877 2.0349 0.9999 6.5780
100 −0.1107 −0.1107 0.8001 0.9990 3.9497
250 −0.0636 −0.0636 0.1924 0.9980 2.2907
500 −0.0306 −0.0306 0.0821 0.9910 1.5273
750 −0.0809 −0.0809 0.0398 0.9880 1.2473
1000 −0.0774 −0.0774 0.0310 0.9860 1.0726

σ

50 1.2084 0.2084 0.4160 0.9880 3.0793
100 1.1361 0.1361 0.1808 0.9910 1.8328
250 1.0964 0.0964 0.0519 0.9950 1.0693
500 1.0685 0.0685 0.0238 0.9970 0.7011
750 1.0737 0.0737 0.0160 0.9950 0.5817
1000 1.0699 0.0699 0.0131 0.9950 0.4989

Table 2. The MLE simulation results for (α = 1.5, µ = 0, σ = 1).

Parameters n MLE Bias MSE CP AL

α

50 3.4450 1.9450 17.9693 0.8212 29.7384
100 2.8944 1.3944 11.9153 0.8352 17.3465
250 2.3789 0.8789 7.2803 0.8851 9.2240
500 1.8799 0.3799 2.2217 0.8981 4.5803
750 1.7522 0.2522 0.7747 0.9341 3.3028
1000 1.6936 0.1936 0.5628 0.9281 2.7298

µ

50 −0.1516 −0.1516 1.5050 0.9211 6.7687
100 −0.1322 −0.1322 1.0738 0.9221 4.7298
250 −0.1360 −0.1360 0.6004 0.9471 3.0166
500 −0.0557 −0.0557 0.3029 0.9461 2.0178
750 −0.0638 −0.0638 0.1646 0.9610 1.6335
1000 −0.0495 −0.0495 0.1298 0.9491 1.4036

σ

50 0.9850 −0.0151 0.1354 0.9351 1.9180
100 0.9993 −0.00076 0.0946 0.9261 1.3519
250 1.0217 0.0217 0.0486 0.9590 0.8666
500 1.0080 0.0080 0.0253 0.9421 0.5928
750 1.0136 0.0136 0.0139 0.9640 0.4816
1000 1.0110 0.0110 0.0112 0.9511 0.4152
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Table 3. The MLE simulation results for (α = 3.5, µ = 0, σ = 1).

Parameters n MLE Bias MSE CP AL

α

50 3.3691 -0.1309 7.3639 0.7602 26.7792
100 3.7652 0.2652 6.7212 0.8092 20.8407
250 4.0625 0.5625 5.5040 0.8681 14.4071
500 3.9641 0.4641 4.1423 0.8931 10.1917
750 4.0522 0.5523 3.3380 0.9271 8.6438
1000 3.8094 0.3094 2.5673 0.9261 6.9700

µ

50 0.3772 0.3772 0.9082 0.8841 5.7295
100 0.1891 0.1891 0.5807 0.9081 4.2434
250 0.0229 0.0229 0.3165 0.9431 2.8635
500 −0.00075 −0.00075 0.2164 0.9461 2.0896
750 −0.0493 −0.0493 0.1510 0.9650 1.7545
1000 −0.0105 −0.0105 0.1240 0.9610 1.5016

σ

50 0.8607 −0.1393 0.0962 0.9051 1.5967
100 0.9266 −0.0734 0.0551 0.9211 1.1520
250 0.9831 −0.0169 0.0250 0.9560 0.7596
500 0.9943 −0.0057 0.0160 0.9541 0.5523
750 1.0085 0.0085 0.0106 0.9750 0.4605
1000 0.9992 −0.00078 0.0089 0.9630 0.3970

Table 4. The MLE simulation results for (α = 0.01, µ = 1.5, σ = 0.5).

