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Abstract: Alias structures for two-level fractional designs are commonly used to describe the corre-
lations between different terms. The concept of alias structures can be extended to other types of
designs such as fractional mixed-level designs. This paper proposes an algorithm that uses the Pear-
son’s correlation coefficient and the correlation matrix to construct alias structures for these designs,
which can help experimenters to more easily visualize which terms are correlated (or confounded) in
the mixed-level fraction and constitute the basis for efficient sequential experimentation.

Keywords: algorithm; simulation; alias; structure; mixed; design

1. Introduction

Experimentation is considered an important part of the scientific process, and they are
one means toward understanding how systems and processes function as well as improving
or optimizing performance. Example performance measures are material resistance, costs
yield, production rates, and product quality. Statistically based experiments are carried out
in a planned and structured way to answer previously formulated hypotheses [1].

Industrial experimentation can be defined as: determining the optimal operating
conditions of a process by analyzing the factors that influence its performance. Consider,
for example, an engineer interested in measuring the yield of a chemical process, which
is influenced by two key process variables (or control factors). The engineer decides to
perform an experiment to study the effects of these two variables on the process yield.

Fractional factorial designs are widely used in industrial experimentation and are
useful for investigating the effects of several input factors on one or more performance
measures (response variables) while using an efficient number of runs. Nevertheless, one
disadvantage of these designs is that, sometimes, it is not possible to distinguish the effects
of some interactions because they are correlated with other effects; alias structures are
commonly used for two-level designs but can be extended to other types, such as fractional
mixed-level designs.

The objective of this paper is to develop a method to construct alias structures, for
fractional mixed-level designs, by applying the Pearson’s correlation coefficient with the
correlation matrix. To construct these structures, we will also make use of the Efficient
Arrays (EAs) developed in [2]. The proposed algorithm for generating the alias struc-
tures can then be used to design additional runs in an efficient multi-phase sequential
experimentation strategy to decouple specific effects aliased in the original design.

Although existing methods can provide some information about aliasing in the mixed-
level fraction, the structures proposed here resemble the alias structures commonly used
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for two-level designs. The intent is to provide a general view of aliasing in a way that is
familiar to most experimenters. When compared to other existing methods, the proposed
approach provides structures that are easy to create while also providing useful information
in a less complicated manner than those provided by statistical commercial software.

2. Related Literature

Mixed-level designs are designs with factors having differing numbers of levels. These
designs are widely used in industrial experimentation, particularly in designs for new
products and processes. Mixed-level designs often require many runs due to the increased
number of model term degrees of freedom required for estimation. Alternatives have been
proposed, and some options include orthogonal or near-orthogonal fractional factorial
mixed-level designs. In [3], they proposed an approach for construction of orthogonal
designs based upon difference matrices. DeCock and Stufken designed an algorithm
for constructing orthogonal mixed-level designs by searching some existing two-level
orthogonal designs [4]. Xu introduced an algorithm to construct orthogonal and near-
orthogonal designs based on the concept of J2-optimality [5]. In [6], it was proposed to
combine designs constructed under the E(fNOD) criterion introduced by Fang, Lin and
Liu [7]. Yan and Min-Qian [8] developed designs inspired by the idea of juxtaposition of
rows and columns of designs by Liu and Lin [9]. These designs were evaluated by Yamada
and Lin, using the X2 criterion [10], and by Xu, using the J2-optimality criterion [5].

Guo developed a method to construct efficient mixed-level fractional factorial de-
signs, which are also known as EAs (see [2]). These are efficient alternatives to factorial
experiments, possessing economical run size and having desirable properties associated
with near balance and near orthogonality. In [2], a new optimality criterion called the
“balance coefficient” was used to evaluate the balance property of the design matrix and a
modified J2-optimality criterion that can be used to measure the degree of orthogonality
of unbalanced design matrices. These criteria were combined into an objective function
to be optimized, and a genetic algorithm approach was developed to build the EAs, as
in Figure 1, note that this array contains six factors, A-F and 20 runs. In addition, Guo
developed the General Balance Metric (GBM), a criterion used to measure the balance
property of mixed-level designs [11].

