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Abstract: The lymph node (LN) represents a key structural component of the lymphatic system
network responsible for the fluid balance in tissues and the immune system functioning. Playing
an important role in providing the immune defense of the host organism, LNs can also contribute
to the progression of pathological processes, e.g., the spreading of cancer cells. To gain a deeper
understanding of the transport function of LNs, experimental approaches are used. Mathematical
modeling of the fluid transport through the LN represents a complementary tool for studying the
LN functioning under broadly varying physiological conditions. We developed an artificial neural
network (NN) model to describe the lymph node drainage function. The NN model predicts the
flow characteristics through the LN, including the exchange with the blood vascular systems in
relation to the boundary and lymphodynamic conditions, such as the afferent lymph flow, Darcy’s
law constants and Starling’s equation parameters. The model is formulated as a feedforward NN
with one hidden layer. The NN complements the computational physics-based model of a stationary
fluid flow through the LN and the fluid transport across the blood vessel system of the LN. The
physical model is specified as a system of boundary integral equations (IEs) equivalent to the original
partial differential equations (PDEs; Darcy’s Law and Starling’s equation) formulations. The IE
model has been used to generate the training dataset for identifying the NN model architecture
and parameters. The computation of the output LN drainage function characteristics (the fluid flow
parameters and the exchange with blood) with the trained NN model required about 1000-fold less
central processing unit (CPU) time than computationally tracing the flow characteristics of interest
with the physics-based IE model. The use of the presented computational models will allow for a
more realistic description and prediction of the immune cell circulation, cytokine distribution and
drug pharmacokinetics in humans under various health and disease states as well as assisting in the
development of artificial LN-on-a-chip technologies.

Keywords: lymph node; lymph filtration; porous medium; boundary integral equations; Darcy’s
law; Starling’s equation; neural network model; linear regression

1. Introduction

The complexity of the structure, regulation and dynamics of multiphysics processes
underlying the functioning of the human physiological systems requires the development
of computational models to build up a quantitative framework for an integrative predictive
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description of the structure–function relationship, as originally proposed by the Physiome
Project concept [1]. The lymphatic system (LS) is a part of an organism’s circulatory
system responsible for maintaining the fluid balance in tissues as well as a part of the
immune system participating in the trafficking of antigens and immune cells to draining
lymphoid nodes and to peripheral tissues [2–4]. The LS consists of lymphatic vessels,
lymphoid organs and lymphatic fluid [4,5]. Mathematical modeling of the LS remains to be
a challenge [3,6], being advanced to a much smaller extent than the cardiovascular system
models [7]. This is partly explained by the scarcity of empirical data necessary for model
development and calibration [7].

The computational models of the LS can be subdivided into three related areas:
(i) models of lymph transport through the entire LS or the network of lymphatic vessels,
(ii) models of the functioning of a single or a chain of lymphatic vessels (lymphangions) and
(iii) models of lymph nodes (LN). Central to modeling of the whole LS is the development
of an appropriate graph model of the system. There are only three studies which analyze
and describe the topology of the LS [6,8–10]. They range from a simple network model
suggested by Reddy [6] with 29 nodes and 28 edges to a comprehensive anatomical data-
based graph of the human LS with 996 vertices and 1117 edges [10].

Mathematical models of lymphatic transport in individual vessels and a small network
of vessels represent the most advanced area in studies of the LS flows. The developed
models describe the drainage of tissue fluid into initial lymphatic capillaries and pre-
collectors [11–13]. The techniques being used include the homogenization theory to derive
the macroscale equations for fluid drainage from the governing system of Navier–Stokes
equations in capillaries and Darcy’s law for fluid flow in the interstitium [12]. Most
of the models which describe the lymphatic flow in the network of lymphatics vessels
belong to the class of lumped models, i.e., they are the systems of ordinary differential
equations (ODEs) on graphs with the conservation of mass and momentum at the vessel
junctions and the balance of forces at the vessel walls [14]. The effect of vessel contractions
is taken into account via prescribed time-dependence of the external pressure [13,14].
The calibration of the models depends on the knowledge of the pressure drop required for
lymph flows through the lymphatic networks. For real rat mesenteric networks obtained by
intravital microscopy and for the scaled versions of the network generated computationally,
the pressure drops were estimated using a segmented Poiseuille flow model [15].

Lymphatic vessels consist of small functional units called lymphangions. They are
vessels’segments between two valves which contain muscle tissue enabling intrinsic con-
tractions. The sensitivity analysis of the lumped parameter model was used to predict
the optimal length of lymphangions [14]. It was found that the vessel geometry (valve
location) and the contraction frequency/magnitude strongly impact the regulation of
lymph flow [16]. In a follow-up study, lymph transport in a lymphatic vessel network was
performed to examine the effect of pumping coordination in branched network structures
on the regulation of lymph flow [17]. The topology of the network is characterized by the
generation of bifurcating seven vessels with each vessel composed of 10 lymphangions.
The most recent developments of the computational modeling of lymphatic vessels con-
sider a fully coupled fluid-structure 3D simulation of an intravascular lymphatic valve
simulating valve opening and valve closure [18,19]. The model of contraction of lymphatic
vessels was further developed to examine the effect of wall shear stress on the contraction
of a single lymphangion [20].