Parameters n MLE Bias MSE CP AL

α

50 0.8120 0.8020 99.3306 0.9990 17.2775
100 0.0597 0.0497 0.0180 0.9960 0.3258
250 0.0278 0.01780 0.0009 0.9950 0.0855
500 0.0120 0.010 0.00023 0.9970 0.0393
750 0.0172 0.0072 0.00012 0.9990 0.0260

1000 0.0160 0.0060 7.792× 10−5 0.9970 0.0201

µ

50 −0.5673 −2.0673 10.6468 0.9950 9.7789
100 0.6150 −0.8850 1.6948 0.9920 4.0846
250 1.0235 −0.4765 0.4590 0.9690 1.9015
500 1.1998 −0.3002 0.1834 0.9421 1.1122
750 1.2758 −0.2242 0.1068 0.9091 0.8285

1000 1.3111 −0.1889 0.0784 0.8711 0.6806

σ

50 1.3170 0.8170 1.3831 0.9980 3.7459
100 0.9005 0.4005 0.3222 0.9880 1.8729
250 0.7345 0.2344 0.1043 0.9860 0.9233
500 0.6570 0.1570 0.0474 0.9600 0.5459
750 0.6234 0.1234 0.0293 0.9481 0.4065

1000 0.6059 0.1059 0.0219 0.9031 0.3325

It can be observed that with the increase in sample size, the MSEs and the ALs
corresponding to each estimate fall. Furthermore, the CPs of the confidence intervals for
each parameter are fairly close to the 95% nominal levels. This confirms the consistent
performance of MLEs of the GDUSLN distribution.

9.2. Simulation Study for Bayesian Estimates

We consider the prior distributions for the GDUSLN parameters as given in Section 5.2.
Hence, here we iterated each sample 10, 001 times. For each parameter set of respective
sample sizes, the posterior summary results such as mean, standard deviation (SD), Monte
Carlo error (MCE), 95% confidence interval (CI), and median are presented in Tables 5–8.



Mathematics 2021, 9, 3113 14 of 22

Table 5. Posterior summary results for (α = 0.01, µ = 0, σ = 1).

Parameters n Mean SD MCE 95% CI Median

α

50 0.1442 0.1824 0.0519 (0.0042, 0.6596) 0.0570
100 0.0334 0.1207 0.0132 (0.0063, 0.0611) 0.0167
250 0.0220 0.0212 0.0081 (0.0141, 0.0898) 0.0150
500 0.0185 0.0076 0.0024 (0.0118, 0.0466) 0.0172
750 0.0231 0.0052 0.0011 (0.0208, 0.0262) 0.0208
1000 0.0149 0.0009 0.00058 (0.0135, 0.0156) 0.0154

µ

50 −3.4733 3.0723 0.8754 (−9.6826, 0.8414) −2.7271
100 −0.3452 1.2663 0.5454 (−2.4443, 1.5253) −0.1428
250 −0.4035 0.5696 0.2240 (−2.3547, −0.0708) −0.1831
500 −0.5347 0.4115 0.1992 (−0.8684, 0.8708) −0.6868
750 −0.7501 0.4026 0.1564 (−1.2204, 0.1082) −0.6910
1000 −0.7085 0.3481 0.1240 (−0.8361, 0.6058) −0.8361

σ

50 2.3915 1.2560 0.3398 (0.6745, 5.0700) 2.1073
100 1.3575 0.8723 0.2097 (0.7271, 2.4231) 1.1131
250 1.3106 0.5267 0.1905 (1.1652, 2.6330) 1.1652
500 1.2938 0.2787 0.0835 (1.0247, 2.0993) 1.2751
750 1.4881 0.2525 0.0783 (1.4131, 1.7219) 1.4131
1000 1.1867 0.0506 0.03160 (1.1108, 1.2723) 1.2102

Table 6. Posterior summary results for (α = 1.5, µ = 0, σ = 1).

Parameters n Mean SD MCE 95% CI Median

α

50 4.1662 7.3244 2.0432 (0.0093, 20.6094) 0.9974
100 4.2131 5.2494 1.5542 (0.0717, 22.7491) 2.2271
250 2.2417 2.1410 0.6711 (0.0846, 9.0499) 1.6914
500 1.5378 1.6005 0.2416 (0.4581, 4.3854) 1.3377
750 1.6211 0.4696 0.1316 (0.7095, 2.7769) 1.5799

