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Abstract: The family of Numerov-type methods that effectively uses seven stages per step is
considered. All the coefficients of the methods belonging to this family can be expressed analytically
with respect to four free parameters. These coefficients are trained through a differential evolution
technique in order to perform best in a wide range of Keplerian-type orbits. Then it is observed with
extended numerical tests that a certain method behaves extremely well in a variety of orbits (e.g.,
Kepler, perturbed Kepler, Arenstorf, Pleiades) for various steplengths used by the methods and for
various intervals of integration.

Keywords: initial value problem (IVP; second-order IVP); Numerov-type methods; two-body
problem; perturbed Kepler; differential evolution
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1. Preliminary Discussion

We are interested in the particular version of the Initial Value Problem (IVP):

y′′ = f (t, y), y(t0) = y0, y′(t0) = y′0, (1)

where f : R×Rm −→ Rm and y0, y′0 ∈ Rm. This problem is used to simulate a variety of
physical models. Observe that y′ is not a part of (1).

The Nume ·rov scheme is one of the most known methods for addressing (1). It aids
in propagation of the numerical approximation of the solution from tλ to tλ+1 = tλ + h,
in accordance to the following formula:

yλ+1 = 2yλ − yλ−1 +
h2

12
( fλ+1 + 10 fλ + fλ−1),

with yλ ≈ y(tλ) and fλ ≈ y′′λ = f (xλ, yλ). Remark also that yλ, fλ ∈ Rm.
Implicit Nume ·rov-type methods that use points off-step we ·re proposed firstly almost

four decades ago, beginning with the work of Hairer [1] and followed by Cash [2] and
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Chawla [3]. The main focus at the time was on the P-stability feature. This later property
was demanded when dealing stiff problems with periodic solutions.

A little later, Chawla [4], made a modification to the Nume ·rov producing the explicit scheme:

w1 = yλ−1,

w2 = yλ,

w3 = 2yλ − yλ−1 + h2 f (tλ, w2),

yλ+1 − 2yλ + yλ−1 = 1
12 h2 · ( f (xλ+1, w3) + 10 f (xλ, w2) + f (xλ−1, w1)),

(2)

where h the steplength used which remains constant through the integration:

h = tλ+1 − tλ = tλ − tλ−1 = · · · = t1 − t0.

The vectors yλ−1, yλ and yλ+1 app ·roximate y(tλ − h), y(xλ) and y(xλ + h) respec-
tively while w1 ∈ Rm, w2 ∈ Rm and w3 ∈ Rm are the stages of the method.

Following the common technique we use information known at grid by setting:

w1 = yλ−1, w2 = yλ.

After f (tλ−1, w1) has already evaluated in the previous step, only f (tλ+1, w3) and
f (tλ, w2) are the new stages (function evaluations) wasted every step.

Subsequently, Tsitou ·ras proposed an approach in the form of Runge–Kutta–Nyström
(RKN)-type methods [5]. The technique he proposed lowered significantly the cost. This
results in creating a sixth-order method by using only four stages (see [5]). On the contrary,
older implementations necessitated the evaluation of six stages per step [6].

In the years thereafter, our research group has delved deeper into the subject. Tsi-
touras [7] produced methods that attained eighth algebraic order using only nine stages
each step. Simult·aneously, a group of Sp·anish researchers working on this subject, pre-
sented very interesting results as well [8–10].

2. Theory Numerov-Type Methods Using Off-Step Nodes

For addressing numerically problem (1) we are interested in using higher-order
schemes. Here t which is the independent variable is incorporated as an extra component
of y. Then, we concentrate to y′′ = f (y) which is an autonomous system without losing
the generality of the approach. Thus, an s-stage hyb ·rid Numerov scheme gets the form:

yk+1 = 2yk − yk−1 + h2 · (b⊗ Is) · f (u)

w = (e + c)⊗ yk − c⊗ yk−1 + h2 · (A⊗ Is) · f (w)
(3)

where Is ∈ Rs×s is the identity matrix. In expression (3) above A ∈ Rs×s, bT ∈ Rs, c ∈ Rs

are the matrices and vectors containing the coefficients of the method while

e = [1 1 · · · 1]T ∈ Rs.

Butcher tableau [11,12] is in common use in formul·ating the coefficients,

c A

b
.

The method given by Formula (2) can be represented using matrices. The function
evaluations are computed in sequence and the methods are explicit. The matrix of coef-
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ficients A is st ·rictly lower t ·riangular. We assume s = 8 and now the coefficients of the
method can by tabulated as follows:

A =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

a31 a32 0 0 0 0 0 0

a41 a42 a43 0 0 0 0 0
a51 a52 a53 a54 0 0 0 0
a61 a62 a63 a64 a65 0 0 0
a71 a72 a73 a74 a75 a76 0 0
a81 a82 a83 a84 a85 a86 a87 0


,

b =
[

b1 b2 0 b4 b4 b5 b5 b1,
]
,

and
c =

[
−1 0 c3 c4 −c4 −c5 c5 1

]T .

Then only seven function evaluations are evaluated per step since f (w1) is known
from the last step. Our aim now is to achieve eighth order and for accomplishing this, all
order conditions of the same and of lower order have to be eliminated, see [13].