Computational modeling of the LN structure and functioning is the least addressed
component of LS. One of the first models of a paradigmatic LN was developed to study
the 3D spatial cytokine (type I interferon) distribution with a stationary reaction–diffusion
model [21]. The development of high-resolution imaging technologies enabled a detailed
characterization of the topological and geometrical properties of LN structures, such as
the fibroblastic reticular cell network [22], the conduit network [23,24] and the blood
capillary network [25–27]. The generated quantitative data allowed to proceed with the
development of a computational model of the LN geometry to incorporate the conduit
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and blood vascular networks [28]. The flow of lymph through the conduit system of LN
was addressed in [29]. The most thorough up-to-date models of lymph flow through the
whole LN are based on the use of Darcy’s law and Starling’s equation [30,31]. The internal
part of LN (the cortex, the paracortex and the medulla) is represented as a porous medium.
The fluid exchange with the blood vascular system taking place via the high endothelial
venules is also considered. The computational complexity of simulations of the lymph flow
through the LN embedded into the real anatomy of the LN call for the development of
less computationally demanding models which will be amenable for the integration into a
holistic lymphatic system description.

The lymph node represents a key structural component of the lymphatic system
network responsible for the fluid balance in tissues and the immune system functioning.
Playing an important role in providing the immune defense of the host organism, LNs
can also contribute to progression of pathological processes, e.g., the spreading of cancer
cells [32]. To gain a deeper understanding of the transport function of LNs, experimental
approaches have been used since long ago [33–35]. Recently, the feasibility of technology
for ex vivo perfusion of human LNs has been demonstrated [36]. Mathematical modeling
of fluid transport through the LN represents a complementary tool for studying the LN
functioning under broadly varying physiological conditions.

The aim of our study is to formulate the computational model of a stationary lymph
flow through the LN, i.e., the LN filtration/drainage function. To this end, we follow an
approach complementary to the studies based on using the differential form of Darcy’s
Law and Starling’s equation [30,31]. We develop boundary integral-based equations and
neural network-type models which provide a faster computational tool to simulate the
drainage function of LNs. The study includes: (i) the formulation of the governing integral
equations for lymph flow through a LN; (ii) the specification of the geometric model of
a LN; (iii) the computational implementation of the boundary integral equations model;
(iv) calibration and sensitivity analysis and (v) identification of the neural network-based
model approximating the physics-based model.

Section 2 introduces the basic physiological characteristics of the LN structure and
function. In Section 3, the model of the stationary lymph flow through the LN treated as a
set of porous media is presented in the form of Darcy’s and Starling’s differential equations
and an equivalent boundary integral formulation is derived. Parameter estimation is
conducted in Section 4. Section 5 introduces the neural network (NN) approach to simulate
the lymph flow in a LN. The NN modeling of the drainage function of the lymph node is
trained and validated in Section 6. The results and conclusions are discussed in Section 7.

2. Physiological Characteristics of the Lymph Node Structure and Function

Lymph nodes are spatially organized as a body-wide network of secondary lymphoid
organs being connected by lymphatic vessels. Their primary functions include: (a) filtering
of lymph and capturing foreign pathogens, (b) maintaining fluid balance by returning
filtered fluids from the lymphatic to the cardiovascular system (CS) and (c) organizing the
adaptive immune responses [2–4,37].

LNs have a variable appearance [38]. In an idealized case, their shape can be approx-
imated by a sphere or an ellipsoid with diameters ranging from 0.5–1 mm to 30–50 mm
and more [39]. Lymph nodes typically have 2–4 afferent (input) vessels and 1–2 efferent
(output) vessels. Intraluminal valves of the vessels at the junctions of LNs and lymphatic
vessels provide a unidirectional flow of lymph [39]. The spatial structure of an idealized
LN considered in this study is represented by the set of two spatial domains: the external
domain, i.e., the subcapsular sinus, and the internal one, constituted by the cortex area in-
cluding the T-cell zone, B-cell follicles and the medullar zone (see Figure 1, left). The outer
boundary of the external domain consist of non-permeable part Σ1 and the lymphatic
vessel–LN junctions Σq, Σp (see Figure 1, right) through which the inflow and outflow of
lymph takes place.
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Figure 1. Simplified 3D view of a lymph node. Biological components of an idealized LN (left).
Components of the geometry model (right): external domain Ω1 containing porous media with
higher hydraulic conductivity and internal domain with lower hydraulic conductivity Ω2 where the
exchange of lymph with CS takes place.

The two spatially distinct domains being filled with the immune cells are considered
as homogeneous porous media, characterized by different hydraulic conductivity being
constant in each domain. Therefore, it is assumed that in both of the considered LN
domains, the lymph filtration can be described by Darcy’s law.

It is known that when lymph passes through the lymph node about one-third of its
volume can be absorbed by LN blood vessels (BVs), which are present in the internal
domain, into the CS [39]. The corresponding fluid exchange between the CS and LNs via
BVs needs to be taken into account when building physics-based and NN-type models of
the fluid flow through the LNs. The lymph exchange with the CS via BVs is modeled by
Starling’s equation.

3. Mathematical Model of LN Drainage Function: Differential and Integral Forms
3.1. PDE-Based Model

We denote the whole computational domain as Ω = Ω1
⋃

Ω2 which is bounded by a
closed smooth surface Σ1. Σ2 is a boundary between the external domain Ω1 with higher
hydraulic conductivity and the internal domain Ω2 with lower hydraulic conductivity.
The computational domains corresponding to the simplified LN geometry are depicted in
Figure 1, right.