In the case of quantitative factors, one possible parameterization of contrasts is the
orthogonal polynomial system described by Wu and Hamada [12]. Mukerjee and Wu iden-
tified some mixed-level designs using a defining relation [13], and Pistone and Rogantin
developed indicator functions for mixed-level fractional factorial designs [14]. These indi-
cator functions are useful for characterizing a design by describing general properties and
providing specific values for the existing correlations in the fraction. In addition, Grömp-
ing and Xu derived two versions of a generalized resolution for qualitative factors [15].
Regarding sequential experimentation for mixed-level designs, significant contributions
come from Guo [16], who developed fold-over plans using a rotation index, while Rios
developed semifold plans using an exhaustive search [17].

An alias chain is an equation that provides information about effects that are mutually
correlated. For example, the chain [AE] = AE + BC + DF means that it is impossible to
differentiate between the effects of AE, BC, and DF; in fact, when we estimate AE, we are
really estimating AE + BC + DF, terms that are commonly referred to as aliases. The entire
set of alias chains in a fractional factorial design is called “the alias structure of the design”.
Consider the 25−2 design with generators D = AB and E = AC. The defining relation (the
set of columns that are equal to the identity column) is given by I = ABD + ACE + BCDE,
where I represents the identity column. The aliases for a specific term can be found by
multiplying that term by each word that appears in the defining relation. Therefore, the
aliases for factor A are: A*ABD, A*ACE, and A*BCDE, and the alias chain is given by:
[A] = A + BD + CE + ABCDE. [A] is used to label the alias chain. The alias structure for the
25−2 fractional factorial is shown in Figure 2. Alias structures for two-level designs have
been widely covered in the literature and in textbooks (e.g., see Box and Hunter [18]). Alias



Mathematics 2021, 9, 3053 3 of 21

structures can also be constructed for nonregular designs, such as Placket–Burman designs.
In these cases, a complex alias structure, one that contains fractional numbers to represent
the existing partial correlations, exists. Software packages, such as Minitab, do not display
the alias structure for Plackett–Burman designs because it is usually very messy. In many
such designs, each main effect is partially correlated with all two-factor interactions not
involving itself.
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Figure 1. Efficient Array EA (20, 24 31 41).
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To determine the aliases in nonregular designs, we use the regression method [1,19,20].
As a result, we obtain an alias matrix that shows the alias pattern and the partially aliased
effects. This method can also be used for regular designs. In [21], a method to estimate the
confounding coefficients for two-level split plot designs was developed.
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Alternative ways of visualizing and estimating aliases for non-regular designs have
been proposed. In [22], Jones and Montgomery introduced the cell graph of the correlation
matrix as a graphical form to show alias relations in fractional factorials and to compare
non-regular designs with their regular counterparts. In [23], Al-Ghamdi proposed a method
to generate alias patterns for regular and non-regular fractional factorial designs for factors
with two and three levels. The method is based on seeing the geometrically fractioned
factorial design under the premise that any pair of vectors is orthogonal if the two are
at right angles. The method determines the degree of aliasing between two columns by
evaluating the extent to which the angle between them differs from 90◦. As a result, we get
an alias array in which we can observe the pattern of aliases. In [19], Su and Wu proposed
a method to untangle alias effects from two-level fractional factorials based on the concept
of principal conditional effects.

Data analysis methods for executed, complex alias structure designs have been pro-
posed since it is difficult to unravel the large number of alias effects and interpret their
significance [12]. Hamada and Wu proposed a method to analyze non-regular factorial
designs with complex alias structures [24]. The method is based on the principle of sparsity
of effects and hereditary effects. The authors mention that the method can be extended to
fractional mixed-level designs. Hamada and Hamada presented a method for analyzing de-
signs with complex alias structures [25]. This algorithm attempted to adjust, systematically,
all regression models with hereditary effect restrictions for the analysis of the experimental
design. The authors mentioned that this method can be applied to non-regular designs,
mixed-level orthogonal matrices, and three-level fractional factorials. Al-Ghamdi found
that aliases are rarely examined when fractional factorial designs are employed [24]. The
two possible reasons suggested are (a) the lack of awareness and appreciation of the impact
of the aliases, and the extent to which they can affect the conclusions obtained in the
experimental studies, and (b) the difficulty of understanding the available methods to
identify and measure aliases, especially in experiments involving orthogonal arrangements
of three levels or even mixed levels.