The scheme we consider here possesses 34 parameters. Namely, 27 entries through
matrix A (i.e., a31, a32, · · · , a87), another 4 coefficients for vector b, and finally another
3 entries coming from c. Using these parameters we have to satisfy 62 order conditions for
attaining 8–th order (follow Table 5 from [13]).

The offered parameters are much less than the equations. This is a usual occurrence
while deriving Runge–Kutta-type schemes. Using simplifying assumptions is a frequent
way to get around issue. Here we only use,

A · e = 1
2
(c + c2), A · c = 1

6
(−c + c3).

We waste only the six parameters a31, a32, a41, a42, a51, and a52 to add ·ress these
assumptions. Then all terms that contain the subexpressions A · e and A · c can be dropped
from the corresponding order conditions listed in [13]. As a result, the remaining 11 coeffi-
cients must now fulfill only nine order criteria.

We may solve this problem analytically with respect to a quadruplet of parameters
that can be chosen arbitrarily. Let us choose c3, c4, c5, and a64. The rest coefficients are then
presented below.

b1 =
14c2

4
(
5c2

5 − 2
)
− 28c2

5 + 15
840
(
c2

4 − 1
)(

c2
5 − 1

) , b2 =
14c2

4
(
25c2

5 − 3
)
− 42c2

5 + 13
420c2

4c2
5

,

b4 =
42c2

5 − 13
840c2

4
(
c2

4 − 1
)(

c2
4 − c2

5
) , b5 =

42c2
5 − 13

840c2
4
(
c2

4 − 1
)(

c2
4 − c2

5
) ,

a31 =
1
6

(
c3 − c3

3

)
, a32 =

1
6

c3

(
c2

3 + 3c3 + 2
)

, a43 =
c4
(
c3

4 + 2c2
4 − 1

)
12c3(c3 + 1)

,

a53 = −
c4
(
c3
(
c3

4 + 2c2
4 − 1

)
+ c4

4 − 4c3
4 + c4

)
12c3(c3 + 1)(c3 − c4)

, a54 =
(c3 − 1)c3

4
6(c4 + 1)(c3 − c4)

,

a63 =

c5

(
−c3

(
c2

4 + c4 − 1
)(

42c4
5 − 55c2

5 + 13
)
+ 42c4

4
(
c3

5 − 2c2
5 + 1

)
+ 51c3

4
(
c2

5 − 1
)

+c2
4
(
42c4

5 − 55c3
5 + 4c2

5 + 9
)
+ c4

(
−9c4

5 − 4c2
5 + 13

)
+ c2

5
(
9c2

5 + 13c5 − 22
) )

−24a64c2
4
(
42c4

4 − 55c2
4 + 13

)
12c3(c3 + 1)

(
42c3

4 − 42c2
4 − 13c4 + 13

)
(c3 + c4)

,
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a65 =

(c5 − 1)c5(c4 + c5)

 c2
4
(
42c3

(
c2

5 − c5 − 1
)
− 3
(
14c2

5 + 3c5 + 3
))

+c4(c5 + 1)(c3(42c5 + 29) + 9c5 + 22)
−c5(c3(42c5 + 29) + 9c5 + 22)


−12a64c4

(
42c4

4 − 55c2
4 + 13

)
(c3 − c4)

12(c4 − 1)2c4
(
42c2

4 − 13
)
(c3 + c4)

,

a73 =

(c5 + 1)


(c5 − 1)c5



c2
3
(
c2

4 + c4 − 1
)(

42c3
5 − 42c2

5 − 13c5 + 13
)

+c3


42c4

4
(
c2

5 − c5 − 1
)

+2c3
4
(
63c3

5 + 21c2
5 + 6c5 + 19

)
+c2

4
(
29c2

5 + 4c5 − 22
)

−51c4c2
5(c5 + 1) + c2

5(9c5 + 22)


+c4

 −42c4
4
(
c2

5 − c5 − 1
)
− 51c3

4(c5 + 1)
+c2

4
(
−210c3

5 + 13c2
5 + 61c5 + 9

)
+c4

(
93c3

5 + 9c2
5 − 13c5 + 13

)
− c2

5(9c5 + 22)




−24a64c2

4
(
42c4

4 − 55c2
4 + 13

)
(c3 − c4)


12c3(c3 + 1)

(
42c3

4 − 42c2
4 − 13c4 + 13

)
(c5 − 1)

(
c2

3 − c2
4
) ,

a74 = −

(c5 + 1)


(c5 − 1)c2

5


c3


c3

4
(
84c2

5 − 42c5 − 17
)

+c2
4
(
42c2

5 + 42c5 − 20
)

+c4
(
−51c2

5 + 11c5 + 11
)

+c5(9c5 − 11)


+c4

(
c3

4(42c5 − 9)− 2c2
4
(
63c2

5 + 21c5 − 23
)

+c4
(
51c2

5 − 11c5 − 11
)
+ (11− 9c5)c5

)


−12a64c2

4
(
42c4

4 − 55c2
4 + 13

)
(c3 − c4)


12c2

4
(
42c4

4 − 55c2
4 + 13

)
(c5 − 1)(c3 − c4)

,

a75 =

(c5 + 1)

 (c5 − 1)c5(c4 + c5)

 c3
4
(
42c3

(
c2

5 − c5 − 1
)
− 84c2

5 − 9
)

+c2
4
(
c3(80c5 + 29) + 42c2

5 + 33c5 + 22
)