The lymph is considered as homogeneous incompressible Newtonian fluid. Following
previous studies [30,31], the lymph flow through the LN is described by Darcy’s law for the
unknown fluid velocity v and pressure p. In the external domain, the continuity equation
is fulfilled, and in the internal domain, the lymph is exchanged with BVs according to
Starling’s equation. The resulting system of PDEs reads:

v(x) = −κi
µ
∇p(x) x ∈ Ωi, i = 1, 2,

∇ · v(x) = 0, x ∈ Ω1,

∇ · v(x) = −Lb A(p(x)− pb + σ · ∆π), x ∈ Ω2.

(1)

The parameters of the model equations are: κi—the hydraulic conductivity of the
domain Ωi, i = 1, 2, µ—lymph dynamic viscosity, Lb—the average hydraulic conductivity
of the blood vessel walls in the LN, A—the surface area of the blood vessels participating in
the filtration of lymph, pb—the average blood vessel pressure, ∆π—the average difference
of oncotic pressure between the blood vessels and the interior domain of the LN and σ—the
oncotic reflection coefficient.
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The outer boundary is divided into three parts: Σ1 = Σ0 ⋃Σq ⋃Σp. These correspond
to the afferent vessel–LN junction Σq with a given lymph velocity, the efferent vessel–LN
junction Σp with a given pressure value and the impermeable outer boundary Σ0 with no
flux. The interface between the two domains Σ2 is considered to be homogeneous, with the
pressure and normal component of the velocity vector assumed to be continuous at this
boundary. We denote the outer side of each surface Σm, m = 1, 2 as positive with n(x),
x ∈ Σm, m = 1, 2 being the unit vector orthogonal to surface Σm at point x.

The boundary conditions are set as following:
n(x) · v−(x)− ξ(x) = f0(x), x ∈ Σ1;

p−(x) = ψ(x), x ∈ Σp;

n(x) · (v+(x)− v−(x)) = 0, x ∈ Σ2;

p+(x)− p−(x) = 0, x ∈ Σ2.

(2)

Here, f0(x) is a given lymph flow velocity through the afferent vessel, f0(x) ≡ 0,
x 6∈ Σq. ψ(x) is a given pressure on efferent vessel Σp. We also introduce an extra variable
ξ(x) equal to lymph flow velocity through efferent vessel Σp, ξ(x) ≡ 0, x 6∈ Σp.

3.2. Boundary Integral Equation-Based Model

For numerical modeling of lymph filtration flow in the LN we developed an equivalent
representation of the above mathematical model using the boundary integral equations
approach [40]. The model briefly described below is based on the results obtained in
our previous work [41,42]. Similar to the PDE boundary value problem, at the afferent
vessel–LN border, the lymph flow velocity is considered to be given, whereas at the
efferent vessel–LN interface, the lymph pressure is specified. The lymph flow velocity and
lymph pressure are represented as sums of integral operators specified at the outer and
inner boundaries.

To reduce the number of the model parameters, we combine some of the parameters
as follows:

αi =
µ

κi
, L = Lb A, Pv = pb − σ · ∆π. (3)

The velocity vector field can be considered as the gradient of some potential function,
i.e., v = ∇ϕ, with the potential ϕ being proportional to pressure ϕ = −p/αi in each
domain Ωi, i = 1, 2. Following the approach presented in [41,42], we express the velocity
and pressure fields in domains Ω1, Ω2 as sums of the boundary integrals:

v = ∇Wλi [Σ1, h] +∇Uλi [Σ2, g] +∇Wλi [Σ2, h],

p = −αi
(
Wλi [Σ1, h] + Uλi [Σ2, g] + Wλi [Σ2, h]

)
+ χΩ2 pv.

(4)

Here, λ1 = 0 in Ω1 and λ2 =
√

Lα2 in Ω2, χΩ2 are the domain indicator functions
for Ω2.

The following integral operators are used to construct the solution: Wλ[S, h] is the
potential of a simple layer, with density h, Uλ[S, g] as the double layer potential with
density g:

Wλ[S, h](x) =
∫

S
h(y)Fλ(x− y)dσy,

Uλ[S, g](x) =
∫

S
g(y)

∂Fλ(x− y)
∂ny

dσy,
Fλ(x− y) =

e−λ|x−y|

4π|x− y| .

The divergence of the flow velocity vector is zero in Ω1: ∇ · v = 0, and consequently
∆ϕ = 0, so ϕ is the Laplace’s potential in Ω1. Simple layer potential W0[Σ1, h] with density
h satisfies Laplace’s equation.
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Potential ϕ in Ω2 is a solution of inhomogeneous Helmholtz’s equation:

∆ϕ− λ2 ϕ = λ2 Pv

α2
, λ2 = Lα2.

Its solution is the sum of a particular solution of the inhomogeneous equation
ϕv = −Pv/α2 and of the general solution of the homogeneous equation. In turn, the gen-
eral solution is expressed as the sum of the simple layer and the double layer potentials
Wλ[Σ2, h], Uλ[Σ2, g].

Thus, the velocity and pressure fields in the form (4) satisfy the PDE system (1).
Following the approach developed in papers [41,42], the solution (4) is substituted in the
boundary conditions system (2), giving rise to the system of integral equations for the
unknown potential densities of a simple and double layer h, g. The system is solved by the
numerical method developed in [42].

