# Nonlinear Analysis of Tropical Waves and Cyclogenesis Excited by Pressure Disturbance in Atmosphere

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Constructing Nonlinear Mathematical Model

## 3. Solutions of the Forced KdV Equation

## 4. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hirota, R. Exact n-soliton solutions of the wave equation of long waves in shallow water and in nonlinear lattices. J. Math. Phys.
**1973**, 14, 810–814. [Google Scholar] [CrossRef] - Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Ma, W. Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2 + 1) dimensions. Mod. Phys. Lett. A
**2009**, 24, 1677–1888. [Google Scholar] [CrossRef] [Green Version] - Ma, W. Bilinear equations and resonant solutions characterized by bell polynomials. Rep. Math. Phys.
**2013**, 72, 41–56. [Google Scholar] [CrossRef] - Ma, W.X. N-soliton solutions and the hirota conditions in (2 + 1)-dimensions. Opt. Quantum Electron.
**2020**, 52, 511–512. [Google Scholar] [CrossRef] - Chen, F.; Zhang, H.Q. Rogue waves on the periodic background in the higher-order modified Korteweg-de Vries equation. Mod. Phys. Lett. B
**2021**, 35, 2150081. [Google Scholar] [CrossRef] - Gao, X.; Zhang, H.Q. Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background. Nonlinear Dyn.
**2020**, 101, 1159–1168. [Google Scholar] [CrossRef] - Chen, J.B.; Pelinovsky, D.E. Rogue periodic waves of the modified KdV equation. Nonlinearity
**2018**, 31, 1955–1980. [Google Scholar] [CrossRef] [Green Version] - Zhao, J.; Guo, B. Analytic solutions to forced KdV equation. Commun. Theor. Phys.
**2009**, 52, 279–283. [Google Scholar] - Salas, A.H. Computing solutions to a forced kdv equation. Nonlinear Anal. Real World Appl.
**2011**, 12, 1314–1320. [Google Scholar] [CrossRef] - Gandarias, M.L.; Bruzon, M.S. Some conservation laws for a forced KdV equation. Nonlinear Anal. Real World Appl.
**2012**, 13, 2692–2700. [Google Scholar] [CrossRef] - Ali, R.; Saha, A.; Chatterjee, P. Analytical electron acoustic solitary wave solution for the forced KdV equation in super thermal plasmas. Phys. Plasmas
**2017**, 24, 122106. [Google Scholar] [CrossRef] - Amiya, D.; Uttam, K.M. Integrability, bilinearization, solitons and exact three wave solutions for a forced Korteweg-de Vries equation. Commun. Nonlinear Sci. Numer. Simul.
**2021**, 102, 105936. [Google Scholar] - Mandi, L.; Mondal, K.K.; Chatterjee, P. Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg-de Vries equation in q-nonextensive plasmas. Eur. Phys. J. Spec. Top.
**2019**, 228, 2753–2768. [Google Scholar] [CrossRef] - Muller, C.J.; Romps, D.M. Acceleration of tropical cyclogenesis by self-aggregation feedbacks. Proc. Natl. Acad. Sci. USA
**2018**, 115, 2930–2935. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Emanuel, K. 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial. Meteorol. Monogr. Am. Meteorol. Soc.
**2018**, 59, 15.1–15.68. [Google Scholar] - Davis, C.A. The formation of moist vortices and tropical cyclones in idealized simulations. J. Atmos. Sci.
**2015**, 72, 3499–3516. [Google Scholar] [CrossRef] - Frank, W.M.; Roundy, P.E. The role of tropical waves in tropical cyclogenesis. Mon. Weather Rev.
**2006**, 134, 2397–2417. [Google Scholar] [CrossRef] - Ritchie, E.; Holland, G. Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Weather Rev.
**1999**, 127, 2027–2043. [Google Scholar] [CrossRef] - Narenpitak, P.; Bretherton, C.S.; Khairoutdinov, M.F. The role of multiscale interaction in tropical cyclogenesis and its predictability in near-global aquaplanet cloud-resolving simulations. J. Atmos. Sci.
**2020**, 55, 3177–3196. [Google Scholar] [CrossRef] - Yuan, P.; Qi, J.; Li, Z.; An, H. General M-lumps, T-breathers, and hybrid solutions to (2 + 1)-dimensional generalized KDKK equation. Chin. Phys. B
**2021**, 30, 040503. [Google Scholar] [CrossRef]

**Figure 2.**The Soliton-type vortex monopole (

**a**,

**b**, with parameter n = 1), vortex dipole (

**c**,

**d**, with parameter n = 2), and vortex tripole (

**e**,

**f**, with parameter n = 3), expressed by stream function solution (23) with its other parameters chosen as: $\u03f5=0.25,c=0.5,\overline{u}=0.5,k=1,\alpha =2,\gamma =2.5,$ $\delta =4,\mu =3,T=0.25,{b}_{2}=-1,{b}_{1}=-3,{b}_{0}=1,{y}_{1}=-5$ and ${y}_{2}=5$.

**Figure 3.**The lump-type vortex monopole (

**a**,

**b**, with parameter n = 1), vortex dipole (

**c**,

**d**, with parameter n = 2), and vortex tripole (

**e**,

**f**, with parameter n = 3), expressed by vortex solution (26) with its other parameters chosen as: $\u03f5=0.25,c=0.5,\overline{u}=0.5,\alpha =2,\gamma =2.5,\delta =5,T=0.25,{a}_{2}=1,{a}_{1}=1,{a}_{0}=5,d=4,{y}_{1}=-5$ and ${y}_{2}=5$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, Z.-L.; Liu, J.-Q.
Nonlinear Analysis of Tropical Waves and Cyclogenesis Excited by Pressure Disturbance in Atmosphere. *Mathematics* **2021**, *9*, 3038.
https://doi.org/10.3390/math9233038

**AMA Style**

Li Z-L, Liu J-Q.
Nonlinear Analysis of Tropical Waves and Cyclogenesis Excited by Pressure Disturbance in Atmosphere. *Mathematics*. 2021; 9(23):3038.
https://doi.org/10.3390/math9233038

**Chicago/Turabian Style**

Li, Zi-Liang, and Jin-Qing Liu.
2021. "Nonlinear Analysis of Tropical Waves and Cyclogenesis Excited by Pressure Disturbance in Atmosphere" *Mathematics* 9, no. 23: 3038.
https://doi.org/10.3390/math9233038