
mathematics

Article

Twisted Edwards Elliptic Curves for Zero-Knowledge Circuits

Marta Bellés-Muñoz 1,* , Barry Whitehat 2, Jordi Baylina 3, Vanesa Daza 1 and Jose Luis Muñoz-Tapia 4

����������
�������

Citation: Bellés-Muñoz, M.;

Whitehat, B; Baylina, J.; Daza, V.;

Muñoz-Tapia, J.L. Twisted Edwards

Elliptic Curves for Zero-Knowledge

Circuits. Mathematics 2021, 9, 3022.

https://doi.org/10.3390/

math9233022

Academic Editors: Ioana Boureanu

and Liqun Chen

Received: 31 October 2021

Accepted: 19 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Communications Technology, Pompeu Fabra University, Tànger Building,
08018 Barcelona, Spain; vanesa.daza@upf.edu

2 Independent Researcher, 6300 Zug, Switzerland; barrywhitehat@protonmail.com
3 0KIMS, Eschenring 11, 6300 Zug, Switzerland; jordi@baylina.cat
4 Department of Network Engineering, Campus Nord, Polytechnic University of Catalonia,

08034 Barcelona, Spain; jose.luis.munoz@upc.edu
* Correspondence: marta.belles@upf.edu

Abstract: Circuit-based zero-knowledge proofs have arose as a solution to the implementation
of privacy in blockchain applications, and to current scalability problems that blockchains suffer
from. The most efficient circuit-based zero-knowledge proofs use a pairing-friendly elliptic curve to
generate and validate proofs. In particular, the circuits are built connecting wires that carry elements
from a large prime field, whose order is determined by the number of elements of the pairing-friendly
elliptic curve. In this context, it is important to generate an inner curve using this field, because it
allows to create circuits that can verify public-key cryptography primitives, such as digital signatures
and encryption schemes. To this purpose, in this article, we present a deterministic algorithm for
generating twisted Edwards elliptic curves defined over a given prime field. We also provide an
algorithm for checking the resilience of this type of curve against most common security attacks.
Additionally, we use our algorithms to generate Baby Jubjub, a curve that can be used to implement
elliptic-curve cryptography in circuits that can be validated in the Ethereum blockchain.

Keywords: zero-knowledge proof; elliptic curve; blockchain; privacy

1. Introduction

Since the first occurrence of an elliptic curve in one of Diophantus’ Arithmetica books,
elliptic curves have played an increasingly important role in mathematics. These mathe-
matical objects showed their practical potential in the 1980s, when Koblitz [1] and Miller [2]
independently proved that some techniques used in modern cryptography could also be
applied to elliptic curve groups, and that the resulting schemes were more efficient. After
four decades of research and development, elliptic-curve cryptography (ECC) now has
widespread exposure and acceptance; and industry, banking, and government standards,
have already migrated from classic public-key cryptography to ECC [3].

In 2008, blockchain, the technology behind most cryptocurrencies, was added to the
list of practical uses for ECC. In Satoshi’s seminal Bitcoin paper [4], ECC was used for
securing the various transactions occurring on the network, for controlling the generation
of new currency units, and verifying the transfer of digital assets and tokens. A few years
later, privacy-oriented cryptocurrencies, such as Monero and Zcash, incorporated new
cryptographic techniques to ensure user anonymity and obfuscate payment details. For
instance, Monero started using ring signatures and Pedersen commitments [5], while Zcash
exploited a type of protocols called zero-knowledge (ZK) proofs [6].

ZK proofs allow one party to convince another that a statement is true without
revealing any information beyond the veracity of the statement [7]. In general, they are
used to show that someone knows the result of a computation without revealing the
solution. For example, with ZK proofs, one can prove that someone holds the private key
associated with a certain public key without revealing the private key. Another example is
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to prove that a transaction has been computed correctly without leaking any information
about the transaction details.

Among different ZK systems, the most suitable for blockchain applications are the
ones called ZK succinct non-interactive arguments of knowledge (ZK-SNARKs). This type
of protocol does not require any interaction between the parties involved, and the size of
the proofs is small [8–10]. Most ZK-SNARK constructions make use of bilinear pairings
over elliptic curve groups to achieve efficient verification, too. In this way, blockchain
users can send proofs as part of a transaction to a smart contract, who verifies if the proof
is correct and performs a specific action depending on whether the proof verification is
satisfied or not.