In the next section, we specify physiologically plausible ranges and the probability
distribution functions for the model parameters.

4. Physiological Variability of Model Parameters

The physics-based model (1)–(2) provides a mechanistic description of the LN fil-
tering/drainage function characteristics. The model can further be used to identify the
relationships between the geometry and conductivity parameters and the input/output
lymph flow properties by applying the machine learning approach. The corresponding
mapping function between the input parameters and the emergent properties of the LN
function can be approximated by training a neural network (NN)-type model. The resulting
NN-based emulator complements the mechanistic model and provides a computationally
efficient tool to rapidly compute the parameters of the LN function, e.g., in a sensitivity anal-
ysis of the LN performance. To teach the NN, a training dataset needs to be generated using
the mechanistic model with the parameters of the boundary value problem (1)–(2) varying
within their physiological ranges. To estimate the ranges of the respective parameters, we
used the experimental data as described below.

One group of parameters specifies the geometry characteristics of an idealized LN. It
is considered to be a solid object consisting of porous domains with its shape approximated
by two embedded ellipsoids with a common center. This shape is selected to mimic the
appearance of the inguinal LN of a naive adult mouse [43]. The external ellipsoid with
its surface Σ1 has radii Rx = Rz = 0.35 mm, Ry = 0.5 mm. The internal ellipsoid with
the interface surface Σ2 has radii Rx = Rz = 0.315 mm, Ry = 0.45 mm. The afferent and
efferent lymphatic vessels are considered to be cylindrical with the radius r0 = 0.075 mm
and the centers specified by coordinates xin and xout being located on the upper and bottom
poles of Σ1, respectively.

To characterize the functional properties of the LN, we consider the following parameters:

• Q1—the rate of lymph flow into the LN through an afferent vessel;
• Q2—the rate of lymph flow out of the LN via an efferent vessel;
• Qv—the rate of lymph exchange with the lymph node BVs;
• P1—the fluid pressure at the afferent lymphatic vessel;
• P2—the fluid pressure at the efferent lymphatic vessel.

We divide the model parameters into two groups, i.e., those which can be quanti-
fied directly using the available experimental data and the parameters which need to be
estimated by data fitting.

4.1. Experimentally Quantified Parameters

The following parameters determining the boundary conditions are directly accessible
from experimental studies in [35]: Q1, P2, pb, ∆π and σ. In brief, the studies were performed
to examine the dependence of fluid transfer through the dog’s popliteal lymph node and
the protein concentration of the efferent lymph fluid on the efferent lymphatic pressure.
The isolated dog popliteal nodes of six dogs were used. The lymph, having a protein
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concentration averaging 27.6± 1.2% (SD) of that of plasma, was infused into the node at
a flow rate averaging 45.6± 0.2 (SD) µL/min. The efferent flow, afferent pressure and
protein concentration efferent flow were measured. Overall, there are 38 data points in
Table 1 from [35] (6–7 measurements per animal). We used 32 data points that remained
after we discarded 6 measurements for which non-physiological efferent lymph pressures
were used in the experiments.

In the experiments, the afferent flow Q1 was kept constant taking one of three different
values (Figure 2). Hence, we assume that Q1 is uniformly distributed over a range that
covers the specified values. The efferent lymphatic pressure P2 was another parameter
being varied in all of the experiments with a peak frequency at P2 = 0 (Figure 2). The prob-
ability distribution of the efferent lymphatic pressure P2 is also assumed to be uniform.
For the parameters pb and ∆π (shown in Figure 2), a triangular distribution is assumed.
The oncotic reflection coefficient σ, as indicated in [30,31], takes values from 0.8 to 0.9.
For it, a uniform distribution is assumed. Overall, the available experimental data provide
the following estimates of the physiological ranges for parameters Q1, P2, pb, ∆π and σ
summarized in Table 1.

Figure 2. Histograms of experimental data on lymph flow and absorption in the LN. Q1 is the afferent
lymphatic flow rate, P2 is the efferent lymphatic pressure, pb is the characteristic LN blood vessel
pressure and ∆π is the average difference between LN blood vessels pressure and LN interstitium
oncotic pressure (data from Table 1 of paper [35]). The vertical axes count how many values fall into
each bin interval (i.e., the number of experiments with the measurement results belonging to the
respective bin).
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Table 1. Experimental estimates for model parameters determining the boundary conditions: average
value, minimal and maximal values and the assumed probability distribution function (based on
experimental data from [35]).

Parameter Measurement Avg. Value Min. Value Max. Value Distribution

Q1 µL/min 45.5 45.0 46.5 Uniform
P2 mmHg 7 1 13 Uniform
pb mmHg 8.0 6 20.5 Triangular

∆π mmHg 12.7 10.7 14.9 Triangular
σ – 0.88 0.8 0.9 Uniform

As the lymph flow is considered to be laminar and Newtonian, the flow velocity
profile is parabolic. The boundary conditions of system (1)–(2) are functions f0, ψ and
parameter Pv, which depends on pb, ∆π and σ. The functions f0 and ψ are expressed via
Q1 and P2 as follows:

f0(x) = −Q1
r2

0 − |x− xin|2
S1

, x ∈ Σq, S1 =
∫

Σq
(r2

0 − |x− xin|2)dσ;

ψ(x) = P2, x ∈ Σp.
(5)

4.2. Estimated Parameters

The governing Equations (1)–(2) contain the physics-defined parameters L, α1 and
α2. They depend on physiological characteristics of LN: κ1, κ2, µ, Lb and A as described
by (3). Specifically, the parameters αi = µ/κi, i = 1, 2 and α2 > α1 characterize hydraulic
resistances of the corresponding porous media, whereas L = Lb A defines the rate of
absorption of lymph into lymph node BVs.