1000 1.4906 0.2316 0.0615 (1.4512, 2.0980) 1.4514

µ

50 0.0369 1.2995 0.3834 (−2.5848, 2.0525) 0.3404
100 −0.4092 1.0441 0.3193 (−2.6677, 1.8552) −0.1807
250 0.1550 0.7931 0.2581 (−1.3816, 1.7138) 0.0570
500 0.1253 0.4695 0.0839 (−1.0430, 0.9718) 0.1231
750 −0.1065 0.2889 0.0811 (−0.7150, 0.5232) −0.0650

1000 −0.0170 0.1420 0.0331 (−0.4267, 0.0236) 0.0226

σ

50 0.8448 0.3702 0.1073 (0.1403, 1.5976) 0.8392
100 1.0815 0.2833 0.0866 (0.3392, 1.5447) 1.0771
250 0.8506 0.2329 0.0747 (0.3265, 1.2604) 0.8995
500 0.9565 0.1442 0.0291 (0.6713, 1.2297) 0.9641
750 1.0589 0.0986 0.0277 (0.8357, 1.2506) 1.0656

1000 1.0097 0.0521 0.0142 (0.9907, 1.1366) 0.9907
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Table 7. Posterior summary results for (α = 3.5, µ = 0, σ = 1).

Parameters n Mean SD MCE 95% CI Median

α

50 8.4499 7.6768 2.1079 (0.1380, 24.5375) 6.2095
100 5.3500 9.4171 1.7008 (0.3285, 13.5378) 3.2753
250 2.3796 2.7053 0.8287 (0.3081, 10.1427) 1.3011
500 2.8784 2.2901 0.8092 (1.0101, 10.4748) 1.9153
750 4.4209 2.0585 0.6653 (2.6587, 6.5986) 4.0738
1000 2.8436 1.4592 0.3074 (1.6108, 6.7540) 2.8355

µ

50 0.2228 0.9573 0.2940 (−1.0484, 2.0049) −0.0019
100 0.0332 0.7769 0.2336 (−1.3759, 1.4283) 0.0934
250 0.5618 0.6370 0.1979 (−0.7925, 1.4505) 0.6533
500 0.2950 0.4991 0.1552 (−0.8614, 0.9619) 0.4101
750 −0.1969 0.4249 0.1302 (−0.7398, 0.2054) −0.1912
1000 0.2197 0.3472 0.1082 (−0.6779, 0.5688) 0.1770

σ

50 0.8080 0.2633 0.0797 (0.2915, 1.1814) 0.9090
100 0.8718 0.2162 0.0649 (0.4689, 1.1968) 0.8866
250 0.7443 0.1800 0.0582 (0.4790, 1.0736) 0.7109
500 0.9343 0.1354 0.0390 (0.7414, 1.2237) 0.9326
750 1.0692 0.1295 0.0371 (0.9619, 1.2253) 1.0566
1000 0.9466 0.1004 0.0306 (0.8628, 1.2225) 0.9323

Table 8. Posterior summary results for (α = 0.01, µ = 1.5, σ = 0.5).

Parameters n Mean SD MCE 95% CI Median

α

50 0.1779 0.2908 0.0794 (0.0041, 1.3728) 0.0583
100 0.0734 0.0987 0.0260 (0.0060, 0.3889) 0.0330
250 0.0300 0.0488 0.0124 (0.0075, 0.1611) 0.0160
500 0.0160 0.0364 0.0062 (0.0110, 0.0843) 0.0110
750 0.0159 0.0090 0.0021 (0.0061, 0.0240) 0.0147
1000 0.0092 0.0069 0.0012 (0.0068, 0.0202) 0.0076

µ

50 −0.1424 1.4196 0.3924 (−4.0866, 1.5825) 0.3360
100 0.6450 0.9748 0.2626 (−1.6869, 1.8166) 0.9622
250 0.9545 0.6301 0.1960 (−0.9009, 1.4706) 1.1956
500 1.1691 0.3183 0.0822 (−0.1112, 1.2343) 1.2343
750 1.3269 0.2115 0.0573 (1.0271, 1.7025) 1.3379
1000 1.6181 0.1493 0.0226 (1.2482, 1.7385) 1.6251

σ

50 0.9612 0.5966 0.1678 (0.2695, 2.6994) 0.8186
100 0.9495 0.5012 0.1325 (0.3651, 2.0675) 0.8613
250 0.6918 0.3148 0.0984 (0.4297, 1.5184) 0.6134
500 0.5719 0.1891 0.0508 (0.5299, 1.4506) 0.5300
750 0.5760 0.1087 0.0281 (0.3929, 0.7253) 0.5727
1000 0.4504 0.1012 0.0194 (0.4045, 0.7358) 0.4185

It is observed that the SD and MCE decrease as the sample size increases, which
predicts the consistency of Bayesian estimates of the GDUSLN distribution.

