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Abstract: A graph signal is a random vector with a partially known statistical description. The
observations are usually sufficient to determine marginal distributions of graph node variables and
their pairwise correlations representing the graph edges. However, the curse of dimensionality often
prevents estimating a full joint distribution of all variables from the available observations. This
paper introduces a computationally effective generative model to sample from arbitrary but known
marginal distributions with defined pairwise correlations. Numerical experiments show that the
proposed generative model is generally accurate for correlation coefficients with magnitudes up to
about 0.3, whilst larger correlations can be obtained at the cost of distribution approximation accuracy.
The generative models of graph signals can also be used to sample multivariate distributions for
which closed-form mathematical expressions are not known or are too complex.
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1. Introduction

The observations of many real-world systems can be studied as multiple time series.
Provided that the pairwise relationships between the time series are implicitly or explicitly
defined, it is common to refer to these data models as graph signals [1]. In most cases,
only one feature representing the pairwise relationships is considered. The pairwise
relationships, which are not explicitly stated can assume some implicit value, such as
having a zero covariance (i.e., being uncorrelated), or these relationships should be assumed
to be undefined (i.e., unknown). The graph edges can also indicate statistical or causal
dependencies [2]. Consequently, graph signals can be defined as random vectors with
incomplete knowledge of their statistics. The random variables then represent nodes of the
graph, and the pairwise relationships are the graph edges.

The graph variables can be arranged into a random vector or matrix in an arbitrary
order. One can also assume a graph search and follow a path over the graph edges
through the graph nodes to construct the random vector. The random vectors and matrices
can be conveniently processed using the well-established framework of linear algebra
combined with methods in statistical signal processing [3] and machine learning. In the
literature on graph signal processing, the mainstream approach assumes a frequency
domain representation of graph signals using the singular value decomposition (SVD) of
graph adjacency, incidence, or Laplacian matrices [4].

In general, a random vector or matrix is fully statistically described by a joint distri-
bution of all the constituent random variables. A comprehensive survey of multivariate
distributions can be found in [5]. Mathematical expressions of multivariate distributions
may contain the pairwise correlations explicitly, as is the case of multivariate normal
distribution, but in most cases, the correlations can be calculated from other distribution
parameters. The main challenge in fitting multivariate distributions to observed data
is that the number of required observations to achieve a certain goodness-of-fit grows
exponentially with the number of dimensions (the curse of dimensionality). In addition,
multivariate distributions are often difficult to sample, and numerically complex algorithms
are required to perform statistical inferences [6].
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A related problem of generating random variables with defined moments was con-
sidered in the literature. In particular, a linear transformation was utilized in [7,8] to
generate nonnormal variates with the defined univariate skewness, kurtosis, and pair-
wise covariances. This method was extended in [9] to assume multivariate skewness
and kurtosis.

In this paper, it is assumed that a random vector is described by the marginal distribu-
tions and the pairwise correlations of its elements. The task is to define a generative model
to efficiently generate multivariate samples satisfying the given statistical constraints with-
out resorting to fitting a multivariate distribution to the observed data. It is proposed to
approximate the unknown multivariate distribution with defined statistical constraints by
a multivariate mixture distribution having independent marginals. In addition, it is shown
that the component distributions of the marginal mixture distributions can be conjugate
distributions. This approach enables a definition of a universal procedure for constructing
generative models of multivariate graph signals that can be readily sampled. The limita-
tion of the proposed procedure is that there is a tradeoff in how accurately the marginal
distributions can be approximated and the achievable pairwise correlations. However, it
is likely that the proposed generative procedure could be further modified to improve
the tradeoff.

The rest of the paper is organized as follows. The research problem is stated in
Section 2. The generative model of graph signals is introduced in Section 3. Numerical
examples for bivariate distributions are presented in Section 4. The obtained results are
discussed in Section 5, and Section 6 concludes the paper.

2. Problem Statement

Assume that a sufficient number of discrete-time observations of N stochastic time
series, Xi, i ∈ {1, 2, . . . , N}, have been collected, so the following quantities can be deter-
mined with a good accuracy:

marginal densities, fi(X) of Xi, for ∀i ∈ {1, 2, . . . , N}; and (C1)
covariances, Cij = cov

[
Xi, Xj

]
= E
[
(Xi − X̄i)(Xj − X̄j)

]
, for ∀i, j ∈ {1, 2, . . . , N} (C2)

where Xi is a random variable representing the samples in the i-th time series, and E[·] de-
notes expectation. Note that the existence of time-invariant densities implies stationarity as
well as knowledge of all the moments of univariate random variable Xi. Furthermore, only
continuous multivariate distributions are considered in this paper, and, unless otherwise
stated, Xi ∈ R.