Recent developments on alias structures and fractional factorial designs include Wu,
Mee, and Tang, who considered the problem of selecting two-level fractional factorial
designs that allow the joint estimation of all main effects, and some specified two-factor
interactions (2fis) without aliasing from other 2fis, and presented a catalog of all the admis-
sible designs of 32 and 64 runs [26]. Tsai and Gilmour studied the QB criterion, which aims
to improve the estimation in as many models as possible by incorporating experimenters’
prior knowledge and provided a generalization and application of this criterion to different
types of designs [27]. Cheng and Tsai studied multistratum experiments (those with multi-
ple sources of errors) and presented a criterion for selecting multistratum fractional factorial
designs that takes stratum variances into account [28]. Cheng and Tsai presented some
useful templates for implementing design key construction of factorial designs with simple
block structures, particularly for the construction of unblocked and blocked split-plot and
strip-plot factorial designs [29]. Zhou, Balakrishnan, and Zhang mentioned that, within
an optimal design, the effects of factors assigned to different columns may be estimated
with different precision. For this reason, they developed a method to assign the most
important factors to specific columns when experimenters had prior information on their
relative importance [30]. Tyssedal and Niemi mentioned that the complex alias pattern
between main effects and two-factor interactions, for two-level nonregular designs, is
a problem when analyzing these designs, so they presented a graphical method for the
analysis of nonregular two-level designs [31]. Sartono, Goos, and Schoen presented a novel
approach to designing general orthogonal fractional factorial split-plot designs [32]. Jones
and Nachtsheim mentioned that, when constructing an optimal design for a first-order
model, the aliasing of main effects and interactions is not considered. This can lead to
designs that are optimal for estimating the primary effects of interest, yet have undesirable
aliasing structures. In this article, we constructed exact designs that minimized the squared
norm of the alias matrix subject to constraints on design efficiency [33].
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3. Alias Structures for Mixed-Level Designs

This paper explores the use of Pearson’s correlation coefficient and the correlation
matrix to construct alias structures for mixed-level designs. This algorithm can be viewed
as an alternative to more complex methods, and the resulting alias structures resemble
those commonly used for two-level designs. These structures allow the user to visualize
the existing correlations among the different terms in the design, especially the main
effects and low order interactions. In addition, this method can be effectively used in
choosing subsequent runs in a sequential experimentation approach. The terms most
highly correlated in the base design can be the focus for the additional runs to best separate
these terms. The fractions considered for computing the alias structures are the EAs
developed in [2]. The method consists of four simple steps, as displayed in Figure 3.
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3.1. Initial Design Construction Using EAs

The first step consists of selecting a fractional mixed-level design. This fraction can be
constructed by any method, but we will make use of the EAs developed in [2]. Consider,
for example, the EA (15, 31 51 71) described in Figure 4, containing 15 runs and 3 factors
with 3, 5, and 7 levels, respectively.
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3.2. Compute the Model Matrix

The model matrix contains the main effect and interaction columns. Interactions are
computed using the Yates order. For this paper, only interactions of the order 2 and 3 were
considered using the sparsity of effects principle. Table 1 shows the model matrix.
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Table 1. Model matrix for EA (15, 31 51 71).

A B C BA CA CB CBA

1 1 7 1 7 7 7

1 2 2 2 2 9 9

1 3 5 3 5 19 19

1 4 4 4 4 25 25

1 5 3 5 3 31 31

2 1 2 6 9 2 37

2 2 5 7 12 12 47

2 3 6 8 13 20 55

2 4 7 9 14 28 63

2 5 1 10 8 29 64

3 1 4 11 18 4 74

3 2 1 12 15 8 78

3 3 2 13 16 16 86

3 4 3 14 17 24 94

3 5 6 15 20 34 104

3.3. Computing the Correlation Matrix Using Pearson’s Correlation Coefficient

Once the model matrix is generated, the next step is to compute all the existing
correlations in the design: among the main effects, between main effects and interactions,
and among interactions. The Pearson’s correlation coefficient (Equation (1)) was used to
compute these correlations. The correlation matrix for the EA (15, 31 51 71) is shown in
Table 2.

rjk =
Cov

(
Xj, Xk

)√
varXj

√
varXk

(1)

where, rjk is the Pearson’s correlation coefficient between variables Xj and Xk, Cov
(
Xj, Xk

)
is the covariance between Xj and Xk, and varXj and varXk are the variances for variables
Xj and Xk.

Table 2. Correlation matrix for EA (15, 31 51 71).