Before proving computational statements with ZK-SNARKs, statements have to be
expressed as an Fp-arithmetic circuit (also called ZK circuit or ZK-SNARK circuit), which is
a circuit made up of additions and multiplications modulo a certain prime p. The specific
construction of the protocol is what determines p, but typically p is a large prime number
of approximately 254 bits that is determined by the order of a pairing-friendly elliptic
curve [11]. For instance, in Ethereum, p is the order of BN256 elliptic curve, and in Zcash,
p is the large prime order subgroup of BLS12-381.

Classical cryptographic schemes consisted mostly of boolean operations, which makes
them inefficient when evaluated inside a ZK-SNARK circuit. As an example, the Zcash
circuit relied on the SHA256 hash function to create a message-authentication code to pre-
vent malleability, for generating pseudo-random strings and for commitments. However,
each invocation of SHA256 added tens of thousands of multiplication gates to ZK-SNARK
circuits, making this hash the primary cost when generating ZK-SNARK proofs [12]. These
issues motivated the search for algebraic primitives to replace SHA256 and other inefficient
functions. So, instead of hash functions such as SHA256 inside ZK-SNARK circuits, the
idea was to use ECC that works in large prime fields, which is the natural representation of
circuits. For this reason, new schemes that relied on elliptic curves were gradually adopted
in ZK-SNARK circuits.

In this context, two prominent examples are Pedersen hashes [13] and the Edwards
digital signature algorithm (EdDSA) [14]. These schemes can be built efficiently by us-
ing elliptic curves that can be represented in the twisted Edwards form.The nice fea-
ture of this form is that there is a single formula for doubling and adding points of the
curve (Section 6, [15]).There is another form of representing elliptic curves called Mont-
gomery, that makes computations faster but has different formulas for adding and doubling
points [16]. The nice thing is that the twisted Edwards form is generally birationally equiv-
alent to a Montgomery curve, so the curve can be easily converted from one form to
another (Theorem 3.2, [15]). Inside our ZK-SNARK circuit, we can use the Montgomery
form when we know for sure that either we are adding different points or we are adding
the same point, and use twisted Edwards when, depending on the inputs of the circuit, this
cannot be assured. Combining the two forms in this way makes the implementation of the
group law inside ZK-SNARK circuits very efficient.

1.1. Motivation

In order to implement the Pedersen hash and the EdDSA inside a ZK-SNARK circuit,
one needs curves that are defined over the finite field of prime order p, namely Fp, where
p is determined by the particular choice of pairing-friendly elliptic curve used to generate
ZK-SNARK proofs. It is crucial to choose an appropriate twisted Edwards elliptic curve
with optimal parameters for the cryptographic schemes, since the choice of the curve has
great impact on their security and efficiency. Moreover, it is important to generate curves in
a transparent and deterministic way, so that anyone can audit and recreate the procedure.
Transparency is paramount, as it significantly reduces the possibility of a backdoor being
present, thus leading to better security. Needless to say, it is crucial that the new curves are
also tested for resilience against best known attacks, such as the rho method, or additive
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and multiplicative transfers, which attack the discrete logarithm problem over elliptic
curve groups [17].

1.2. Our Contributions

In this paper, we present a set of deterministic algorithms that, given a field Fp, allows
us to generate secure twisted Edwards elliptic curves that are suitable for Fp-arithmetic cir-
cuits and allow the efficient computation of ZK-SNARK proofs that prove ECC statements.
There have already been two curves that have been generated using these methods. On the
one side, Jubjub curve for Zcash, defined over the scalar field of BLS12-381 and on the other
side, Baby Jubjub for Ethereum, defined over the scalar field of BN256. The present work
is a formalization and generalization of the common efforts to generate suitable twisted
Edwards curves for ZK-SNARK circuits.