−3c4c5(3c3(c5 + 3) + 11) + c3c5(9c5 − 11)


−12a64c2

4
(
42c4

4 − 55c2
4 + 13

)
(c3 − c4)


12(c4 − 1)2c2

4
(
42c2

4 − 13
)
(c5 − 1)(c3 + c4)

,

a76 =

(
42c2

4 − 11
)
c5(c5 + 1)

6
(
42c2

4 − 13
)
(c5 − 1)

,

a83 = −

24a64c2
4
(
42c3

4 − 42c2
4 − 13c4 + 13

)
(c4 + 1)2(c3 − c4)

+(c5 − 1)c5(c4 + c5)



c3


−42c4

4
(
c2

5 − c5 − 1
)

−c3
4
(
42c3

5 + 168c2
5 + 25c5 − 17

)
+c2

4
(
42c3

5 + 9c2
5 − 33c5 − 29

)
+c4

(
42c2

5 + 38c5 + 22
)
− c5(9c5 + 22)


+c4


42c4

4
(
c2

5 − c5 − 1
)

+c3
4
(
−42c3

5 + 84c2
5 + 51c5 + 9

)
+c2

4
(
42c3

5 + 75c2
5 + 7c5 + 3

)
−2c4

(
21c2

5 + 19c5 + 11
)
+ c5(9c5 + 22)




6c3(c3 + 1)(c5 − 1)c5

(
c2

3 − c2
4
)(

14c4
4
(
5c2

5 − 2
)
+ c2

4
(
15− 70c4

5
)
+ c2

5
(
28c2

5 − 15
)) ,

a84 =

24a64c2
4(c4 + 1)2(42c3

4 − 42c2
4 − 13c4 + 13

)
(c3 − c4)

−c5
(
c2

5 − 1
)


c3


c4

4
(
84c2

5 − 42c5 − 17
)

+c3
4
(
112c3

5 + 14c2
5 − 32c5 − 5

)
+c2

4
(
28c3

5 − 37c2
5 + 47c5 − 3

)
+c4

(
−28c3

5 − 14c2
5 + 6c5 + 5

)
−28c3

5 + 37c2
5 − 5c5 − 6


+c4

 c4
4(42c5 − 9) + c3

4
(
−28c3

5 − 98c2
5 + 6c5 + 31

)
+c2

4
(
−112c3

5 + 37c2
5 − 21c5 + 3

)
+c4

(
28c3

5 + 14c2
5 − 6c5 − 5

)
+ 28c3

5 − 37c2
5 + 5c5 + 6




12c2

4(c4 + 1)(c5 − 1)c5(c3 − c4)
(
14c4

4
(
5c2

5 − 2
)
+ c2

4
(
15− 70c4

5
)
+ c2

5
(
28c2

5 − 15
)) ,



Mathematics 2021, 9, 3071 5 of 19

a85 =

(c4 + 1)



(c5 − 1)c5



c3


84c4

4
(
c2

5 − c5 − 1
)

+c3
4
(
84c3

5 − 42c2
5 + 25c5 + 67

)
+c2

4
(
−28c4

5 + 42c3
5 + 92c2

5 + 44c5 − 4
)

+c4
(
56c4

5 − 51c3
5 − 82c2

5 + 1
)

−28c4
5 + 9c3

5 + 32c2
5 − 11c5 − 6



+c4


−3c3

4
(
42c2

5 + 17c5 + 3
)

+c2
4
(
−28c4

5 − 126c3
5 + 34c2

5 + 88c5 + 40
)

+c4
(
56c4

5 + 51c3
5 + 20c2

5 + 1
)

−28c4
5 − 9c3

5 − 12c2
5 − 11c5 − 6




−24a64c2

4
(
42c4

4 − 55c2
4 + 13

)
(c3 − c4)


12(c4 − 1)c2

4(c5 − 1)c5(c3 + c4)

(
14c4

4
(
5c2

5 − 2
)

+c2
4
(
15− 70c4

5
)
+ c2

5
(
28c2

5 − 15
) ) ,

a86 = −
(
c2

4 − 1
)
(c5 + 1)

(
14c2

4
(
c2

5 + c5 + 1
)
− 3c2

5 − 5c5 − 3
)

6(c5 − 1)c2
5
(
c4

4
(
28− 70c2

5
)
+ 5c2

4
(
14c4

5 − 3
)
− 28c4

5 + 15c2
5
) ,

a87 = −
(
14c4

4 − 17c2
4 + 3

)(
c2

5 − 1
)

6c2
5
(
c4

4
(
28− 70c2

5
)
+ 5c2

4
(
14c4

5 − 3
)
− 28c4

5 + 15c2
5
) ,

a41 =
1
6

(
6a43c3 − c3

4 + c4

)
, a42 =

1
6

(
−6a43c3 − 6a43 + c3

4 + 3c2
4 + 2c4

)
,

a51 =
1
6

(
6a53c3 + 6a54c4 + c3

4 − c4

)
, a52 =

1
6

(
−6a53c3 − 6a53 − 6a54c4 − 6a54

−c3
4 + 3c2

4 − 2c4

)
,

a61 =
1
6

(
6a63c3 + 6a64c4
−6a65c4 + c3

5 − c5

)
, a62 =

1
6

(
−6a63c3 − 6a63 − 6a64c4 − 6a64
+6a65c4 − 6a65 − c3

5 + 3c2
5 − 2c5

)
,

a71 =
1
6

(
6a73c3 + 6a74c4 − 6a75c4
−6a76c5 − c3

5 + c5

)
, a72 =

1
6

 −6a73c3 − 6a73 − 6a74c4 − 6a74
+6a75c4 − 6a75 + 6a76c5
−6a76 + c3

5 + 3c2
5 + 2c5

,

a81 = a83c3 + a84c4 − a85c4 − a86c5 + a87c5,

a82 = a83(−c3)− a83 − a84c4 − a84 + a85c4 − a85 + a86c5 − a86 − a87c5 − a87 + 1.