A B C AB AC BC

B 0.000

C −0.205 0.000

AB 0.945 0.327 −0.193

AC 0.938 0.000 0.146 0.887

BC −0.040 0.980 0.198 0.283 0.029

ABC 0.941 0.331 −0.129 0.998 0.906 0.299

3.4. Creating the Alias Structure

The alias structure can easily be constructed by detecting the highest correlation in the
correlation matrix and establishing the relationship between the two terms involved and
then, by detecting the next second highest correlation until all terms have been included in
an alias chain. The method used to construct the alias structures followed these principles:

• All main effects and interactions must belong to some chain.
• The same term cannot be included in multiple alias chains.
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• Lower-order terms are considered more important than higher order terms and should
appear sequentially first in the alias chain.

• Correlations take on values in the interval [−1, 1], and a value of 0 indicates no
correlation (orthogonality).

Consider the correlations in Table 2. The highest correlation corresponds to AB and
ABC with a value of 0.998. So, the first relation we can establish is

[AB] = AB + 0.998ABC

After this step, AB and ABC are removed from consideration and the next highest
correlation corresponds to B and BC with 0.980. The alias structure is augmented with a
new chain, resulting in

[B] = B + 0.980BC

[AB] = AB + 0.998ABC

After B and BC are removed, the third highest correlation is between A and AC with
0.938. Therefore, a new chain is added to give

[A] = A + 0.938AC

[B] = B + 0.980BC

[AB] = AB + 0.998ABC

At this point, all effects are included in some chain, except Factor C, so C is added as a
chain with no aliases. Figure 5 shows the path followed to construct the alias structure.

[A] = A + 0.938AC

[A] = A + 0.938AC

[B] = B + 0.980BC

[C] = C

[AB] = AB + 0.998ABC
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A B C AB AC BC
B 0.000
C −0.205 0.000
AB 0.945 0.327 −0.193
AC 0.938 0.000 0.146 0.887
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Figure 5. Path followed to construct the alias structure.

In complex alias situations, effects may appear in separate alias chains, but this makes
the alias structure even more complex and confusing. For simplicity, it was decided that
each term should appear in only one chain so that only the highest and most important
correlations were included in the alias structure. This procedure was tested with several
designs, and empirical evidence showed that it was able to create alias structures that
properly represented the aliasing in the mixed-level fraction.
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4. Example

Consider the EA (20, 24 31 51) shown in Figure 6. Table 3 shows the model matrix
containing the main effects, the 2fis and the 3fis. The correlation matrix is shown in Table 4,
while the alias structure is displayed in Figure 7 (dots are used to indicate continuation).
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Figure 6. EA (20, 24 31 51).

Table 3. Model matrix for EA (20, 24 31 51).

A B C D E F AB AC AD EA FA BC . . . ECD FCD FEC FED

1 1 1 2 2 3 1 1 3 2 3 1 . . . 8 13 8 23
1 2 1 1 1 1 3 1 1 1 1 2 . . . 1 1 1 1
1 1 2 2 3 1 1 3 3 3 1 3 . . . 12 16 26 26
1 2 1 1 3 2 3 1 1 3 2 2 . . . 3 2 12 12
1 1 2 1 2 2 1 3 1 2 2 3 . . . 5 7 22 7
1 2 2 2 1 5 3 3 3 1 5 4 . . . 10 20 20 20
1 1 1 2 3 4 1 1 3 3 4 1 . . . 9 14 14 29
1 2 2 2 2 4 3 3 3 2 4 4 . . . 11 19 24 24
1 1 2 1 1 3 1 3 1 1 3 3 . . . 4 8 18 3
1 2 1 1 2 5 3 1 1 2 5 2 . . . 2 5 10 10
2 1 1 1 2 1 2 2 2 5 6 1 . . . 2 1 6 6
2 2 2 1 3 4 4 4 2 6 9 4 . . . 6 9 29 14
2 1 2 2 1 2 2 4 4 4 7 3 . . . 10 17 17 17
2 2 2 1 3 3 4 4 2 6 8 4 . . . 6 8 28 13
2 1 1 1 1 4 2 2 2 4 9 1 . . . 1 4 4 4
2 2 1 2 1 3 4 2 4 4 8 2 . . . 7 13 3 18
2 1 2 1 2 5 2 4 2 5 10 3 . . . 5 10 25 10
2 2 2 2 2 1 4 4 4 5 6 4 . . . 11 16 21 21
2 1 1 2 3 5 2 2 4 6 10 1 . . . 9 15 15 30
2 2 1 2 1 2 4 2 4 4 7 2 . . . 7 12 2 17
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Table 4. Correlation matrix for EA (20, 24 31 51).