1.3. Organization of the Paper

The rest of the paper is structured in five main sections. In Section 2, we introduce
related work on generation of elliptic curves in the ZK context. In the following Section 3,
we provide a general overview of ZK proofs and classical theory of elliptic curves. In
Section 4, we present a deterministic algorithm for generating twisted Edwards elliptic
curves defined over a given prime field. We complement the work in Section 5, with the
security checks that a twisted Edwards elliptic curve should pass. We base this section on
the work from Bernstein and Lange gathered in [18]. In Section 6, we use our algorithms
to generate Baby Jubjub, a curve that can be used to implement elliptic-curve schemes
inside Fp-arithmetic circuits for Ethereum, and which has already been used in practical
applications such as Hermez, a Layer-2 payment system, and Tornado Cash, a payment
mixer. Finally, we conclude in Section 7 with some discussion of the work and future
research directions. Additionally, we provide Appendix A with a SAGE implementation of
the security checks presented in Section 5, which was used to prove that Baby Jubjub was
safe under best known security attacks.

2. Related Work

The interest of society and regulators in privacy, both individual’s privacy and industry
trade secrets, has grown in the recent years, and has ended up with new legislation such as
the General Data Protection Regulation (GDPR) passed by the European Union [19] and the
California Consumer Privacy Act (CCPA) [20]. Privacy is specially relevant in blockchain,
where it is crucial to combine the inherent transparency of the system with the users’
privacy rights [21–23]. To this purpose, in the blockchain space, there has been an intensive
use of cryptographic schemes that make use of elliptic curves, which has motivated the
appearance of new problems that have been tackled by both industry and academia.

For instance, the need for efficient pairing-friendly curves in ZK-SNARK schemes
resurfaced the work from Barreto and Naehrig [24], and Barreto, Lynn, and Scott [25],
who developed techniques to generate pairing-friendly elliptic curves that had an optimal
Ate pairing. The vast application of curves derived from their work, which are usually
called BN and BLS curves, resulted in undergoing processes from the IRTF Crypto Forum
Research Group to standardize particular instantiations of these curves [26,27], such as the
BN-256 and the BLS12-381, which are used in digital signature schemes and ZK-SNARK
protocols all over the Internet.

The order of these curves is what determines the type of statements we can prove
using ZK. More precisely, the largest prime p dividing the curve’s order fixes the field in
which we can do modular arithmetic. As a result, computational statements that involve
elliptic-curve operations can only be proved efficiently with curves that are defined over
the prime field Fp. Hence, the implementation of ECC schemes that make use of twisted
Edwards curves require new curves defined over Fp. Table 1 summarizes the most closely
related contributions to our work.



Mathematics 2021, 9, 3022 4 of 21

Table 1. Comparison with related work.

System Outer Curve Inner Curve

Zcash [12] BLS12-381 Jubjub
Masson et al. [28] BLS12-381 Bandersnatch

Our Proposal BN-256 Baby Jubjub
Ben-Sasson et al.[29] MNT4 MNT6

ZEXE [30] CP6-782 BLS12-377
Housni et al. [31] BW6-761 BLS12-377

The Zcash team was the first to generate a suitable curve for Fp-arithmetic circuits.
Since Zcash ZK-SNARK constructions are based on BLS12-381, their curve, named Jubjub,
was expressly built over the BLS12-381 scalar field.

Recently, a new elliptic curve built over the BLS12-381 scalar field was introduced
in [28], but although this curve allows a faster scalar multiplication algorithm than Jubjub,
it does not provide any performance improvement in multi-scalar multiplications or in the
ZK circuit representations.

We have used a similar approach to generate Baby Jubjub, which is an embedded
elliptic curve designed to operate on the field produced by the BN256 elliptic curve. This
work that we are presenting covers the case in which we want to use circuits that can verify
public key cryptography primitives such as digital signatures and encryptions in Ethereum.
Then, these proofs can be verified by an Ethereum smart contract because the Ethereum
virtual machine (EVM) has an operation to compute pairings with the BN256 elliptic curve.
We presented and discussed the techniques used to generate Jubjub and Baby Jubjub at
the second annual ZKProof Standardization Workshop in Berkeley. The present work is a
reviewed, formalized and generalized version of the efforts towards the standardization of
the generation of suitable twisted Edwards curves for ZK-SNARK circuits.