If the constraints C1 and C2 are determined from real-world observations with suf-
ficient accuracy, both constraints are guaranteed to be consistent, and there must exist
at least one corresponding multivariate distribution. However, given a set of marginal
distributions and (unnormalized) covariances, there may be, in general, no multivariate
distributions satisfying these constraints. The constraint C2 may be modified to assume
the normalized correlation coefficients instead of covariances.

The joint moments including covariances and the corresponding Pearson correla-
tion coefficients can be estimated from data by the method of sample moments [10]. The
marginal densities can be efficiently estimated from data by various nonparametric methods
using histograms, kernels [11], and diffusion [12]. However, estimating the joint probability
density of all N variates Xi may be problematic, since it may require a very large num-
ber of observations, especially for more complex distributions in many dimensions [13].
Consequently, given the marginal distributions fi(X) and the pairwise covariances Cij,
the task is to construct a generative model for generating random samples of the vector,
X = [X1, X2, . . . , XN ], whose elements satisfy the constraints C1 and C2 given above. No
other constraints are adopted in this paper, although it may be desirable to require that
the generative model is also numerically efficient. In addition, the generative procedure
to obtain random samples satisfying the constraints C1 and C2 should be sufficiently
general in order to allow for different types of marginal distributions including the case of
non-identical marginal distributions.
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3. Constructing a Multivariate Distribution from Its Marginals

The constraints C1 and C2 do not uniquely define the joint distribution f (X). In
particular, the marginal distributions can be used to obtain all general and central moments
of individual random variables Xi, whereas the pairwise covariances are the only joint
statistics assumed to be known. Provided that the marginals fi are of the same and more
common type, the corresponding multivariate density may have been identified in the
literature [5]. However, even if the mathematical expression of the desired multivariate
distribution f (X) is available, it may be too complex to sample from, or to accurately
fit to the observations using, for example, the least squares regression or other param-
eter estimation methods [3]. Another strategy, which is investigated in this paper, is to
construct the joint distribution f from the known marginals fi, i = 1, 2, . . . , N under the
covariance constraints.

Proposition 1. The join density f with the given marginals fi, i = 1, 2, . . . , N, under mild
covariance constraints can be well approximated by the mixture distribution,

f (X) =
K

∑
k=1

αk f̃k(X) (1)

of K joint component densities f̃k, and the weighting factors, αk > 0 ∀k and ∑K
k=1 αk = 1.

The mixture decomposition (1) of f again requires that not only all the components f̃k
are identified but also that they can be effectively sampled from. In order to overcome the
latter challenge, it is newly proposed to adopt an independence assumption, and express
the marginals f̃k as a product of the individual densities, i.e., the mixture decomposition (1)
is rewritten as,

f (X) =
K

∑
k=1

αk

N

∏
i=1

f̃ki(Xi). (2)

The advantage of assuming the mixture decomposition (2) is that it is generally much
easier to sample from univariate than from multivariate distributions. The disadvantage
of decomposition (2) is that the independence assumption limits the achievable pairwise
correlations between variables X.

Denote X−i = {X1, X2, . . . , XN} \ {Xi}, and X−i−j = {X1, X2, . . . , XN} \ {Xi, Xj}. The
marginal distributions corresponding to decomposition (2) are obtained as

fi(Xi) =
∫
RN−1

f (X)dX−i =
K

∑
k=1

αk f̃ki(Xi), (3)

whilst the bivariate marginal densities are computed as

fij(Xi, Xj) =
∫
RN−2

f (X)dX−i−j =
K

∑
k=1

αk f̃ki(Xi) f̃kj(Xj). (4)

The corresponding mean value is

X̄i = E[Xi] =
K

∑
k=1

αkE f̃ki
[Xi] =

K

∑
k=1

αkX̄ki, (5)

and the second moments are computed as

var[Xi] = E
[
X2

i
]
− E[Xi]

2 =
K
∑

k=1
E f̃ki

[
X2

i
]
−

K
∑

k=1

K
∑

l=1
αkαl X̄kiX̄li

corr
[
Xi, Xj

]
= E

[
XiXj

]
=

K
∑

k=1
αkX̄kiX̄kj

cov
[
Xi, Xj

]
= E

[
XiXj

]
− E[Xi]E

[
Xj
]
=

K
∑

k=1
αkX̄kiX̄kj −

K
∑

k=1

K
∑

l=1
αkαl X̄kiX̄l j.