In our previous work [13] we present exhausting details about truncation error terms
and their derivation. Coleman [14] p ·roposed the expression of local truncation terms by
using B2 series and connected its representation with T2 rooted t ·rees.

In [13] we made the choice

c3 = −17
19

, c4 =
5
6

, c5 = −17
19

. a64 =
2
3

,

and attained the as norm of the principal truncation error terms

‖T(9)‖2 ≈ 6.7× 10−4.

We name the resulting method ACM17.
A little later in [15] we selected

c3 =
10, 061, 236, 723, 712, 997
11, 558, 051, 517, 695, 875

, c4 = − 2, 829, 529, 861, 714, 855
10, 654, 190, 333, 740, 618

,

c5 = −27, 575, 926, 752, 714, 835
24, 688, 741, 064, 860, 472

, a64 = −22, 870, 801, 009, 117, 007
9, 387, 744, 870, 410, 575

.

and achieved high phase lag for best integrating problems with periodic solutions. We
named this method PL18. Traditionally we try to get better methods by minimizing the
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principal truncation error. Assuming that all nodes lay in the interval [−1, 1] we may attain
the almost global minimum

‖T(9)‖2 ≈ 1.39× 10−4,

selecting
c3 = −0.3868070797478156, c− 4 = −0.6584162991759234,

c5 = −0.2932375941564522, a64 = −0.1290369411904927

We name this method MIN.
The technique of minimizing some norm of the terms of principal truncation error

terms is very general. Here, we suggest a different technique for choosing c3, c4, c5, and a64
that exploits on the behavior of the scheme in a ce ·rtain class of problems.

3. Performance of the Schemes in a Set of Keplerian-like Problems

We intend to build a special Numerov-type method from the preceding family. The re-
sulting scheme must outperform all other methods on Keplerian-type problems. For testing
we have chosen the following problems.
1. The Kepler problem

1y′′ = −
1y(√

(1y)2 + (2y)2
)3 ,

2y′′ = −
2y(√

(1y)2 + (2y)2
)3 ,

with t ∈ [0, 10π], y(0) = [1− τ, 0]T and y′(0) =
[
0,
√

1+τ
1−τ

]T
. The theoretical solution

is [16]
1y(t) = cos(v)− τ, 2y(t) = sin(v)

√
1− τ2.

In the above, v = τ · sin(v) + x, τ is the eccentricity, and the the left superscript
denotes the components of y. They shall not be confused with y1 =

[1y1,2 y1,3 y1,4 y1
]T ,

y2 =
[1y2,2 y2,3 y2,4 y2

]T , y3, · · · , that correspond to the vectors approximating the solution
at t1, t2, t3, · · · .

We ran this problem for five diffe ·rent eccentricities (i.e., τ = 0, 1
5 , 2

5 , 3
5 , 4

5 ). In parallel
we recorded the function evaluations wasted along with errors at the endpoint tend = 10π.
The results for these problems made by the methods ACM17, PL18, and MIN can be found
in Table 1.

Table 1. Accurate digits observed at the end-point by the three methods on classical Kepler for
x ∈ [0, 10π].

e Steps ACM17 PL18 MIN

0.0

60 2.8 2.6 2.5
120 5.4 5.0 5.1
180 6.9 6.4 6.7
240 8.0 7.4 7.9
300 8.8 8.2 8.8
360 9.5 8.8 9.5
420 10.1 9.4 10.1

0.2

80 2.2 1.8 2.4
160 4.8 4.3 4.9
240 6.4 5.8 6.5
320 7.5 6.9 7.6
400 8.4 7.8 8.5
480 9.1 8.5 9.2
560 9.8 9.0 9.8
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Table 1. Cont.

e Steps ACM17 PL18 MIN

0.4

150 2.3 1.9 2.6
300 4.9 4.4 5.1
450 6.5 5.9 6.7
600 7.6 7.0 7.8
750 8.5 7.9 8.7
900 9.2 8.6 9.4

1050 9.9 9.2 10.0

0.6

200 0.7 0.3 1.3
400 3.1 2.6 3.4
600 4.6 4.1 4.9
800 5.7 5.2 6.0

1000 6.6 6.0 6.8
1200 7.3 6.7 7.5
1400 7.9 7.3 8.1

0.8

500 0.0 −0.2 1.1
1000 1.9 1.5 2.3
1500 3.4 2.9 3.7
2000 4.5 4. 4.8
2500 5.4 4.8 5.6
3000 6.1 5.5 6.3
3500 6.7 6.1 6.9

2. The Perturbed Kepler

According to Einstein’s general relativity theory, the Schwarzschild potential is utilized
to describe the motion of a planet. Then the equations are given by:

1y′′ = −
1y√

(1y)2 + (2y)23 − (2 + δ)δ
1y√

(1y)2 + (2y)25 ,

2y′′ = −
2y√

(1y)2 + (2y)23 − (2 + δ)δ
2y√

(1y)2 + (2y)25 ,

and the analytical solution is

1y = cos(t + δt), 2y = sin(t + δt).