A B C D E F AB AC . . . EBD FBD FEB ECD FCD FEC

B 0 . . .
C 0 0 . . .
D 0 0 0 . . .
E −0.06 −0.06 0.062 −0.06 . . .
F 0 0 0 0 0.088 . . .

AB 0.447 0.894 0 0 −0.08 0 . . .
AC 0.447 0 0.894 0 0.028 0 0.2 . . .
AD 0.447 0 0 0.894 −0.08 0 0.2 0.2 . . .
EA 0.875 −0.03 0.03 −0.03 0.429 0.043 0.364 0.418 . . .
FA 0.87 0 0 0 −0.01 0.492 0.389 0.389 . . .
BC 0 0.447 0.894 0 0.028 0 0.4 0.8 . . .
BD 0 0.447 0 0.894 −0.08 0 0.4 0 . . .
EB −0.03 0.875 0.03 −0.03 0.429 0.043 0.769 0.013 . . .
FB 0 0.87 0 0 −0.01 0.492 0.778 0 . . .
CD 0 0 0.447 0.894 −0.03 0 0 0.4 . . .
EC −0.03 −0.03 0.888 −0.03 0.514 0.041 −0.04 0.781 . . .
FC 0 0 0.87 0 0.097 0.492 0 0.778 . . .
ED −0.03 −0.03 0.03 0.875 0.429 0.043 −0.04 0.013 . . .
FD 0 0 0 0.87 −0.01 0.492 0 0 . . .
FE −0.06 −0.06 0.057 −0.06 0.947 0.404 −0.08 0.026 . . .

ABC 0.218 0.436 0.873 0 0.014 0 0.488 0.878 . . .
ABD 0.218 0.436 0 0.873 −0.1 0 0.488 0.098 . . .
EAB 0.429 0.872 0.015 −0.02 0.155 0.021 0.972 0.205 . . .
FAB 0.434 0.867 0 0 −0.06 0.245 0.969 0.194 . . .
ACD 0.218 0 0.436 0.873 −0.04 0 0.098 0.488 . . .
EAC 0.418 −0.01 0.879 −0.01 0.259 0.02 0.174 0.973 . . .
FAC 0.434 0 0.867 0 0.048 0.245 0.194 0.969 . . .
EAD 0.429 −0.02 0.015 0.872 0.155 0.021 0.178 0.205 . . .
FAD 0.434 0 0 0.867 −0.06 0.245 0.194 0.194 . . .
FEA 0.856 −0.03 0.03 −0.03 0.435 0.209 0.357 0.409 . . .
BCD 0 0.218 0.436 0.873 −0.04 0 0.195 0.39 . . .
EBC −0.01 0.418 0.879 −0.01 0.259 0.02 0.367 0.78 . . .
FBC 0 0.434 0.867 0 0.048 0.245 0.388 0.776 . . .
EBD −0.02 0.429 0.015 0.872 0.155 0.021 0.377 0.007 . . .
FBD 0 0.434 0 0.867 −0.06 0.245 0.388 0 . . . 0.947
FEB −0.03 0.856 0.03 −0.03 0.435 0.209 0.753 0.013 . . . 0.457 0.397
ECD −0.02 −0.02 0.452 0.861 0.208 0.021 −0.02 0.398 . . . 0.806 0.745 0.089
FCD 0 0 0.434 0.867 −0.01 0.245 0 0.388 . . . 0.768 0.812 0.038 0.947
FEC −0.03 −0.03 0.871 −0.03 0.518 0.199 −0.04 0.766 . . . 0.086 0.012 0.255 0.478 0.402
FED −0.03 −0.03 0.03 0.856 0.435 0.209 −0.04 0.013 . . . 0.85 0.781 0.215 0.864 0.806 0.255
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Figure 7. Alias structure for EA (20, 24 31 51).