To evaluate the physiologically plausible ranges of the above parameters, we examined
the characteristics of simulations of lymph flow through the LN for various values of the
parameters. The square cuboid is the model parameter space for which the model solutions
reproduce the following scenarios: (1) the lymph absorption by BVs ranges from zero to
Q1, and (2) the flow resistance of the external domain (S1) increase from 0 to ∞. The model
predicts the following physiologically relevant ranges of the parameter to be estimated:

• For L < 10−1, the absorption is minimal: Qv → 0;
• For L > 102, the absorption is maximal: Qv → Q1;
• For α1 < 10−5, the lymph flow experiences no resistance: P1 → P2;
• For α1 > 10−2, the required pressure difference (P1− P2) to keep the flow (to overcome

the resistance) increases: P1 → ∞;
• For α2 < 10−4, the absorption is maximal: Qv → Q1;
• For α2 > 102, the absorption is minimal: Qv → 0.

The resulting domain in the parameter space is given by the following square cuboid
RC3 = [10−1, 102]× [10−5, 10−2]× [10−4, 102].

The experimental data [35] allow us to quantify the uncertainty ranges for the param-
eters L, α1, α2 following the procedure described below:

1. Randomly sample the value θ = {L, α1, α2} from RC3;
2. Compute the solution of the boundary integral equations system modeling the

LN function;
3. Check the consistency of the model-predicted values of Qi

2, Pi
1 and the experimental

data for i = 1, Nexp;
4. Update the uncertainty interval RC3 to get the data-based square cuboid RC3, f itted.
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In addition, the best-fit model parameters were estimated by minimizing the mismatch
error functional Φerr(θ).

Φerr(θ) =

(Nexp

∑
i=1

(Qi
2 − Q̄i

2(θ))
2

(Qi
2)

2
+

(Pi
1 − P̄i

1(θ))
2

(Pi
1)

2

) 1
2

. (6)

The permissible ranges for the model parameters L, α1, α2 are given in Table 2.

Table 2. Estimated model parameters: notation, units, best-fit value giving a minimium of the
functional Φerr(θ) (6) and plausible intervals of parameter values.

Parameter Measurement Optimal Value Interval Distribution

L (mmHg·min)−1 8 [1, 20] Normal
α1 mmHg·min/mm2 2.2× 10−3 [1× 10−4, 4× 10−3] Normal
α2 mmHg·min/mm2 2.2 [0.1, 10] Uniform

The inverse of the functional

p(θ) =
1

Φerr(θ)
. (7)

We used as a surrogate of the likelihood function to qualitatively infer the probability
distribution of the estimated model parameters. The cross-sections of the functions p(θ)
for each parameter are shown in Figure 3.

Figure 3. Profiles of p(θ) for individual parameters providing surrogates for the profile likelihood for parameters L, α1, α2.

5. Neural Network Model of Lymph Node Drainage Function

We develop a feedforward neural network to emulate the filtering function of the
LN. This type of NN model consists of an input layer, A few hidden layers and an output
layer. The development of the NN model requires the following steps: preparation of the
data (simulation-based generation), training of the neural network model and testing of its
performance. The input layer of the neural network consists of six nodes corresponding to
the following parameters of the model: Q1, P2, Pv, L, α1, α2. The output layer of the NN
consists of two nodes specifying the elements to be quantitatively predicted: the efferent
lymph flow Q2 and the afferent pressure P1. The amount of lymph absorbed into the lymph
node BVs is Qv = Q1 −Q2.

5.1. Generation of Training Dataset

For optimal sampling of the parameters, we use the Latin hypercube sampling (LHS)
method. The algorithm for constructing an optimal sample of parameters is as follows.

• For each parameter θi, i = 1, ..., M, we set permissible ranges [ai, bi] and the function
pi(x) as the model probability density (see Tables 1 and 2).
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• Segment [ai, bi] is divided into N equiprobable segments, one random point xij,
j = 1, N is taken on each segment as shown in Figure 4.

• For each parameter θi, the set of its values xij is randomly shuffled (by index j).
• The training sample of parameters consists of the J sets xij (i = 1, ..., M, j = 1, ..., J).

The parameter sets generated by the algorithm given above are used to calculate
the efferent lymph flow Q2 and the afferent lymph pressure P1 by simulations of the
boundary integral equations model. Note that for evaluation of the composite parameter
Pv, appearing in the integral equations-based model and the NN model, the sampled values
of three parameters Pb, ∆π, σ were used.

Figure 4. Sampling of parameters for the training set using the LHS method. The physiological range
of the parameter values is divided into N equiprobable segments on each of which a random point is
selected. Structure of sampling intervals for the lymph absorption rate parameter L (left) and the
average oncotic pressure difference between blood and lymph ∆π (right).