10. Applications and Empirical Study

This section is comprised of demonstrating the empirical importance of the GDUSLN
distribution. We consider two real datasets from the area of biological science. One is the
univariate cancer survival dataset, which is used to compare the data modeling ability of
the GDUSLN distribution over some competitive distributions, and the other is the heart
transplant dataset for the regression study. We use the RStudio software for numerical
evaluations of these datasets.



Mathematics 2021, 9, 3113 16 of 22

10.1. Cancer Survival Data

First, we utilize the dataset from [15] as a biological dataset, which represents an
uncensored univariate dataset comprised of the remission times (in months) of a random
sample of 128 bladder cancer patients. The descriptive measures of the real dataset, which
include sample size (n), minimum (min), first quartile (Q1), median (Md), third quartile
(Q3), maximum (max), and inter-quartile range (IQR) are given in Table 9.

Table 9. Descriptive statistics of real dataset.

Statistic n min Q1 Md Q3 max IQR

Values 128 0.08 3.348 6.280 11.678 79.05 8.330

We also investigate the empirical hazard rate function for the biology dataset using
the idea of a total time on test (TTT) plot. The TTT plot is a graph being used to distinguish
between several types of aging as displayed in the hazard rate shapes. The common shapes
of the hazard rate possess constant, increasing, decreasing, bathtub, and upside-down
bathtub shapes, and can be identified by using the TTT plot by the following methods:

• A plot around the diagonal indicates a constant hazard rate, that is, the failure times
can be considered exponentially distributed.

• A concave plot (above the diagonal) indicates an increasing hazard rate function.
• A convex plot (under the diagonal) indicates a decreasing hazard rate function.
• A plot which first is convex, and then concave indicates a bathtub shaped hazard

rate function.
• A plot which first is concave, and then convex indicates an upside-down bathtub

shaped hazard rate function.

For more about the TTT plot, see details in [16]. The TTT plot is drawn by plotting

T
(

i
n

)
=

i
∑

r=1
xr:n + (n− i)xi:n

n
∑

r=1
xr:n

against i/n, where i = 1, 2, ..., n and xr:n, r = 1, 2, ..., n are the order statistics of the sample.
Thus, the plot in Figure 4 indicates that this dataset represents an upside-down bathtub

shaped hazard rate function. This case is covered by the characteristics of the GDUSLN
distribution.

To show the potential advantage of the GDUSLN distribution, the following distribu-
tions are considered for comparison:

• The two-parameter LN distribution.
• The exponentiated LN (ELN) distribution or otherwise, the log-power-normal distri-

bution (see [17]) with pdf

f (x) =
α

xσ
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α−1
, x > 0, µ ∈ R, α, σ > 0.

• Generalized half-normal (GHN) distribution (see [18]) with pdf

f (x) =

√
2
π

(α

x

)( x
σ

)α
exp

{
−1

2

( x
σ

)2α
}

, x, α, σ > 0.

• The new generalized Lindley distribution (NGLD) (see [19]) with pdf

f (x) =
e−µx

1 + µ

(
µα+1xα−1

Γ(α)
+

µσxσ−1

Γ(σ)

)
, x > 0, α, µ, σ > 0,

where Γ(p) =
∫ ∞

0 tp−1e−tdt.
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• The modified Weibull (MoW) distribution (see [20]) with pdf

f (x) = µσ
( x

α

)µ−1
exp

[( x
α

)µ
+ ασ

(
1− e(x/α)µ

)]
, x > 0, α, µ, σ > 0.

• The Weibull distribution with pdf

f (x) =
α

σ

( x
σ

)α−1
e−(x/σ)α

, x > 0, α, σ > 0.