We solved this problem for δ = 0.01, 0.03, 0.05, 0.07, 0.09 in the interval [0, 10π
1+δ ]. The re-

sults for these problems made by the methods ACM17, PL18, and MIN can be found in
Table 2.

Table 2. Accurate digits observed at the end-point by the three methods on perturbed Kepler.

δ Steps ACM17 PL18 MIN

0.01

50 2.0 2.1 1.8
100 4.7 4.3 4.4
150 6.2 5.7 6.0
200 7.3 6.7 7.1
250 8.1 7.5 8.0
300 8.8 8.2 8.7
350 9.4 8.7 9.3
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Table 2. Cont.

δ Steps ACM17 PL18 MIN

0.03

50 2.0 2.0 1.7
100 4.6 4.2 4.3
150 6.2 5.6 5.9
200 7.2 6.7 7.0
250 8.1 7.5 7.9
300 8.7 8.1 8.7
350 9.3 8.7 9.3

0.05

50 1.9 2.0 1.6
100 4.5 4.2 4.2
150 6.1 5.6 5.8
200 7.2 6.6 7.0
250 8.0 7.4 7.9
300 8.7 8.1 8.6
350 9.3 8.6 9.2

0.07

60 2.5 2.5 2.2
120 5.2 4.8 4.9
180 6.7 6.2 6.5
240 7.8 7.2 7.6
300 8.6 8.0 8.5
360 9.3 8.7 9.3
420 9.9 9.2 9.9

0.09

60 2.4 2.4 2.2
120 5.1 4.7 4.8
180 6.6 6.2 6.4
240 7.7 7.2 7.6
300 8.6 8.0 8.4
360 9.2 8.6 9.2
420 9.8 9.2 9.8

3. The Arenstorf orbit

Another interesting orbit is a restricted three body problem (sun–earth–moon) de-
scribed by the equations of motion (see [17], p. 296).

1y′′ = ζ ′ · q1(t)−1 y
P1

+ ζ · d1(t)−1 y
P2

,

2y′′ = ζ ′ · q2(t)−2 y
P1

+ ζ · d2(t)−2 y
P2

,

where

P1 =

(√
(1y− q1(t))

2
+ (2y− q2(t))

2
)3

,

P2 =

(√
(1y− d1(t))

2
+ (2y− d2(t))

2
)3

,

with

ζ = 0.012277471, ζ ′ = 0.987722529,

q1(t) = −ζ cos t, q2(t) = −ζ sin t,

d1(t) = ζ ′ cos t, d2(t) = ζ ′ sin t.

The initial values

1y(0) = 0.994, 1y
′
(0) = 0, 2y(0) = 0, 2x

′
(0) = −1.00758510637908252,
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and with tA = 17.0652165601579625589, 2tA, 3tA, · · · the solution is periodic.
The results for this problems made by the methods ACM17, PL18, and MIN can be

found in Table 3.

Table 3. Accurate digits observed at the end-point by the three methods on Arenstorf. On the top the
results after one period tA, on the bottom after two periods 2tA.

tend Steps ACM17 PL18 MIN

tA

10,000 3.7 2.7 4.2
15,000 4.8 4.0 5.4
20,000 5.8 5.0 6.4
25,000 6.5 5.8 7.2
30,000 7.2 6.4 7.8
35,000 7.7 6.9 8.4
40,000 8.2 7.4 8.9

2tA

10,000 −1.9 −1.0 0.1
20,000 1.3 0.2 1.8
30,000 2.5 1.8 3.1
40,000 3.4 2.6 4.0
50,000 4.2 3.4 4.8
60,000 4.8 4.0 5.5
70,000 5.3 4.5 6.0

4. The Pleiades

Finally, we tried the “Pleiades” motion which is presented in ([17], p. 245).

ix′′ = ∑
i 6=j

µj
(jx− ix

)
ρij

, iz
′′
= ∑

i 6=j

µj
(jz−i z

)
ρij

,

with

ρij =

√(
ix− jx

)2
+
(

iz− jz
)2

3
, i, j = 1, · · · , 7.

The initial values are

1x(0) = 3, 2x(0) = 3, 3x(0) = −1, 4x(0) = −3, 5x(0) = 2, 6x(0) = −2, 7x(0) = 2,

1z(0) = 3, 2z(0) = −3, 3z(0) = 2, 4z(0) = 0, 5z(0) = 0, 6z(0) = −4, 7z(0) = 4,
1x′(0) = 0, 2x′(0) = 0, 3x′(0) = 0, 4x′(0) = 0, 5x′(0) = 0, 6x′(0) = 1.75, 7x′(0) = −1.5,

1z′(0) = 0, 2z′(0) = 0, 3z′(0) = 0, 4z′(0) = −1.25, 5z′(0) = 1, 6z′(0) = 0, 7z′(0) = 0,