The generation of other type of curves for ZK-SNARK circuits has also appeared in
other lines of research. For instance, the authors of [29] presented the first practical setting
of recursive proof composition with a cycle of two Miyaji–Nakabayashi–Takano (MNT)
pairing-friendly elliptic curves [32]. The idea of their proposal is that proofs generated from
one curve can feasibly reason about proofs generated from the other curve. To achieve this,
one curve’s order is the other curve’s base field order and vice versa. Although current
MNT cycles of curves are quite expensive at the 128-bit security, the work opens the door
to the possibility of having succinct blockchains that are verifiable with one single proof.
Bowe et al. [30] proposed ZEXE, a construction that follows a relatively relaxed approach
to find a suitable pair of curves that form a chain rather than a cycle. A later work from El
Housni and Guillevic [31] improved ZEXE with a new curve that makes the verification of
composed ZK-SNARK proofs significantly faster.

3. Background

In this section, we review the main ideas behind ZK proving systems and elliptic
curve theory, focusing on twisted Edwards and Montgomery forms.

3.1. Zero-Knowledge Proofs

Zero-knowledge (ZK) proofs allow one party, called prover, to convince another one,
called verifier, that a statement is true without revealing any information beyond the
veracity of the statement. In this context, we understand a statement as a relation between
an instance, a public input known to both prover and verifier, and a witness, a private
input only known by the prover, which belongs to a language L in the nondeterministic
polynomial time (NP) complexity class [7]. More specifically, a ZK protocol satisfies
that a verifier will accept the proof if it is generated by an honest prover (completeness)
and the verifier will not accept proofs from a dishonest prover (soundness). These two
properties protect the verifier against dishonest provers. On the other hand, ZK proofs
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must ensure that the proofs do not leak any information about the statement being proved
(zero-knowledge), guaranteeing this way the privacy of the prover’s secret information
against malicious verifiers [7].

Most ZK systems operate in the model of Fp-arithmetic circuits, which are circuits
composed by wires that carry values from a prime field Fp and connect them to addition
and multiplication gates modulo p. We consider that an assignment to the wires is valid if
for every gate, the value on the output wires matches that gate’s operation and the values
on its input wires. In this context, a ZK proof typically allows to prove the existence of a
valid circuit wires assignment, but there is a special class of protocols known as arguments
of knowledge that allow to prove that, with very high probability, the prover knows a valid
assignment to the wires of the circuit.

An argument of knowledge is considered a ZK succinct non-interactive argument
of knowledge (ZK-SNARK) if there is no interaction between the prover and the verifier
during the generation of a proof and, regardless of the size of the statement being proved,
has succinct proof size (e.g., [9]—proofs are≈ 200 bytes). Most ZK-SNARKs also guarantee
short verification time by making use of bilinear pairings over groups of points of an elliptic
curve [8–10]. The largest prime p diving of the curve is what determines the modular
arithmetic performed in the arithmetic circuits. For instance, a ZK-SNARK protocol that
uses pairings over an elliptic curve of prime order p allows proving statements regarding
Fp-arithmetic circuits.

3.2. Elliptic Curves

In this section, we first give a general overview of elliptic curves defined over any
field K, following the definitions and notation in [33] (Chapter VI), and then, we focus on
twisted Edwards and Montgomery elliptic curves defined over prime finite fields. For
general results about elliptic curves, we refer the reader to [34,35].

Definition 1 (Elliptic curve). Let K be a field of characteristic 6= 2, 3 and let

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (1)

be a cubic polynomial equation with a1, . . . , a6 ∈ K and with no multiple roots. An elliptic curve E
over K consists of the set of points (x, y) with x, y ∈ K which satisfy Equation (1), together with a
single element called point at infinity, denoted by O.

An important result about the set of points of an elliptic curve is that they form
an additive Abelian group. To define the addition of points, which might seem a little
unnatural at first, it is easier to think of elliptic curves as objects in the two-dimensional
projective space.

Group Law 1. Let E be an elliptic curve and P, Q points on E. Let L ⊂ P2, where P2 denotes the
2-dimensional projective space, be the line that intersects both P and Q and denote by R the third
point of intersection between E and L. Let L′ be the line that intersects both R and O. We define
P + Q as the third point of intersection between E and L′.

The following example illustrates visually the composition of points in the plane of an
ordinary curve defined over the field of real numbers R.