We compare the competitive models to the proposed models using the following
statistical tools: negative log-likelihood (− log L), Kolmogorov–Smirnov (KS), Cramér-von
Misses (W∗), Anderson–Darling (A∗) statistics, Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC) values. Tables 10 and 11 display the corresponding
MLEs and goodness-of-fit (GOF) statistics of the considered distributions corresponding to
the bladder cancer dataset.
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(i/
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Bladder cancer dataset

Figure 4. The TTT plot of bladder cancer dataset.

Table 10. Bladder cancer dataset: MLEs of the parameters.

Distribution MLE

GDUSLN(α, µ, σ) α̂ = 0.2330, µ̂ = 2.5675, σ̂ = 0.6660

LN(µ, σ) µ̂ = 1.7423, σ̂ = 1.0647
ine ELN(α, µ, σ) α̂ = 0.1514, µ̂ = 3.0502, σ̂ = 0.5401

GHN(µ, σ) µ̂ = 0.7593, σ̂ = 11.4510

NGLD(α, µ, σ) α̂ = 1.1848, µ̂ = 0.1287, σ̂ = 1.1851

MoW(α, µ, σ) α̂ = 4.565× 10−6, µ̂ = 0.1378, σ̂ = 123.976

Weibull(α, σ) α̂ = 1.0546, σ̂ = 9.4371



Mathematics 2021, 9, 3113 18 of 22

Table 11. Bladder cancer dataset: GOF statistics results.

Distribution − log L AIC BIC KS W∗ A∗

GDUSLN 409.0979 824.1958 832.7519 0.0551 0.0646 0.4318

LN 412.6565 829.3131 835.0171 0.0644 0.1313 0.8708

ELN 410.0441 826.0883 834.6444 0.0562 0.0846 0.5590

GHN 418.7864 841.5727 847.2768 0.1018 0.3815 2.4201

NGLD 411.0846 828.1691 836.7252 0.0751 0.1415 0.8233

MoW 419.3804 844.7608 853.3169 0.0949 0.3632 2.3184

Weibull 411.8936 827.7873 833.4913 0.0731 0.1670 1.0441

From these tables, we see that the GOF statistics values of the GDUSLN distribution
are smaller than those of the other compared distributions. It can also be noted that the
optimization algorithm possesses successful convergence as indicated in Section 5.1.

The empirical cdf and quantile-quantile (Q-Q) plots for the real dataset are given in
Figure 5.
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Figure 5. Empirical plots on bladder cancer dataset.

This figure shows some nice-shaped curves for those empirical and fitted functions.
Thus, we conclude that the GDUSLN distribution is the most suitable distribution for this
dataset compared to that of the other distributions.

Now, the Hessian matrix corresponding to bladder cancer dataset is obtained as

H(Θ) =

 1918.1947 407.3235 −825.5481
407.3235 126.7731 −77.560
−825.5481 −77.560 620.8239

,

and the corresponding estimated variance-covariance matrix is

Σ =

 0.0332 −0.0863 0.0334
−0.0863 0.2326 −0.0856
0.0334 −0.0856 0.0353

.

It is observed that the determinant value of the observed information matrix (|J(Θ̂)|)
is non-zero, and hence satisfies the non-singularity condition of the information matrix.
Now, Table 12 provides the 95 percent asymptotic confidence intervals for the GDUSLN
parameters.
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Table 12. The 95% asymptotic confidence intervals of the GDUSLN parameters based on bladder
cancer dataset.

Parameter Lower Upper

α −0.1241 0.5901
µ 1.6222 3.5128
σ 0.2978 1.0341

Next, we focus on estimating the parameters of the GDUSLN distribution using
the Bayesian procedure based on the above discussed univariate bladder cancer survival
dataset. In the context of Bayesian estimation, the analysis was performed using the
Metropolis–Hastings algorithm of the MCMC method with 1000 iterations. For comparing
Bayes estimates with the MLEs, both the estimates of the GDUSLN parameters for the real
dataset are given in Table 13. The numerical computations on Bayesian estimation are done
using RStudio software.

Table 13. MLEs and Bayes estimates of the GDUSLN parameters on bladder cancer dataset.