We set µj = j, j = 1, · · · , 7. We tried tend = 3 and 4 as end-points. The solution there
was made with Mathematica [18] at high precision. Then we recorded the errors made at
tend = 3 and tend = 4 by the various methods. The results for this problems made by the
methods ACM17, PL18, and MIN can be found in Table 4.
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Table 4. Accurate digits observed at the end-point by the three methods on Pleiades. On the top for
end-point tend = 3, on the bottom for tend = 4.

tend Steps ACM17 PL18 MIN

3

3000 2.4 2.0 3.1
3000 2.4 2.0 3.1
4500 3.8 3.3 4.2
6000 4.9 4.3 5.2
7500 5.7 5.1 6.0
9000 6.4 5.8 6.7

10,500 7.0 6.3 7.3
12,000 7.5 6.8 7.8

4

4000 1.9 1.4 2.6
6000 3.3 2.8 3.7
8000 4. 3.8 4.7

10,000 5.2 4.6 5.5
12,000 5.9 5.3 6.2
14,000 6.5 5.9 6.8
16,000 7.0 6.3 7.3

In consequence, we set 14 problems (i.e., 5 Keple ·rian, 5 pertu ·rbed Kepler, 3 Arensto ·rf
orbits, and 3 Pleiades) to run for 7 diffe ·rent steplengths each. This sums to 98 runs in total.
The average accurate digits (after all these 98 runs) achieved are 5.98, 5.44, and 6.13 for the
methods ACM17, PL18, and MIN, respectively. This means that the method with minimal
truncation error behaves rather better.

However, our issue here is to find free pa ·rameters in the algo ·rithm presented in the
previous section so that it provides a method that works as best as possible.

4. Training the Free Parameters in a Wide Set of Keplerian-like Problems

In [19] we may find the origin of our idea. After choosing the free parameters
c3, c4, c5, a64, we get a method named NEW8 and form Tables like those presented in
the previous section. There, we record the accurate digits achieved using exactly the same
steplengths and calculate the average of the 98 digits found there. This average serves as
a fitness value and we intend to maximize it. The Differential Evolution algorithm was
applied as maximization process [20]. We actually used MATLAB [21] and the suite of
routines in DeMat [22] for the implementation of Differential Evolution technique.

We have already used the Differential Evolution process to generate numerical ap-
proaches for handling IVP, with extremely intriguing results. However, until now, we tried
optimization on a small set (one or two) of problems. On the contrary here we extended
the approach by using 98 runs.

The optimization via differential evolution produced a number of quadruplets for the
parameters, and we provide the chosen one, in double precision, below,

c3 = −0.4821271178014236, c4 = −0.1599331990972641,

c5 = −0.81752579390977, a64 = 2.118887522290334

The resulting pair is presented in the Appendix A as part of a MATLAB function
where we implemented the new method.

Using the free parameters listed exactly above, we obtained the end point accuracies
tabulated in Tables 5–8.
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Table 5. Accurate digits observed at the end-point by the new method on classical Kepler for
x ∈ [0, 10π].

e Steps NEW8

0.0

60 3.8

120 6.5

180 8.2

240 9.4

300 10.5

360 11.6

420 12.6

0.0

80 4.2

160 5.8

240 7.0

320 8.0

400 8.7

480 9.3

560 9.8

0.0

150 3.5

300 6.3

450 7.3

600 8.2

750 8.9

900 9.5

1050 10.0

0.6

200 1.6

400 4.2

600 6.4

800 7.0

1000 7.5

1200 8.0

1400 8.5

0.8

500 0.6

1000 2.9

1500 4.5

2000 5.9

2500 7.4

3000 7.7

3500 8.7
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Table 6. Accurate digits observed at the end-point by the new method on perturbed Kepler.

δ Steps NEW8

0.01

50 3.1

100 5.8

150 7.4

200 8.7

250 9.7

300 10.6

350 11.8

0.03

50 3.3

100 5.9

150 7.6

200 8.9

250 10.0

300 11.6

350 11.3

0.05

50 3.6

100 6.1

150 7.9

200 9.5

250 10.3

300 10.5

350 10.9

0.07

60 4.9

120 8.6

180 8.7

240 9.5

300 10.2

360 10.8

420 11.2

0.09

60 4.0

120 6.7

180 8.2

240 9.2

300 9.9

360 10.5

420 11.1
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Table 7. Accurate digits observed at the end-point for the new method on Arenstorf. In the left the
results after one period tA, in the right after two periods 2tA.

Steps NEW8 Steps NEW8

10,000 3.8 10,000 1.1

15,000 5.4 20,000 1.6

20,000 6.7 30,000 3.2

25,000 7.6 40,000 4.5

30,000 8.4 50,000 5.8

35,000 9.1 60,000 7.1

40,000 9.7 70,000 8.8

Table 8. Accurate digits observed at the end-point by the new method on Pleiades. On the top for
end-point tend = 3, on the bottom for tend = 4.

Steps NEW8

3000 3.1

4500 4.3

6000 5.3

7500 6.1

9000 6.8

10,500 7.3

12,000 7.8

Steps NEW8

4000 2.6

6000 3.8

8000 4.9

10,000 5.7

12,000 6.3

14,000 6.9

16,000 7.4

The average accuracy obtained for the 98 runs is 7.25, i.e., more than one digit was
gained over the optimal method MIN. The norm of the principal truncation error coeffi-
cients for NEW8 is

‖T(7)‖2 ≈ 5.77 · 10−4,

which is four times bigger than the corresponding norm of method MIN. On the other
hand, no extra property seems to hold. No high phase-lag, interval of periodicity, symplec-
ticness, etc.