Example 1. Let E be the elliptic curve E : y2 = x3 − 2x defined over R. In Figure 1, we see the
composition P + Q for two points P and Q with distinct y-coordinates. The line through the points
intersects the curve in a third point R and P + Q is the reflection across the x-axis.
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y2 = x3 − 2x

x

y

P•
Q•

•R

•P + Q

Figure 1. The Group Law for two distinct points P, Q on the elliptic curve E : y2 = x3 − 2x.

Proposition 1. The composition of points on an elliptic curve E defined in Group Law 1 makes E
into an additive Abelian group with identity O.

Proof. See (Proposition 2.2, Chapter III, [34]).

In cryptography, we are interested in elliptic curves over finite fields. For the rest of
the article, we shall let K be a prime-order finite field Fp for some prime p. In this context,
it makes sense to define the order of the curve and the order of a point.

Definition 2 (Order). The order of an elliptic curve defined over Fp is its number of points. The
order of a point P is the smallest positive integer n such that nP = O.

The following result is a particular case of Hasse’s theorem, which provides an upper
and a lower bound of the order of an elliptic curve.

Theorem 1 (Hasse’s Bound Theorem). Let n be the number of points on an elliptic curve defined
over Fp. Then,

|n− (p + 1)| ≤ 2
√

p.

Proof. See (Theorem 1.1, Chapter V, [34]).

Definition 3. Let n be the order of an elliptic curve E. We say that a point G0 is a generator of the
curve, if it has order n. When n is a composite number of the form n = h× l, where h is a small
number (typically called cofactor) and l is a large prime number, we say that G1 is a base point, if it
has order l.

Montgomery and Twisted Edwards Curves

Below, we define and describe elliptic curves in Montgomery and twisted Edwards
form. In this part, we follow [15,36].

Definition 4 (Montgomery curve). Let p ≥ 3 be a prime and Fp the finite field of order p. For
A, B ∈ Fp, A ∈ Fp\{−2, 2} and B ∈ Fp\{0}, an elliptic curve defined by

EM : By2 = x3 + Ax2 + x

is called a Montgomery (elliptic) curve.

The following theorem presents the addition formulas for Montgomery curves.

Theorem 2. Let P1 = (x1, y1) 6= O and P2 = (x2, y2) 6= O be two points of a Montgomery
curve EM. Then:
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• If P1 6= P2, then the sum P1 + P2 is a third point P3 = (x3, y3) with coordinates

Λ = (y2 − y1)/(x2 − x1),

x3 = BΛ2 − A− x1 − x2,

y3 = Λ(x1 − x3)− y1.

(2)

• If P1 = P2, then P1 + P1 is a point P3 = (x3, y3) with coordinates

Λ = (3x2
1 + 2Ax1 + 1)/(2By1),

x3 = BΛ2 − A− 2x1,

y3 = Λ(x1 − x3)− y1.

(3)

Proof. See [16].

Theorem 3. The order of a Montgomery curve is divisible by 4.

Proof. See (Section 10.3.2, [36]).

Definition 5 (Twisted Edwards curve). Let p ≥ 3 be a prime and Fp the finite field of order p.
For distinct a, b ∈ Fp\{0}, an elliptic curve defined by

E : ax2 + y2 = 1 + dx2y2

is called a twisted Edwards (elliptic) curve.

As the next theorem shows, twisted Edwards curves have complete addition formulas,
which makes these curves very efficient to implement inside ZK-SNARK circuits.

Theorem 4. Let P1 = (x1, y1) and P2 = (x2, y2) be points of a twisted Edwards elliptic curve E.
The sum P1 + P2 is a third point P3 = (x3, y3) with

λ = dx1x2y1y2,

x3 = (x1y2 + y1x2)/(1 + λ),

y3 = (y1y2 − x1x2)/(1− λ).

Note that the inverse of a point (x, y) in a twisted Edwards curve is (−x, y).

Proof. See ([37], Section 3).

The following theorem states that Montgomery and twisted Edwards curves are
birationally equivalent. The theorem also gives the birational map that allows the transfor-
mation from one form to the other.

Theorem 5. Every twisted Edwards curve E over Fp is birationally equivalent over Fp to a
Montgomery curve EM with parameters

A = 2
a + d
a− d

and B =
4

a− d
.