5.2. Construction of Neural Network Model

Overall, 200 combinations of parameters L, α1, α2, Q1, P2, Pv were generated by the
LHS method. Using the integral equations model of the lymph flow through the LN
(see Section 2), we calculated the output values Q2, P1 for each combination of the input
parameters. Thus, we obtained two datasets for (1) training and (2) validation of the NN
model (with 1:1 split ratio).

The architecture of the NN model is shown in Figure 5. It is a fully connected neural
network containing one hidden layer consisting of six neurons (nodes). The sigmoid
activation function was used for the hidden layer neurons. The output values were
determined by a linear combination of the values in the hidden layer nodes. Let us
designate x = (L, α1, α2, Q1, P2, Pv)T as the input vector, xh—the state vector of hidden
layer neurons and y = (Q2, P1)

T—the output vector. The values in the hidden layer and in
the output are calculated using the following equations:xh = ξ

(
W1

x− a1

a2
+ b1

)
, ξ(x) =

1
1 + e−x

y = W2xh + b2,
(8)

with W1 and W2 being weight matrices, b1 and b2 are bias vectors, ξ(x) is vector-function
and a1 and a2 are vectors of normalization coefficients. ξ(x) is a notation for vectorized op-
eration, i.e., this operation is performed over every element of the array (x). The algorithm
presented in the Fast Artificial Neural Network (FANN) library [44] (implemented in C++
language) was applied to train the model (implemented in C++ language). The training
was performed using the error backpropagation method. The trained values of W1, W2, a1,
a2, b1 and b2 are given in Appendix A.

In addition, the training dataset was used to identify a statistical model, i.e., a linear
regression (LR) of y on covariates x = (L, α1, α2, Q1, P2, Pv)T . The output (response)
variables were described by the following regression equation y = W3

x−a1
a2

+ b3, with the
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weight matrix W3, and bias vector b3 (the values of elements of W3 and b3 are given in
Appendix A).

Note that we experimented with a large number of hidden layers and the number of
neurons in these layers, but the result was not significantly better than the one presented
in the article. We did not consider alternative neural network architectures in terms of
the principles of organizing the connections between layers, but only used a classical
network with direct signal propagation from inputs to outputs. This is consistent with the
functionality of the FANN library we used. For NN models with more than one hidden
layer, the accuracy of the models on the validation dataset did not improve.

Figure 5. Architecture of the neural network modeling the LN drainage/filtration function.

6. Validation of the Neural Network Model

To test the NN model performance, the validation dataset (100 simulations) was used.
Figure 6 shows the validation set output values Q2, P1 of the integral equations model and
the predictions of the trained NN model. The values of the output variables are ranked in
ascending order.

To characterize the accuracy of the NN predictions, the quadratic error functional
E2 and the logarithm error functional Elg were estimated. These functionals evaluate the
relative error as follows:

E2 =
(XIE − XNN)

2

X2
IE

, Elg = −10 lg(E2). (9)

Here, XNN stands for one of the integral equations model outputs Q2 or P1, whereas
XNN is the corresponding NN model prediction. Figure 7 presents the estimated prediction
error on the validation dataset. The average and the maximum values of the error for the
NN and LR models are detailed in Table 3.

The NN model performs with the relative accuracy of about 10−3. The linear re-
gression model performance is characterized by the mean prediction error of about 10−1.
The accuracy of predicted Q2 is much lower than that of P1. Hence, one can conclude that
the lymph filtration in the LN described by the systems of Equations (1) and (2) is a physical
process with a non-linear dependence on the parameters of the governing equations and of
the boundary conditions. The emerging non-linearity in the lymph flow behavior underlies
the poorer prediction of the validation dataset demonstrated by the LR model.
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Table 3. Mean and maximum values of the relative error functional (9) for the neural network and
linear regression models.

X max(E2) mean(E2) min(Elg) mean(Elg)

Neural network Q2 0.22 4× 10−3 6.5 43.1
Linear regression Q2 5.4 7× 10−2 −7 27.5
Neural network P1 1× 10−2 2× 10−4 20.2 47.5

Linear regression P1 3.6× 10−2 1× 10−3 14.5 38.2
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Figure 6. Output values Q2, P1 on validation dataset. Notations: IE—integral equation model,
NN—neural network model.
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Figure 7. Estimated prediction error for Q2, P1 on validation dataset. Notations: IE—integral
equation model, NN—neural network model.

To further test the predictive quality of the NN model, we considered the experimental
dataset (Table 1 data in [35]). The data present the experimental results for six animals with
six to seven measurements per animal. Overall, 32 data points were considered after the
removal of 6 measurements for which non-physiological efferent lymph pressures were
used in the experiments. For each animal, we evaluated the best-fit values of parameters
θ by minimizing the functional Φerr(θ), specified in (6), using the Nelder–Mead method.
The optimal estimates of the model parameters combined with the experimental data
were used as the input parameters of the NN model. The predicted output values Q2,
P1 were compared with the experimental results. Figure 8 presents the values Q2 and
P1 predicted the by NN and IE models versus the results of the experiments. Overall,
the predictions of the NN model are similar to the results of the IE model, except for two
points with the highest values of Q2. However, both models display some deviations
from the experimental data noticeable for small values of P1. Taking into account that
the mismatch characterized by the error metrics are comparable with the accuracy of the
experimental data, i.e., max(E2(Q2)) = 0.02, max(E2(P1)) = 0.4, mean(E2(Q2)) = 0.002
and mean(E2(P1)) = 0.08, the deviations at the lower end of the afferent lymph pressure
can be considered as acceptable.
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One of the major advantages of the developed NN model is the computation time
required for predicting the characteristics of the drainage function. Indeed, the NN training
on 100 datasets requires about 20 s of CPU time. The computation of Q2 and P1 for
100 parameter samples by the trained NN takes about 10−4 s. In contrast, the computation
time for 100 realizations of the integral equation-based mathematical model requires about
7.8 h.
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35
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45