(6)
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Consequently and importantly, for N ≥ 2 and K ≥ 2, the pairwise covariances are
given by the mixture coefficients αk and the mean values X̄ki of the component distribu-
tions f̃ki(Xi).

Given the marginals fi and the covariances cov
[
Xi, Xj

]
, the values of αk and X̄ki

must satisfy Equations (5) and (6). This represents a system of (N + (N
2 )) equations with

(NK + K) unknowns, where (N
2 ) = N(N − 1)/2 is a binomial coefficient. Provided that

the K coefficients αk can be determined by N univariate decompositions (3), the number of
unknowns can be reduced to NK. Then the number of degrees of freedom as a difference
between the number of equations and the number of unknowns, i.e., Dfree = NK−N− (N

2 ),
versus the distribution dimension N is shown in Figure 1 for several different values of
K. The points above the horizontal dashed line in Figure 1 indicate the underdetermined
cases when the number of unknowns is greater than the number of constraints. The unique
solution may exist, if N = 2(K− 1) + 1, i.e., when N is odd.

2 4 6 8 10 12

-5

0

5

10

15

20

K=6

K=5

K=4

K=3

K=2

N

D
fr
ee

Figure 1. The number of degrees of freedom to determine NK unknown coefficients X̄ki from the
constraints C1 and C2.

Bivariate Case

For N = 2 and K = 2, the number of degrees of freedom, Dfree = 1. Assuming two
random variables X and Y, the mixture decomposition (2) can be rewritten as,

f (X, Y) = α f̃X1(X) f̃Y1(Y) + (1− α) f̃X2(X) f̃Y2(Y) (7)

where 0 < α < 1. Note that, for α = 0 or α = 1, the variables X and Y are assumed to
be independent, and thus, uncorrelated. The corresponding marginal distributions are
the mixtures

fX(X) = α f̃X1(X) + (1− α) f̃X2(X)

fY(Y) = α f̃Y1(Y) + (1− α) f̃Y2(Y)
(8)

having the following first and second order statistics

X̄ = αX̄1 + (1− α)X̄2
Ȳ = αȲ1 + (1− α)Ȳ2
var[X] = α var[X1] + (1− α)var[X2] + α(1− α)(X̄1 − X̄2)

2

var[Y] = α var[Y1] + (1− α)var[Y2] + α(1− α)(Ȳ1 − Ȳ2)
2

corr[X, Y] = αX̄1Ȳ1 + (1− α)X̄2Ȳ2
cov[X, Y] = α(1− α)(X̄1 − X̄2)(Ȳ1 − Ȳ2)

(9)

where the mean and the variance of f̃X1 are denoted as X̄1 and var[X1], respectively. Similar
notation is used for the other component distributions. Note that the correlation between
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the variables X and Y increases with the difference of the means of the corresponding
component distributions. Conversely, the variables X and Y are uncorrelated, if either the
means X̄1 = X̄2, or Ȳ1 = Ȳ2. The expression, α(1− α) ≥ 0, is maximized for α = 1/2.

Since Dfree = 1, the mean values of the component distributions in (7) can be expressed
as functions of one parameter. For example, choosing X̄1 as such parameter, the other
means are computed as

X̄2 =
X̄− αX̄1

1− α

Ȳ1 =
cov[X, Y](1− α) + αȲ(X̄1 − X̄)

α(X̄1 − X̄)

Ȳ2 =
−cov[X, Y] + Ȳ(X̄1 − X̄)

(X̄1 − X̄)

(10)

by solving the equations for X̄, Ȳ and cov[X, Y] given in (9). Substituting the expressions
in (9), the Pearson correlation coefficient is computed as,

ρXY =
cov[X, Y]√
var[X]var[Y]

=
α(1− α)(X̄1 − X̄2)(Ȳ1 − Ȳ2)√

σ2
1 + α(1− α)(X̄1 − X̄2)2

√
σ2

2 + α(1− α)(Ȳ1 − Ȳ2)2
(11)

where σ2
1 = α var[X1] + (1− α)var[X2] and σ2

2 = α var[Y1] + (1− α)var[Y2]. Consequently,
the combined variances σ2

1 and σ2
2 limit the achievable correlations between the variables X

and Y in the generative model (7). Only when σ2
1 = σ2

2 = 0, can the correlation coefficient
reach the maximum magnitude, ρXY = ±1.