Parameter ML Bayes

α 0.2330 0.2058
µ 2.5675 2.6519
σ 0.6660 0.6395

10.1.1. Results on Bootstrap Confidence Intervals

In this subsection, for the considered dataset, we utilize the computed MLEs to
construct the 95 percent bootstrap confidence intervals for the parameters α, µ, and σ.
Based on the GDUSLN distribution, we simulate 1001 samples of the same size as the real
dataset, with true values of the parameters chosen as MLEs of the respective parameters.
We calculate the MLEs α̂∗b , µ̂∗b and σ̂∗b , for b ∈ {1, 2, ..., 1001} for each sample obtained.
Table 14 shows the median and 95 percent bootstrap confidence interval for the parameters
α, µ and σ of the dataset.

Table 14. The median and 95% bootstrap confidence interval for the GDUSLN parameters on bladder
cancer dataset.

Parameter Median Bootstrap CI

Bladder cancer
dataset

α 0.2599 (0.0336, 2.2893)
µ 2.4878 (0.6703, 3.3436)
σ 0.6813 (0.3100, 1.2527)

It is also fascinating to look at the joint distribution of the bootstrapped values in a
matrix of scatter plots to determine the potential structural correlation among the parame-
ters. The matrix scatterplots of the bootstrapped values of the GDUSLN parameters, which
portray the joint uncertainty distribution of the fitted parameters, are displayed in Figure 6.
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Figure 6. Matrix scatter plot on bootstrappped values of the GDUSLN parameters due to bladder
cancer dataset.

10.1.2. Likelihood Ratio Test

We also utilized the likelihood ratio (LR) test for comparing the GDUSLN distribution,
which has an additional parameter α with the LN distribution based on the above discussed
bladder cancer survival dataset. The LR statistic for comparing the nested model H0 : LN
against HA : GDUSLN is

LR = −2 log
(

likelihood under the null hypothesis
likelihood in the whole parameter space

)
which asymptotically follows a chi-square distribution having d degrees of freedom, d
being the number of additional parameters in the GDUSLN model. By using this result
and standard statistical tables, we can obtain critical values for the LR test statistics for
the given bladder cancer dataset. Table 15 includes the LR statistic and the corresponding
p-value.

Table 15. Likelihood ratio statistics and their p-values on bladder cancer dataset.

LR p-Value

GDUSLN versus LN 7.1173 0.00763

Given, the values of test statistic and the associated p-value, we reject the null hy-
pothesis for the above discussed bladder cancer dataset and conclude that the GDUSLN
distribution provides a significantly better representation than the LN distribution.

10.2. Stanford Heart Transplant Data

In this application, we validate the prominence of the GDUSLN regression model by
applying it to the real dataset, the renowned Stanford heart transplant data. The dataset is
given in [21], which can also be found in the R package p3state.msm. The goal of this study
is to investigate the survival times (yi) of patients with covariates x1-year of acceptance to
the program, x2-age of patient (in years), and x3-previous surgery status (1 = yes, 0 = no).
In this study, the transplant indicator is used as the censoring variable.

10.2.1. Results Using the GDUSLN Regression Model

The fitted non-linear regression model is given by

xi = exp(τ0 + τ1v1 + τ2v2 + τ3v3 + σzi),
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where the response variable xi is observed follows a random variable following the
GDUSLN distribution.

In Table 16, we compare the performance of the GDUSLN regression model with that
of the LN regression model, as well as the summaries due to the real dataset, which include
estimates of all parameters, negative log-likelihood (−l(ψ)), and the value of AIC.

Table 16. Regression results on Stanford heart transplant dataset.

Parameter τ0 τ1 τ2 τ3 α σ −`(ψ) AIC

LN 8.058 −0.024 −0.022 1.131 - 1.317 487.873 985.747
GDUSLN 10.039 −0.016 −0.032 0.499 0.0104 0.207 485.526 983.051

Since its has the smallest AIC, the GDUSLN regression model is the best.

10.2.2. Results Using the GDUSLN Bayesian Regression

Table 17 represents the summary of 1000 times iterated simulated results, due to
the censored dataset using Random Dive Metropolis–Hastings (RDMH) algorithm of the
MCMC method, which includes the posterior mean, SD, Monte Carlo Standard Error
(MCSE), effective sample size due to autocorrelation (ESS), 95% CI and the posterior
median.

Table 17. GDUSLN Bayesian regression results on Stanford heart transplant dataset.