Q
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Figure 8. Predicted values of Q2 (left) and P1 (right) and the experimental data. Notations: Exp—
experimental data from [35], IE—integral equation model and NN—neural network model.

7. Conclusions

We have developed an artificial neural network model to describe the lymph node
drainage function. The NN model predicts the flow characteristics through the LN, in-
cluding the exchange with the blood vascular system in relation to the boundary and
lymphodynamic conditions, such as the afferent lymph flow, Darcy’s law constants and
Starling’s equation parameters. The model has been formulated as a feedforward NN
with one hidden layer. The NN complements the computational physics-based model of a
stationary fluid flow through the LN and the fluid transport across the blood vessel system
of the LN. The physical model is specified as a system of boundary integral equations
equivalent to the original PDEs (Darcy’s Law and Starling’s equation) formulations [30,31].
To set up the model, we have considered a simplified LN geometry as consisting of two
embedded 3D ellipsoids. The IEs model has been calibrated using the available set of
classical physiological data on lymph filtration in the LNs [33–35]. The IEs model has
been used to generate the training dataset for identifying the NN model architecture and
parameters. The computation of the output LN drainage function characteristics (the fluid
flow parameters and the exchange with blood) with the trained NN model required about
1000-fold less CPU time than computationally tracing the flow characteristics of interest
with the physics-based IEs model.

The experimental data from [35] describes the dependence of fluid transfer character-
istics through the dogs’ popliteal lymph nodes on the efferent lymphatic pressure. Totally,
there are 38 data points for 6 dogs with 6–7 measurements per animal. The number of
experimental data points is not sufficient for neural network training, so we did not train
and validate the NN-based model directly on them. Instead, we used these data to estimate
the physiological ranges and plausible distributions of IE-based model parameters (see
Tables 1 and 2 and Figure 3), as described in Sections 4.1 and 4.2. Next, we synthesized the
data using the IE-based model by sampling the model parameters from the determined
distributions with Latin hypercube sampling (Section 5.1). We used the simulation-based
data (200 points) to further train the NN-based (and regression-based) models. The syn-
thetic data was split for training and validation of the NN-based model into two sets with
100 points in each set (Section 5.2). Finally, the experimental points were additionally used
to validate the developed IE- and NN-based models (Figure 8).

The lymphatic system serves an important transport function in the human body
and the body’s immune system [32]. The mathematical models of the LS developed so far
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describe various aspects of the system topology [8–10] and the lymph flow through lym-
phatic vessels [8,37,45]. The filtering function of the LNs has been much less explored [46]
with some studies addressing the flow through the macroscopic structures [30,31] and the
microscopic components, such as the conduit system [29,47]. In the available computational
models of the whole LS [6,8], the lymph nodes are treated as a type of lymphatic vessel.
However, the LNs are the key structures of the LS where the fluid exchange with the blood
vascular system takes place. The volume of the exchanged fluid is determined by the
following LN characteristics represented in the model: the hydraulic conductivity of the
porous medium, the total surface area of blood vessels, the hydraulic conductivity of BV
walls, the afferent lymph flow rate, the efferent lymph and blood pressure and the differ-
ence in oncotic pressures of blood and lymph. Whereas the integration of the physics-based
models [30,31] of the LN into the whole LS in silico models remains to be computationally
challenging, the use of the NN model with its ability to promptly compute the lymph bal-
ance parameters in the LN for some given lymph inflow characteristics and the parameters
of the porous media mimicking the hydraulic LN properties makes it an appropriate tool
for integration with the systemic lymphodynamics description.

The lymphatic system has a highly variable structure [7] with about 450 LNs in hu-
mans [48]. In turn, the architecture of the LN presents a variety of appearances with
differences in the numbers of afferent and efferent lymphatic vessels and shapes of the
macrostructures (e.g., subcapsular sinuses, lymphoid lobules and the surface area of the
blood capillary network). In our study, a simplified geometric model of the LN was consid-
ered. The developed approach to modeling LN drainage function utilizing a combination
of a physics-based model and a neural network-type model can be adapted to the LN
with an arbitrary shape and afferent/efferent vessels in a number of locations. To this end,
one would need to define a set of physiologically observed and structurally distinct LNs
and generate the integral equation-based and NN models linking the input parameters
to the characteristics of the drainage function of interest, subject to the availability of
the calibration dataset. The elements of the computational LN models library could be
assembled into a personalized virtual LS description by embedding them into a graph
model of the LS maximally reflecting the available data on an individual’s LN shapes, sizes
and number as well as the LS topology.