The birational equivalence from E to EM is the map

(x, y)→ (u, v) =
(

1 + y
1− y

,
1 + y

(1− y)x

)
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with inverse

(u, v)→ (x, y) =
(

u
v

,
u− 1
u + 1

)
. (4)

Conversely, every Montgomery curve over Fp is birationally equivalent over Fp to a twisted
Edwards curve with parameters

a =
A + 2

B
and d =

A− 2
B

.

Proof. See (Theorem 3.2, [15]).

4. Our Proposal

In this section, we present a method that, given a prime number p, we get a twisted
Edwards curve defined over Fp.

4.1. General Overview

Our algorithm takes a prime number p and returns a twisted Edwards curve defined
over Fp. More precisely, the specific outputs of the algorithm are:

• The prime order of the finite field the curve is defined over (which is the input p);
• Parameters a and d of the equation that defines the twisted Edwards curve;
• The order of the curve and its decomposition into the product of a cofactor and a large

prime;
• A generator and a base point for the curve.

Since the finite field is defined by the input p, no specification of this parameter is
required. The order of the curve and its decomposition are also determined once the
parameters of the equation describing the curve are fixed. Hence, the only remaining
specifications are parameters a and d and the choice of generator and base point.

We have divided the procedure in four steps:

1. Choice of Montgomery Equation: we start by deterministically generating a Montgomery
elliptic curve EM over Fp;

2. Choice of Generator and Base Points: we set the generator and base points of EM;
3. Transformation to Twisted Edwards: we convert the curve EM to its birationally equiva-

lent twisted Edwards form and the generator and base points using the maps from
Theorem 5;

4. Optimization of Parameters: if possible, we rescale all parameters so that the arithmetic
in the curve can be sped up [38].

All algorithms presented in this section have been implemented in SAGE program-
ming language, and are presented in Section 6.

4.2. Choice of Montgomery Equation

We start by finding a Montgomery curve defined over Fp where p is a given prime
number. The assumptions and algorithm presented are based on the work of [39] and
Zcash team [40].

Algorithm 1 takes a prime p, fixes B = 1 and returns the Montgomery elliptic curve
defined over Fp with the smallest coefficient A such that A− 2 is a multiple of 4. This
approach comes from the fact that, when defining a Montgomery curve, the smaller A
is, the faster the group operation becomes. More precisely, as pointed out in [41], for the
best performance, we need (A− 2)/4 to be small. As with A = 1 and A = 2, a twisted
Edwards equation does not describe a smooth curve, so the algorithm starts with A = 3.

For primes congruent to 1 modulo 4, the minimal cofactors of the curve and its twist
are either {4, 8} or {8, 4}. We choose a curve with the latter cofactors, so that any algorithms
that take the cofactor into account do not have to worry about checking for points on the
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twist, because the twist cofactor will be the smaller of the two [39]. For a prime congruent
to 3 modulo 4, both the curve and twist cofactors can be 4, and this is minimal.

Algorithm 1: Generation of EM

Input: prime number p
Output: coefficients A, B, order n, cofactor h, prime l

1 fix B = 1.
2 start with A = 3.
3 if (A− 2) = 0 mod 4 :
4 continue.
5 else :
6 increment A by 1 and go back to line 3.
7 if equation y2 = x3 + Ax2 + x defines an elliptic curve over Fp :
8 continue.
9 else :

10 increment A by 1 and go back to line 3.
11 compute the group order n and cofactor h.
12 if p = 1 mod 4 :
13 if (cofactor is 8 and cofactor of twist is 4) :
14 set h = 8.
15 else :
16 increment A by 1 and go back to line 3.
17 if p = 3 mod 4 :
18 if (cofactor and cofactor of twist is 4) :
19 set h = 4.
20 else :
21 increment A by 1 and go back to line 3.
22 compute l = n/h.
23 return A, B, n, h and l.

4.3. Choice of Generator and Base Points

To pick a generator GM
0 of the curve, we choose the smallest element of Fp that

corresponds to an x-coordinate of a point in the curve of order n. Then, as a base point, we
define GM

1 = 8 · GM
0 , which has order l. The steps are written down in Algorithm 2.