Parameter Mean SD MCSE ESS 95% CI Median

τ0 12.319 0.125 0.059 6.657 (11.865, 12.419) 12.312
τ1 −0.064 0.009 0.007 1.296 (−0.078, −0.052) −0.067
τ2 −0.018 0.0122 0.009 1.785 (−0.037, 0.002) −0.016
τ3 0.750 0.309 0.061 32.293 (0.161, 1.309) 0.740
α 0.069 0.052 0.028 6.064 (0.022, 0.258) 0.055
σ 0.460 0.133 0.076 5.967 (0.308, 0.795) 0.421

11. Concluding Remarks

In this article, we suggested a new distribution, which is a transformed version of the
log-normal distribution, mainly to investigate data in the field of biology in this research.
We explored the mathematical and statistical aspects of the new model, which we call the
generalized DUS transformed log-normal (GDUSLN) distribution. We delivered specific
expressions for the hazard rate function and the quantile function. The hazard rate function
possesses all the common shapes such as increasing, decreasing, bathtub, and upside-down
bathtub, and also possesses an interesting shape called the inverted N-shaped hazard rate
function. The model parameters were estimated by using Bayesian estimation and the
method of maximum likelihood, and also, the observed information matrix was presented.
Further, we adopted the parametric bootstrap technique to obtain confidence intervals for
the model parameters. More importantly, we introduced a parametric regression model
and a Bayesian regression method based on the new distribution. Simulation studies were
conducted to analyze the performance of ML and Bayesian estimates of the GDUSLN
parameters and they confirm their consistency. The usefulness of the new model was
illustrated by two applications of real datasets, which are related to the field of biology and
used goodness-of-fit tests. The novel model consistently outperforms previous models in
the literature in terms of fitting. We anticipate that the suggested model would find a wider
range of applications in the modeling of positive real-world datasets, that is, not only in
the area of biology but also in many other areas such as physics, astronomy, engineering,
survival analysis, hydrology, economics, and so on.



Mathematics 2021, 9, 3113 22 of 22

Author Contributions: Conceptualization, M.R.I. and R.M.; methodology, M.R.I., C.C., S.L.N., D.S.S.
and R.M.; validation, M.R.I., C.C., S.L.N., D.S.S. and R.M.; software, S.L.N. and D.S.S.; investiga-
tion, M.R.I., C.C., S.L.N., D.S.S. and R.M.; data curation, S.L.N. and D.S.S.; writing—original draft
preparation, S.L.N. and D.S.S. ; writing—review and editing, M.R.I., C.C., S.L.N., D.S.S. and R.M.;
visualization, M.R.I., C.C., S.L.N., D.S.S. and R.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the Editor and the unknown reviewers for the
constructive comments, which greatly improved the present version of our article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sinnott, E.W. The Relation of Gene to Character in Quantitative Inheritance. Proc. Natl. Acad. Sci. USA 1937, 23, 224–227.

[CrossRef] [PubMed]
2. Kermack, K.A.; Haldane, J.B.S. Organic correlation and allometry. Biometrika 1950, 37, 30–41. [CrossRef] [PubMed]
3. Bernstein, L.; Weatherall, M. Statistics for Medical and Other Biological Students. Q. Rev. Biol. 1954, 29, 303.
4. Beal, J. Biochemical complexity drives log-normal variation in genetic expression. Eng. Biol. 2017, 1, 55–60. [CrossRef]
5. Carvalho, J.; Piaggio, G.; Wojdyla, D.; Widmer, M.; Gülmezoglu, A. Distribution of postpartum blood loss: Modeling, estimation

and application to clinical trials. Reprod. Health 2018, 15, 199. [CrossRef] [PubMed]
6. Aitchison, J.; Brown, J.A.C. The Lognormal Distribution with Special Reference to Its Uses in Economics; Cambridge University Press:

Cambridge, UK, 1957.
7. Jobe, J.; Crow, E.; Shimizu, K. Lognormal Distributions: Theory and Applications. Technometrics 1989, 31, 392. [CrossRef]
8. Pham, A.; Lai, C.D. On Recent Generalizations of the Weibull Distribution. Reliab. IEEE Trans. 2007, 56, 454–458. [CrossRef]
9. Dinesh, K.; Umesh, S.; Sanjay Kumar, S. A Method of Proposing New Distribution and its Application to Bladder Cancer Patients