The presented approach to constructing a NN-type model describing lymph node
drainage function can be tailored for more complex lymph node architecture. For example,
the simplified geometric model of the LN can be refined to include more macroscopic struc-
tures, such as afferent and efferent lymphatic vessels, the B-cell follicles and trabecular and
medullar sinuses. The complexity of the LN geometry and shortage of experimental data
on the hydrodynamics properties of live LNs makes modeling the LN filtering function
a challenging task. In summary, we developed an artificial neural network model of the
lymph flow through the LN and fluid exchange with blood vessels in the LN. Comparing
the performance of NN model with the statistical regression on the simulated data gener-
ated with the physics-model which display a non-linear behavior, we conclude that the
accuracy of the NN model is superior.

LNs are the sites where the composition of the incoming lymph fluid is modified [26].
Lymph is composed of soluble proteins, pre-processed antigens, metabolites, exosomes as
well as chemokines and cytokines [49]. Lymph-borne soluble factors flowing through the
LN parenchyma have a direct impact on the structure, mechanical and transport properties
of the LNs. Experimentally, it was shown that the amount of fluid exchange through
the blood vessel walls can be modulated in either direction by changing the lymphatic
hydrostatic and oncotic pressures [32,33]. The variation of the composition of incoming
blood can be taken into account in our modeling approach by adjusting the oncotic pressure
parameter ∆π. Hence, its effect on the LN drainage function can be predicted with the
NN model. The applicability of the model to predict the effects for broader contexts
(cancer, aging, infections etc.) depends heavily on its calibration using the appropriate
experimental data. The availability of quantitative data linking the lymph composition and
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lymphatic transport in the LN for clearly defined physiological contexts still remains to be
a bottleneck [32,49].

Living organisms are characterized by an extremely complex and highly dimensional
network of biochemical reactions that regulate the realm of the organism’s physiological
functions, including the lymphatic transport through the LN. The filtering processes de-
scribed in the developed computational model depend on the oncotic pressure, the porosity
of the LN parenchyma and the permeability/area of the blood vessels walls. The impact of
biochemical reactions within the LN can be taken into account either by parameterization of
their effects on the respective model parameters or extending the model by considering the
reaction kinetics explicitly. However, this would require a major shift in the complexity of
the model to take into account the inflammatory processes and the formation of concentra-
tion gradients regulating the spatiotemporal dynamics of immune and stromal cells, which
can be a subject of future research requiring multidisciplinary modeling efforts [50–52].

As multiscale approaches to modeling the immune system and infectious disease be-
come mainstream in mathematical immunology, our study suggests efficient computational
tools for the prediction of:

• The flow velocity patterns in the LN, determining the cytokine gradients and the
cell migration, for which the physics-based boundary integral equations model can
be used;

• The bulk fluid exchange between the LN parenchyma and the HEVs, for which the NN
model provides a prompt solution.

These will allow a more realistic description and prediction of the immune cell circula-
tion, cytokine distribution and drug pharmacokinetics in humans under various health
and disease states as well as assisting in the development of artificial LN-on-a-chip tech-
nologies [52].

It is established that certain pathological conditions in humans (e.g., cancer metastasis,
HIV-induced dysfunction and poor vaccine responses) are associated with perfusion defects
in respective (e.g., sentinel or draining) LNs [53–55]. The underlying processes include the
changes in the density of cells, the angiogenesis and the collagen deposition. A hypothesis
on perfusion defect could be linked to the alteration in surface area of the LN blood
vessels participating in the filtration of lymph, the hydraulic conductivity of the cortex area,
abnormal hemodynamics in neovascular vessels, etc. All of them are represented in the
model by their respective parameters and their quantitative alterations can be estimated
from the ultrasound, CT or MRI image data using the modeling tools developed in our
study. Hence, the approach can be applied to quantify certain parameters of LN drainage
function to better understand the mechanisms and the plausible causes of the observed
deviations of lymph transport through the LN and to make informed decisions on the
appropriate treatments.
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Abbreviations
The following abbreviations are used in this manuscript:

LN lymph node
BV blood vessel
HEV high endothelial venule
CVs cardiovascular system
IE integral equation
NN neural network
PDE partial differential equation

Appendix A. Neural Network Weights and Biases

W1 =



−0.054645 0.737025 0.024023 0.017267 1.028559 0.111950
−0.417462 −0.116074 0.342722 0.098886 −1.072441 0.628883
−3.387751 0.325897 −0.622156 0.033413 1.822540 −0.786102
−1.705196 −0.633618 1.878637 0.033247 −0.713672 0.916270
1.093907 −1.227593 −0.247449 −0.217958 −1.464968 −0.704625
−2.662178 −0.075337 2.825645 −0.121848 −1.401579 0.785313


b1 =

[
0.304776 1.276788 −0.851572 3.987260 5.451636 3.736766

]T

W2 =

[
−20.558078 76.740191 34.520792 −17.366437 2.467357 42.203152
39.926874 −12.885754 0.593761 30.087843 −48.849747 −4.618822

]
b2 =

[
−40.513772 12.403862

]T

a1 =
[
1.146376 0.000401 0.182369 45.002441 1.102316 −5.966617

]T

a2 =
[
16.067264 0.003462 9.813424 1.49066 11.828457 5.541766

]T

W3 =

[
−22.589697 −4.546143 8.229841 0.586416 −15.515689 8.940397
−1.408556 5.957053 0.527214 0.066385 10.299504 0.456054

]
b3 =

[
40.975201 3.395775

]T
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