5. Numerical Tests

We tested NEW8, presented in the previous section along with method MIN which
possesses a minimal truncation error. Both pairs were run for the same problems and
steplengths. In prior parts and for optimization, we preferred using the end-point error
because it decreased evaluation times significantly.

In the numerical testing, the errors are assessed throughout the entire grid on the
integration interval. Every step, a parallel integration with strict tolerance and an eighth
order Runge–Kutta–Nyström pair [23] is used to estimate the true solution. Thus, an almost
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true global error is registered. Here, we use the same problems but change the parameters
and the integration intervals while we report global errors in the results.

In the following the Kepler orbits were run in the interval [0, 20π] with eccentricities
τ = 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. The results were recorded in Table 9.

We also run the perturbed Kepler orbits in the interval [0, 20π
1+δ ] with parameters

δ = 0.02, 0.04, 0.06, 0.08, 0.1, respectively. The results for these problems are recorded in
Table 10.

The global errors for Arenstorf are recorded in Table 11 over the intervals [0, 0.75tA]
and [0, 1.25tA]. Finally, the global errors for Pleiades are recorded in Table 12 over the
intervals [0, 4.5] and [0, 5.5]. We did not go any further since quasi-collisions ruin the results.

Table 9. Final numerical tests. Accurate digits observed over all grid points on classical Kepler in the
interval [0, 20π].

e Steps NEW8 MIN

0.1

2· 60 3.1 1.5

2· 120 5.4 4.0

2· 180 6.7 5.6

2· 240 7.6 6.7

2· 300 8.4 7.6

2· 360 9.0 8.3

2· 420 9.5 8.9

0.3

2· 80 1.6 1.0

2· 160 4.2 3.3

2· 240 5.8 4.8

2· 320 7.0 5.9

2· 400 7.8 6.8

2· 480 8.4 7.5

2· 560 8.8 8.1

0.5

2· 150 1.3 1.0

2· 300 3.8 3.2

2· 450 5.5 4.7

2· 600 6.8 5.8

2· 750 7.8 6.7

2· 900 8.4 7.4

2100 8.8 8.0

0.7

2· 200 0.2 -0.3

2· 400 1.4 1.1

2· 600 2.8 2.4

2· 800 3.9 3.4

2000 4.8 4.2

2400 5.6 4.9

2800 6.3 5.5
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Table 9. Cont.

e Steps NEW8 MIN

0.9

2000 2.2 1.8

3000 3.2 2.7

4000 4.0 3.5

5000 4.7 4.1

6000 5.3 4.6

7000 5.8 5.1

8000 6.3 5.5

Table 10. Final numerical tests. Accurate digits observed over all grid points on perturbed Kepler in
the interval [0, 20π

1+δ ].

δ Steps NEW8 MIN

0.02

2 · 50 2.6 1.1

2 · 100 5.2 3.7

2 · 150 6.7 5.3

2 · 200 7.9 6.4

2 · 250 8.8 7.3

2 · 300 9.6 8.0

2 · 350 10.3 8.6

0.04

2 · 50 2.8 1.1

2 · 100 5.3 3.7

2 · 150 6.9 5.2

2 · 200 8.0 6.4

2 · 250 9.0 7.2

2 · 300 9.8 8.0

2 · 350 10.5 8.6

0.06

2 · 50 3.6 1.0

2 · 100 5.5 3.6

2 · 150 7.1 5.2

2 · 200 8.4 6.3

2 · 250 9.4 7.2

2 · 300 10.3 7.9

2 · 350 10.7 8.5

0.08

2 · 60 3.7 1.6

2 · 120 7.0 4.2

2 · 180 8.3 5.8

2 · 240 9.2 6.9

2 · 300 9.9 7.8

2 · 360 10.5 8.6

2 · 420 11.0 9.2
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Table 10. Cont.

δ Steps NEW8 MIN

0.10

2 · 60 3.2 1.5

2 · 120 6.1 4.2

2 · 180 7.6 5.7

2 · 240 8.7 6.9

2 · 300 9.5 7.8

2 · 360 10.1 8.5

2 · 420 10.6 9.1

Table 11. Final numerical tests. Accurate digits observed over all grid points on Arenstorf. On the
top the results for the interval [0, 0.75tA], on the bottom for the interval [0, 1.25tA].

Steps NEW8 MIN

5000 2.6 3.2

10,000 5.1 5.2

15,000 6.9 6.5

20,000 7.9 7.5

25,000 8.7 8.4

30,000 9.3 9.0

35,000 9.8 9.6

Steps NEW8 MIN

10,000 1.5 2.1

20,000 4.3 4.1

30,000 6.4 5.5

40,000 8.0 6.6

50,000 8.2 7.4

60,000 8.7 8.1

70,000 9.4 8.7

The overall average accuracy observed was 6.6 digits for NEW8 and 5.6 digits for
MIN, which is also a very good result. We also remark that we are able to generate a
number of schemes with coefficients that are similar to the one shown. This means that the
distance was no greater than, say, 10− 3. These schemes also performed well. Perhaps only
5% to 10% worse than the method given here. This signifies that no strict property, such
as order conditions, conservation rules, or other symplectic property, holds for the new
method. Our new recommended method falls inside a range of coefficients that appears to
be suitable for the type of Keplerian-type obits we are interested in here.
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Table 12. Final numerical tests. Accurate digits observed over all grid points on Pleiades. On the top
the results for the interval [0, 4.5], on the bottom for the interval [0, 5.5].