Data. J. Stat. Appl. Probab. Lett. 2015, 3, 235–245.
10. Maurya, S.K.; Kaushik, A.; Singh, S.K.; Singh, U. A new class of distribution having decreasing, increasing, and bathtub-shaped

failure rate. Commun. Stat.-Theory Methods 2017, 46, 10359–10372. [CrossRef]
11. Irshad, M.R.; Maya, R.; Krishna, A. Exponentiated Power Muth Distribution and Associated Inference. J. Indian Soc. Probab. Stat.

2021, 1–38. [CrossRef]
12. MacDonald, I.L. Does Newton-Raphson really fail? Stat. Methods Med. Res. 2014, 23, 308–311. [CrossRef] [PubMed]
13. Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Analytical Methods for Social Research,

Cambridge University Press: Cambridge, UK, 2006.
14. Wasserman, L. All of Nonparametric Statistics; Springer Texts in Statistics; Springer: New York, NY, USA, 2006.
15. Lee, E.; Wang, J. Statistical Methods for Survival Data Analysis; Wiley Series in Probability and Statistics; Wiley: New York, NY,

USA, 2003.
16. Aarset, M.V. How to Identify a Bathtub Hazard Rate. IEEE Trans. Reliab. 1987, R-36, 106–108. [CrossRef]
17. Martínez-Flórez, G.; Bolfarine, H.; Gómez, H.W. The log-power-normal distribution with application to air pollution.

Environmetrics 2014, 25, 44–56. [CrossRef]
18. Cooray, K.; Ananda, M.M.A. A Generalization of the Half-Normal Distribution with Applications to Lifetime Data. Commun.

Stat.-Theory Methods 2008, 37, 1323–1337. [CrossRef]
19. Elbatal, I.; Merovci, F.; Elgarhy, M. A new generalized Lindley distribution. Math. Theory Model. 2013, 3, 30–47.
20. Xie, M.; Tang, Y.; Goh, T. A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 2002,

76, 279–285. [CrossRef]
21. Crowley, J.; Hu, M. Covariance Analysis of Heart Transplant Survival Data. J. Am. Stat. Assoc. 1977, 72, 27–36. [CrossRef]

http://doi.org/10.1073/pnas.23.4.224
http://www.ncbi.nlm.nih.gov/pubmed/16588155
http://dx.doi.org/10.1093/biomet/37.1-2.30
http://www.ncbi.nlm.nih.gov/pubmed/15420247
http://dx.doi.org/10.1049/enb.2017.0004
http://dx.doi.org/10.1186/s12978-018-0641-1
http://www.ncbi.nlm.nih.gov/pubmed/30514326
http://dx.doi.org/10.1080/00401706.1989.10488576
http://dx.doi.org/10.1109/TR.2007.903352
http://dx.doi.org/10.1080/03610926.2016.1235196
http://dx.doi.org/10.1007/s41096-021-00104-3
http://dx.doi.org/10.1177/0962280213497329
http://www.ncbi.nlm.nih.gov/pubmed/24837788
http://dx.doi.org/10.1109/TR.1987.5222310
http://dx.doi.org/10.1002/env.2256
http://dx.doi.org/10.1080/03610920701826088
http://dx.doi.org/10.1016/S0951-8320(02)00022-4
http://dx.doi.org/10.1080/01621459.1977.10479903

	Introduction
	Construction of the New Distribution
	Definition of the Distribution
	Quantile Function and Associated Measures
	Estimation of Parameters
	ML Estimation
	Bayesian Estimation

	Bootstrap Confidence Intervals
	GDUSLN Regression Model
	Bayesian Regression Model
	Performance of the Estimates Using Simulation Study
	Simulation Study for the MLE
	Simulation Study for Bayesian Estimates

	Applications and Empirical Study
	Cancer Survival Data
	Results on Bootstrap Confidence Intervals
	Likelihood Ratio Test

	Stanford Heart Transplant Data
	Results Using the GDUSLN Regression Model
	Results Using the GDUSLN Bayesian Regression


	Concluding Remarks
	References