5. Sequential Experimentation Algorithm for Mixed-Level Fractions

The proposed alias structures can be helpful for visualizing the existing correlations in
the design and can then be used to break correlations. For example, consider a design where
two terms are highly correlated. Runs can be added to reduce the correlation and effectively
separate these terms. This approach suggests that sequential experimentation, for mixed-
level designs focused on decoupling specific alias chains, is possible. As previously noted,
sequential experimentation techniques for mixed-level designs include the fold-over and
semifold, which are effective when many or several terms are correlated. In cases in
which only a few terms need to be decoupled, adding a small number of runs designed
to decouple specific terms can be more efficient. Consider the EA (21, 32 51 71) shown in
Figure 8. The alias structure is presented in Figure 9.

Note that the alias structure indicates that factors B and C are strongly correlated. The
correlation plot (Figure 10) shows that one way of breaking this correlation is by adding
additional runs (2,1), (3,1) and (1,5) for B and C respectively. These runs are indicated by
stars. The resulting yet incomplete design is shown in Figure 11.
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Figure 11. EA (24, 32 51 71) with additional signs for B and C.

Signs for A can be added, according to Figure 12. Stars are used to reduce correlation,
note that the correlation between A and C can be reduced by adding (2,1) for factors A and
C, while the remaining levels of 1 and 3 in Column A (indicated by circles) are chosen to
maintain balance in column A. Regarding Column D, levels 7, 1, and 2 can be chosen to
create more orthogonality with factor C; these runs become (1,7), (1,1), and (5,2) for C and
D, respectively.
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Figure 12. Assignment of signs for columns A and D.

The augmented design and its alias structure are shown in Figures 13 and 14, re-
spectively. Note that, after augmentation, Factors B and C are no longer correlated. The
procedure shown here has the potential of generating important saving in runs. A fold-over
produces a design with 42 runs, and a semifold requires 30 runs. When compared to a
fold-over and semifold, this 24-run alternative is obviously more efficient. The next section
presents a practical application in which the algorithm, presented here, is compared to
D-optimal augmentation.

The sequential augmentation algorithm for mixed-level fractions, presented here, can
be summarized in the next steps.

1. Use the alias structure and the correlation plot to detect the highest correlation.
2. Add new runs to achieve orthogonality.
3. Determine signs for remaining factors in such a way that balance is maintained.
4. Compute the new alias structure and correlation plot.
5. Repeat the procedure if necessary.
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6. Practical Applications

Consider the poultry industry and, in particular, chicken rearing. Let us assume
that four factors are involved in this process: (A) 3 chicken breeds, (B) 3 breeding places,
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(C) 5 hormones, (D) 7 food formulas. This is a 32 51 71 mixed-level design, and the full
factorial consists of 315 runs. The experimenter is interested in running a fraction. Consider
the EA (21, 32 51 71), shown in Figure 15, and its alias structure shown in Figure 16.
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Figure 15. EA (21, 32 51 71).

The alias structure shows that two main effects, B and C are strongly correlated. This
means that this design will have difficulty estimating main effects. If this design is selected,
model construction and optimization could be poor.

The experimenter is interested in augmenting the design to break the correlation
between factors B and C, and two options are available: the sequential augmentation
algorithm, presented in Section 6, and the D-optimal augmentation. Figure 17 shows the
original, sequentially augmented, and D-optimal augmented designs, and Figure 18 shows
the corresponding alias structures, Moreover, it shows that the sequentially augmented
and D-optimal augmented designs can estimate all main effects, apart from each other,
because they belong to different alias chains. These designs have no problem estimating
the correct model and optimizing the process. On the other hand, the original design was
not able to estimate factor C, which means that the correct model will not be estimated,
and the optimization process will not be as good as that of the other two designs. To prove
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this, a Monte Carlo simulation was performed. Figure 19 shows the simulated data for the
three designs generated in such a way that effects of A, B, and C, and the interaction AB,
should be reported as significant. A low noise level was employed.
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Figure 17. Original, sequentially augmented, and D-optimal augmented designs.
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Figure 18. Alias structures for original, sequentially augmented, and D-optimal augmented designs.
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Table 5 presents the significant terms detected by each design. Note that the original
design EA (21, 32 51 71) was not able to identify the significant effect C; it only detected
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factors A, B, and interaction AB as significant. On the other hand, the sequentially aug-
mented and D-optimal augmented designs were able to identify all significant effects A,
B, C, plus the interaction AB. The analysis was performed using Design Expert software.
Table 6 shows the optimization; the asterisk * indicates that the factor was reported as not
significant. Note that the EA (21, 32 51 71) produced a chicken that weighs 4.02 pounds,
while the other two designs produced a chicken that weighs 4.14 and 4.05 pound, respec-
tively. This difference may not seem significant, but on an industrial level, it could be a
competitive advantage.