The mixture decompositions of marginals defined in (8) can be obtained using differ-
ent strategies. The marginal distributions defined by the constraint C1 can be common
univariate distributions, or they can be defined as the univariate mixture distributions from
the onset. The latter case can be resolved by curve fitting to the observed data, so here, we
investigate the former case.

Proposition 2. The marginal distributions (8) can be approximated by conjugate mixtures. The
conjugate mixtures are of the same type as the resulting marginal distributions, but they have their
parameters determined by the constraints (9).

Hence, assume that the mixture distributions f̃X1 and f̃X2 in (8) are obtained by a
linear transformation of the marginal distribution fX , i.e., let [14]

f̃X1(X) =
1
s1

fX

(
X−m1

s1

)
f̃X2(X) =

1
s2

fX

(
X−m2

s2

) (12)

where the shifts m1, m2 ∈ R, whereas the scaling s1 = 1− ε1 and s2 = 1− ε2, for some
small ε1, ε2 > 0, to satisfy the variance constraint in (9). The marginal distribution fY is
approximated similarly, and independently from fX .

Substituting (12) into (8), the value of the mixture coefficient α can be determined
to optimize the goodness of fit. In particular, the conjugate mixture distributions can be
locally linearized about X0, as indicated in Figure 2. Then, for ∀X : |X − X0| < ε, the
distributions can be approximated as linear functions, i.e.,

fX(X) ≈ gX + o

fX1(X) ≈ g1(X + m1) + o

fX2(X) ≈ g2(X−m2) + o

(13)
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where g, g1, and g2 are the gradients, o is the common offset, and m1, m2 > 0 are the shifts.
Substituting into (8), we obtain

α g1(1 + m1/m2) = g

(1− α)g2(1 + m2/m1) = g,
(14)

which is crucially independent of the actual value of X0. In the case when g1 = g2, a rule
of thumb for choosing the value of mixture coefficient α is obtained as

m1α = m2(1− α) (15)

so that, α(X̄ + m1) + (1− α)(X̄ −m2) = X̄ as in (9). Hence, the value of α can be chosen
somewhat arbitrarily as long as the condition (15) and the constraints (9) are satisfied.

X0

f (X)

f̃X1(X)

f̃X2(X)

X

m1 m2

Figure 2. Linearization of distributions in the mixture decomposition of the marginal distribution fX

in the vicinity of an arbitrary point X0.

Alternatively, for conjugate mixture components, the decomposition (8) can be rewrit-
ten as,

fX(X) ≈ αg1 fX(X + ∆X) + (1− α)g2 fX(X− ∆X). (16)

Equation (16) can be assumed to be a linear digital filtering of the signal fX(X) in vari-
able X. The filter coefficients αg1 and (1− α)g2 are separated by 2∆X. The approximation
(16) is then more exact, provided that the filter does not distort the filtered signal fX(X), i.e.,
when the filter bandwidth is wider than the bandwidth of the signal [15]. The signal and
filter bandwidth are determined by the magnitude of the Fourier transform. In particular,
since the signal fX(X) is also a distribution, we can assume the characteristic function
of fX(X), i.e., φX(s) = EX

[
ejsX], j =

√
−1, which is known or can be obtained for most

univariate distributions. The filter bandwidth is obtained by computing the magnitude of
its transfer function T(s), i.e.,

T(s) =
∫ ∞

−∞

{
αg1δ(X + ∆X) + (1− α)g2δ(X− ∆X)

}
ejsX dX

= αg1 ej2πs∆X + (1− α)g2 ej2πs∆X .
(17)

4. Numerical Examples

The case of the following three bivariate distributions is considered: normal, gamma,
and normal-exponential distributions [14]. Although generating correlated normal samples
is straightforward, which is a rare exception among multivariate distributions, the normal
distribution is mainly considered to validate the proposed generative model.