Algorithm 2: Generator and Base Points of EM

Input: Montgomery curve EM, order n, cofactor h
Output: generator GM

0 , base point GM
1

1 start with u = 1.
2 find v such that (u, v) is a point of EM. else, increment u by 1 and repeat the step.
3 check that (u, v) has order n. else, increment u by 1 and go back to step 2.
4 set GM

0 = (u, v) and GM
1 = h · G0.

5 return GM
0 and GM

1 .

4.4. Transformation to Twisted Edwards

In Algorithm 3, we use the birational map from Equation (4) to get the coefficients,
generator and base points in the twisted Edwards form.

4.5. Optimization of Parameters

As pointed out in [38] (Section 3.1), if −a is a square in Fp, it is possible to optimize
the number of operations in a twisted Edwards curve by scaling it.

Theorem 6. Consider a twisted Edwards curve defined over Fp given by equation ax2 + y2 = 1 +
dx2y2. If −a is a square in Fp, then the map (x, y)→ (x/

√−a, y) defines the curve −x2 + y2 =
1 + (−d/a)x2y2. We denote by f =

√−a the scaling factor.
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Proof. The result follows directly from the map’s definition.

Algorithm 3: convert EM to E
Input: Montgomery coefficients A, B, generator GM

0 = (xM
0 , yM

0 ), base GM
1 = (xM

1 , yM
1 )

Output: twisted Edwards coefficients a, d, generator G0, base point G1
1 compute a = (A + 2)/B and d = (A− 2)/B.
2 compute x0 = xM

0 /yM
0 .

3 compute y0 = (xM
0 − 1)/(xM

0 + 1).
4 set G0 = (x0, y0).
5 compute x1 = xM

1 /yM
1 .

6 compute y1 = (xM
1 − 1)/(xM

1 + 1).
7 set G1 = (x1, y1).
8 return a, d, G0 and G1.

The following Algorithm 4 rescales, if possible, the twisted Edwards curve found in
the previous step as described in the previous theorem. It also converts the generator and
base points to the new coordinates. After applying the algorithm, the map that transforms
EM to E becomes the composition of maps from Theorems 5 and 6.

Algorithm 4: if possible, rescale E with a = −1
Input: coefficients a, d, generator G0 = (x0, y0), base point G1 = (x1, y1)
Output: scaling factor f , coefficients a′ = a/ f 2, d′ = −d/a, generator G′0 = (x0/ f , y0),

base point G′1 = (x1/ f , y1)
1 if −a is a square in Fp :
2 take f =

√−a.
3 set a′ = −1 and d′ = −d/a.
4 compute x′0 = x0/ f and x′1 = x1/ f .
5 set G′0 = (x′0, y0) and G′1 = (x′1, y1).
6 return f , a′, d′, G′0 and G′1.
7 else :
8 set f = 1.
9 return f , a, d, G0 and G1.

5. Security Analysis

This section specifies the safety criteria that the elliptic curve should satisfy. The
choices of security parameters are based on the joint work of Bernstein and Lange summa-
rized in [18]. In Appendix A, we provide an implementation of the algorithm that should
be run after finding the elliptic curve as proposed in the previous section. The algorithm is
based on the code from [42], which is an extension of the original SAGE code from [18], to
general twisted Edwards curves.

Curve Parameters: We check that all given parameters describe a well-defined elliptic
curve over a prime finite field:

• The given number p is prime;
• The given parameters define an equation that corresponds to an elliptic curve;
• The product of h and l results into the order of the curve and the point G0 is a

generator;
• The given number l is prime and the point G1 is a base point.

Elliptic Curve Discrete Logarithm Problem: We check that the discrete logarithm
problem remains difficult in the given curve. For that, we check it is resistant to the
following known attacks:

• Rho method (Section V.1, [17]): we require the cost for the rho method, which takes
on average around 0.886

√
l additions, to be above 2100;

• Additive and multiplicative transfers (Section V.2, [17]): we require the embedding
degree to be at least (l − 1)/100;
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• High discriminant (Section IX.3, [17]): we require the complex-multiplication field
discriminant D to be larger than 2100.

Elliptic Curve Cryptography: We check if the curve is suitable for ECC:

• Ladders [16]: check the curve supports the Montgomery ladder;
• Twists (twist, [18]): check if it is secure against the small-subgroup attack, invalid-

curve attacks and twisted-attacks;
• Completeness (complete, [18]): check if the curve has complete single-scalar and

multiple-scalar formulas. It is enough to check that there is only one point of order 2
and 2 of order 4;

• Indistinguishability [43]: check availability of maps that turn elliptic-curve points
indistinguishable from uniform random strings.