Table 5. Significant terms detected by each design.

True Model A B C AB

Original X X
Sequentially
Augmented X X X X

D-optimal
Augmented X X X X

Table 6. Optimization.

N A B C D Y Desirability

Original 3 2 1 * 1 * 4.020 0.987

Sequentially Augmented 3 2 5 1 * 4.145 1

D-optimal Augmented 3 2 5 1 4.059 0.997

To construct mixed-level fractions, we recommended the approach proposed by [34,35]
to produce a near orthogonal balanced design. To achieve more orthogonality, we rec-
ommended the use of the sequential experimentation algorithm, presented in Section 5,
or D-optimal augmentation. The sequential experimentation algorithm is useful in cases
where only a few terms needed to be decoupled. It can be used to generate significant
savings in runs, given that the D-optimal augmentation technique is usually more expen-
sive. We do not recommend the use of foldovers or semifolds, given that these techniques
require computer programming and complex search methods, such as genetic algorithms
and exhaustive searches, and they may not be the best option for most practitioners.

7. Computer Program

A code for the construction of alias structures was developed in Matlab software
because it has a large number of strategies for the efficient use of memory, in which large
matrices can be used and stored. For example, for a 9-factor design with 36 runs, the
capacity used by the matrices, generated by the program, is 673 MB with a correlation
matrix of size 92 × 92. Therefore, for a computer with a capacity of 8 GB, the maximum
memory available for these arrays would be 2643 MB. Note that this will be limited by
the available system memory (physical + swap file). Capacity is not a problem in the
current structure of the code. The correlation matrix is calculated and then stored in an
array, thus allowing this information to be used in subsequent calculations. A portion
of the programming code is shown below (Algorithm 1). The full code is available at
Supplementary Materials Section.
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Algorithm 1. Program Alias.

function [ ALIASESTRUCTURE ] = GENERADORESTRUCTURAALIASITC(FRACTION)
Array=FRACTION;
ponderacion=0.5;
[m,n]=size(Array);

matrizdecorrelaciones=PASO1A3CALCULARCORRELACIONES(Array,n);
PASO4;
ijcontador=0;
for columname=1:me-1

columname;
contador=columname+1;

for filame=contador:me
if ijcontador==1

break
end

valor=W(filame,columname);
if abs(valor)>=1.5
ijcontador=ijcontador+1;
disp(’La fracción contiene efectos principales que estan fuertemente
correlacionados (r>0.5)’ )
end
contador=contador+1;

end
if ijcontador==1
break
end
end
ciclo=1;
while ciclo==1

if ijcontador==0
PASO5
else

break
end

end
end

The MATLAB program significantly reduced the time invested in the construction
of alias structures for mixed-level fractional factorial designs. Figure 20 shows the com-
putational time required by the program, which ran on a computer with an AMD E-450
processor and a RAM of 2 GB. Building structures for a 9-factor mixed-level fractional
design using the program took only 2 s. The program also reduced the uncertainty of
calculations and interpretive errors that commonly appear when alias structures are built
manually.
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8. Conclusions

The method to construct alias structures for fractional mixed-level designs, presented
in this paper, is simple and easy to implement. It can be summarized in four steps: (1) select
an efficient array; (2) compute the model matrix; (3) compute the correlation matrix; (4)
construct the alias structure. The construction method selects the highest correlations
and establishes relationships among columns until all terms of interest (main effects and
interactions) have been included in some alias chain.

Alias structures serve as the basis for a sequential experimentation approach. A new
algorithm, focused on separating specific columns for main effects, is proposed. The
algorithm is applied to a practical case and compared to D-optimal augmentation. The
results show that, in cases when only a few terms need to be decoupled, the sequential
augmentation algorithm tends to be more efficient than D-optimal augmentation.

The conclusion is that alias structures for mixed-level designs can be easily constructed,
help to visualize the existing correlation in the design, and constitute a good complement to
the GBM criterion. In addition, the sequential augmentation algorithm is able to decouple
specific terms while using a small number of runs.

Supplementary Materials: The full code of the program for generating alias structures and instruc-
tions of use are available at: https://www.mdpi.com/article/10.3390/math9233053/s1.
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