Steps NEW8 MIN

5000 2.7 2.7

7500 4.1 4.0

10,000 5.1 5.0

12,500 5.9 5.8

15,000 6.6 6.5

17,500 7.2 7.1

20,000 7.6 7.6

Steps NEW8 MIN

7000 3.4 3.3

10,500 4.8 4.7

14,000 5.9 5.7

17,500 6.7 6.6

21,000 7.3 7.3

24,500 7.9 7.8

28,000 8.4 8.4

6. Conclusions

In a family of hybrid two-step techniques, we suggested a method for better selecting
its free parameters. After testing their performance in a large number of Keplerian-type
orbits, these parameters were chosen. The Differential Evolution technique was used for
obtaining an almost optimal choice. In other sets of Keplerian-type orbits, the derived
scheme outperformed other methods from the same family by a significant margin.
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Appendix A

We present a listing with a naive program for the new method (NEW8). The coeffi-
cients are rounded and are suitable for double-precision arithmetic. We made use of the
technique described in ([17], p. 471) in order to avoid numerical instabilities. We remark
that y1 ≈ y(t0 + h) represented by the variable y1 can be found using a Runge–Kutta–
Nyström pair [23]. The function rkn86 can be retrieved from [24].
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%------------------------------------------------------------------- begin
function [x,y]=numer8(fucn,t0,te,y0,dy0,n);

% explicit 8th order, 7 stages method, for addressing y’’ = f(x,y)
%
% Input
% t0, te : left and right points of integration
% y0, dy0: initial y and y’ (at t0)
% n : number of steps
%
% The coefficients
b=[-0.011910630531427863, -1.4152390130922559, 0, 1.1198831773307117, ...

1.1198831773307117, 0.099646959746844095, 0.099646959746844095, ...
-0.011910630531427863];

c=[-1, 0, -0.48212711780142360, -0.15993319909726412, ...
0.15993319909726412, 0.81752579390976997, -0.81752579390976997, 1]’;

a=[0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;
-0.061676388147542510, -0.063163891893415396, 0, 0, 0, 0, 0, 0;
-0.001449407926829631, -0.014860974640587388, -0.050866902894472477, ...

0, 0, 0, 0, 0;
0.0012884760471727602, 0.042761762969669080, 0.052439198342644856, ...

-0.0037335237241120772, 0, 0, 0, 0;
0.036564037809900442, -2.9816788795117797, -0.12349939054047346, ...

2.1188875222903341, 1.6926638187608034, 0, 0, 0;
-0.028514259688726427, 1.1813134649095517, 0.10483959970071562, ...

-0.85285968590356044, -0.49075320588562187, 0.011385401766656327, 0, 0;
0.052214784939110816, -6.3487950094855168, -0.0082786720847229343, ...
3.7999377812747299, 3.6145591840867179, -0.0071926442865628577, ...
-0.10244542444375599, 0];

s=length(c); % no of stages
h=(te-t0)/n; % step length
m=length(y0); % dimension of system
x=[t0 t0+h zeros(1,n-1)]’; % output of t
y=zeros(m,n+1); % output of y
[x1,y1]=rkn86(fucn,t0,t0+h,y0,dy0,3e-14); % initial y1
y(:,1)=y0;
y(:,2)=y1(end,:)’;
F=zeros(m,s);
f1=feval(fucn,t0,y0);

hu0=(y(:,2)-y(:,1)); % use device in Hairer et al, pg~471

for k=2:n,
f0=f1;
F(:,1)=f0;
f1=feval(fucn,x(k),y(:,k)); % The first stage
F(:,2)=f1;
for o=3:s, % Another s-2 stages

F(:,o)=feval(fucn,x(k)+c(o)*h,(1+c(o))*y(:,k)-c(o)*y(:,k-1) ...
+h*h*F*a(o,:)’);

end;
hu1=hu0+h*h*F*b’;
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y(:,k+1)=hu1+y(:,k);
x(k+1)=x(k)+h;
hu0=hu1;

end;
%--------------------------------------------------------------------- end

Then we verify a test presented above with perturbed Kepler, e.g., the last rightmost
entry in Table 6 for NEW8 (i.e., for δ = 0.09 and after 420 steps) can be found typing:

>> fucn=@(x,y) [-y(1)/sqrt(y(1)^2+y(2)^2)^3 ...
-(2+0.09)*0.09*y(1)/sqrt(y(1)^2+y(2)^2)^5;

-y(2)/sqrt(y(1)^2+y(2)^2)^3 ...
-(2+0.09)*0.09*y(2)/sqrt(y(1)^2+y(2)^2)^5]

>> [xout,yout] = numer8(fucn, 0, 10*pi/(1+0.09), [1 0]’,[0 1+0.09]’,420);
>> -log10(max(abs([1 0]’-yy(:,end))))
ans =

11.0680

which is rounded to 11.1 as shown in that table.
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