The first experiment investigates approximations of the selected univariate distribu-
tions by a mixture of the two component distributions defined in (8), i.e., the approximation,
fX̃ = α f̃X1 + (1− α) f̃X2 , of fX . The approximation accuracy is quantified by the Kullback–
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Leibler (KL) divergence between the target distribution fX and its mixture approximation
fX̃ . The KL divergence is defined as,

KL( fX̃‖ fX) =

∞∫
−∞

fX̃(X) log
fX̃(X)

fX(X)
dX. (18)

Moreover, using Jensen’s inequality for logarithm, it is straightforward to show that

KL( fX‖ fX̃) ≥
K

∑
i=1

αi KL( fX | fXi ). (19)

In order to reduce the number of free parameters, the mixture components are assumed
to be the conjugates of the target distribution, i.e., fX1 and fx2 are of the same type as fX,
and have the means, X̄1 = X̄ + ∆X̄, and X̄2 = X̄ − ∆X̄, where ∆X ≥ 0. Consequently,
α = 1/2 in all the experiments, in accordance with (15).

In the case of normal distribution, there are two distribution parameters, i.e., the
mean X̄ and the variance var[X]. In order to account for the variance constraint in (9),
the variances of the component distributions fX1 and fX2 have been equally reduced to,
p× var[X], 0 < p ≤ 1. The gamma distribution also has two parameters, i.e., the shape
k > 0, and the scale θ > 0. Given the scale θ, the shapes of the two component distributions
fX1 and fX2 are set to, k1,2 = (X̄±∆X)/θ, respectively. The normal-exponential distribution
(or, exponentially-modified normal distribution) is described by three parameters, i.e.,
the mean and the variance of the normal distribution and the rate of the exponential
distribution. The variance of the normal distribution of both components fX1 and fX2 was
reduced to 0.9var[X], and the variance of the exponential distribution was left unchanged.

The KL values for all three distributions considered are shown in a log-scale in Figure 3.
It is observed that the approximations fX̃ of fX are visually accurate for the log-KL values
below 10−2. Hence, the mixture approximation fX̃ is rather accurate for some parameter
values of the target distribution, and mainly for smaller displacements ∆X, as expected.

Next, we investigate the achievable magnitudes of the correlation coefficient between
the random variables X and Y which are both generated by the mixture approximations (8).
The same three marginal distributions are considered, i.e., normal, gamma, and normal-
exponential distributions with the same parameters as in Figure 3. Here, the benefit of
defining the bivariate distributions as the mixtures (7) to generate correlated random
samples becomes evident. In particular, with the probability α, the distributions fX1 and
fY1 are sampled independently, and with the probability (1− α), the samples X and Y
are independently generated from the distributions fX2 and fY2 , respectively. Thus, the
correlated bivariate samples are generated by independently sampling from the four
univariate distributions fX1 , fX2 , fY1 , and fY2 . The generation of normal samples is trivial,
and readily available in many numerical software packages. For gamma distribution, the
generator of gamma samples is either available (e.g., in Matlab as function gamrnd), or the
gamma random number generator can be constructed [16]. Finally, the normal-exponential
distributed samples are simply the sum of the two underlying distributions.

The achievable correlation coefficient has been measured empirically for 105 bivariate
random samples. The results are shown in Figure 4. The curves are in a good agreement
with the theoretical values given by expressions (11). More importantly, the following
conclusion can be drawn from comparing the corresponding results in Figures 3 and 4.
The accurate approximation of the marginal distributions by the proposed generative
mixture model limits the achievable values of the correlation coefficient to about 0.2 or 0.3,
depending on the specific distributions and their parameters considered.
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Figure 3. The Kullback–Leibler divergence of approximating the named univariate distributions by
the two-component mixture distributions as a function of the component distributions displacement.
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Figure 4. The correlation coefficient of the named bivariate distributions as a function of the compo-
nent distributions displacement.

5. Discussion

The full statistical description of multiple time series may be difficult or impossible to
obtain from a limited number of the observations. The incomplete statistics give raise to
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interesting signal processing problems involving graph signals. The graph signals can be
more formally defined as follows.

Definition 1. The graph signal is a set of random variables representing space-time observations of
stochastic processes or phenomena, for which some marginal or conditional distributions and some
statistical moments are known. However, the statistical description is incomplete in the sense that a
full joint distribution of all random variables cannot be uniquely determined from prior knowledge
and the available observations.

Provided that graph signals are represented as random vectors or matrices, many
techniques of statistical signal processing or even machine learning can be used. For
instance, Bayesian inference of parameters and unobserved model states requires a full
statistical description of observed samples as the joint density or conditional density.
Learning the model may require generating enough labeled data, which are consistent with
the observations. Knowledge of the joint distribution is also important in controllability
and observability of stochastic systems, for instance, to make optimum decisions under
uncertainty. In these cases, constructing a generative model of graph observations and
graph responses is crucial.

In this paper, the generative model of multiple random observations is constrained by
the marginal distributions and the second order statistics. This does not uniquely define
the corresponding joint distribution, but it can be further constrained by other higher
order moments [7,8]. The behavior of the higher and lower order moments is described
by Hölder’s inequality [17]. An open research problem is whether there always exists at
least one multivariate distribution given the set of marginal distributions and the pairwise
correlations or covariances; it is guaranteed to exist if the observations have been obtained
from a real-world system or a simulated model. There are multivariate distributions such
as the multivariate Cauchy distribution for which the correlations cannot be defined. In
addition, the marginal or conditional distributions may have some of their parameters
undefined which increases the number of degrees of freedom. The unknown parameters
could be then estimated from the known moments or other known statistics. Furthermore,
practical problems often require generating the samples that are correlated in more than
one dimension.

In general, there is a tradeoff between accurately approximating the marginals as mix-
ture distributions and the achievable magnitude of the correlation coefficient as indicated
by Equation (11). This has been observed in numerical examples involving two random
variables assuming conjugate components in the mixture approximations of marginal
distributions. The main advantage of the proposed generative model is that it can be
readily sampled. The accuracy–correlation tradeoff could be improved by assuming non-
conjugate mixture component distributions or by considering other types of generative
models, albeit at the cost of the sampling efficacy. Alternatively, the pairwise covariance of
samples Xi and Yi can be reduced by simple averaging. In particular, let X̄ = ∑N1

i=1 Xi, and,
Ȳ = ∑N2

i=1 Yi, and assume that the samples Xi and Yi are otherwise uncorrelated. Thus, let
E
[
XiXj

]
= E
[
YiYj

]
= E
[
XiYj

]
= 0, for i 6= j, whereas E[XiYi] 6= 0. It is then straightforward

to show that the correlation coefficient defined in (11) changes to

ρX̄Ȳ =

√
N2

N1
ρXY, N2 ≤ N1. (20)

Another strategy worth exploring is to investigate the kernel approximations of
multivariate densities [11] and also the bounds of these densities. For instance, for any sets
A and B, the joint probability can bounded as

Pr(A) + Pr(B)− 1 ≤ Pr(A ∩ B) ≤
√

Pr(A)Pr(B). (21)
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Then, for A = {X : X ≤ x} and B = {Y : Y ≤ y}, the joint cumulative function FXY
can be bounded as

FX(x) + FY(y)− 1 ≤ FXY(x, y) ≤
√

FX(x)FY(y). (22)

For N = 2, the bivariate joint cumulative density is obtained by integrating Equation (2),
i.e.,

FXY(x, y) =
K

∑
k=1

αkFXk (x)FYk (y). (23)

Assuming Equation (22), it can be bounded as

K

∑
k=1

αk
(

FXk (x) + FYk (y)− 1
)
≤

K

∑
k=1

αkFXk (x)FYk (y) ≤

√√√√ K

∑
k=1

αkFXk (x)
K

∑
k=1

αkFYk (y). (24)

Moreover, in many stochastic systems, the densities evolve in time, so the discrete
mixture (1) could be rewritten for the case of continuous time t as

f (X) =
∫
R

α(t) f̃ (X; t)dt, (25)

where α(t) is another probability distribution, i.e., α(t) ≥ 0 and
∫
R α(t)dt = 1. The

expression (25) then represents a mean-time density of the system response.
Lastly, the generative model constructed in this paper exactly fits the first and the

second statistical moments whilst approximating the marginal distributions. An alternative
strategy to construct a generative model may instead emphasize fitting exactly the marginal
distributions and relaxing the constraints involving the statistical moments.

6. Conclusions

The graph signals were defined as random vectors with incomplete knowledge of their
statistics. A generative probabilistic model was then proposed to sample graph signals
from given marginal distributions with given pairwise correlations. The generative model
approximated the multivariate distributions by a mixture of independent univariate densi-
ties, which were then sampled to generate the correlated random sequences, which were
consistent with the observations. The numerical results were presented for a bivariate case
of three specific marginal distributions. The results confirmed that the proposed generative
model experiences a tradeoff between accurately approximating the marginal densities and
the achievable correlations, with the correlation coefficient magnitudes not greater than
about 0.3. However, the cross-correlations of the observed samples can be reduced by sim-
ple averaging. Future work will focus on improving the approximation–correlation tradeoff
and on defining generative models with estimation of unknown model parameters.
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