6. Implementation

Ethereum, the second-largest blockchain, uses BN256 to generate and verify ZK-
SNARK proofs. BN256 is a pairing-friendly elliptic curve of prime order

p = 21888242871839275222246405745257275088548364400416034343698204186575808495617.

In order to prove ECC statements with ZK-SNARKs, Ethereum needed a new curve defined
over Fp. In this section, we present a SAGE implementation of the algorithms presented in
the previous sections, and we use them to generate Baby Jubjub, a twisted Edwards elliptic
curve suitable for ZK-SNARK circuits in Ethereum.

First, we implemented Algorithm 1 in Listing 1, which generates a Montgomery curve
EM with the smallest A satisfying the conditions we described in Section 4.2. In the last
lines of code, we instantiate the functions using the prime number p, which is the order of
BN256 curve, and enforcing the resulting curve to have cofactor h = 8.
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6. Implementation357
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SNARK proofs. BN256 is a pairing-friendly elliptic curve of prime order
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In order to prove ECC statements with ZK-SNARKs, Ethereum needed a new curve358

defined over Fp. In this section, we present a SAGE implementation of the algorithms359

presented in the previous sections, and we use them to generate Baby Jubjub, a twisted360

Edwards elliptic curve suitable for ZK-SNARK circuits in Ethereum.361

First, we implemented Algorithm 1 in Listing 1, which generates a Montgomery362

curve EM with the smallest A satisfying the conditions we described in Section 4.2. In363

the last lines of code, we instantiate the functions using the prime number p, which is364

the order of BN256 curve, and enforcing the resulting curve to have cofactor h = 8.365

366

def findCurve(prime , curveCofactor , twistCofactor , _A):367
Fp = GF(prime)368
A = _A369
while A < _A + 200000:370

if (A-2.) % 4 != 0:371
A+=1.372
continue373

try:374
E = EllipticCurve(Fp, [0, A, 0, 1, 0])375

except:376
A+=1.377
continue378

379
groupOrder = E.order()380
if (groupOrder % curveCofactor != 0 or not is_prime(groupOrder // curveCofactor )):381

A+=1382
continue383

384
twistOrder = 2*( prime +1)- groupOrder385
if (twistOrder % twistCofactor != 0 or not is_prime(twistOrder // twistCofactor )):386

A+=1387
continue388

389
return E, A, 1, groupOrder , curveCofactor , groupOrder // curveCofactor390

391
def find1Mod4(prime , curveCofactor , twistCofactor , A):392

assert ((prime % 4) == 1)393
return findCurve(prime , curveCofactor , twistCofactor , A)394

395
# Baby Jubjub in Montgomery form396
prime = 21888242871839275222246405745257275088548364400416034343698204186575808495617397
Fp = GF(prime)398
h = 8399
A = 1.400
EC, A, B, n, h, l = find1Mod4(prime , h, 4, A)401

Listing 1: Generation of EM.Listing 1. Generation of EM.

The result from Listing 1 is that the smallest A satisfying our conditions is A = 168,698.
As a result, the Montgomery form of Baby Jubjub is defined over Fp by equation:

y2 = x3 + 168,698x2 + x.

The function findCurve also returns the order of the curve, which in this case is
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n = 21888242871839275222246405745257275088614511777268538073601725287587578984328,

where n = h× l, with h = 8, and l is the large prime number

l = 2736030358979909402780800718157159386076813972158567259200215660948447373041.

The next step is to generate a generator and a base point for Baby Jubjub in Montgomery
form. For that, we implemented Algorithm 2 in Listing 2. Recall that the algorithm is
deterministic and takes as a generator GM

0 , the point of the curve of order n with smallest
x-coefficient, and as a base point, GM

1 = h · GM
0 . The last two lines of code are used to find

a valid generator and base point for Baby Jubjub in Montgomery form.
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0 , the point of the curve of order n with smallest404

x-coefficient, and as a base point, GM
1 = h · GM

0 . The last two lines of code are used to405

find a valid generator and base point for Baby Jubjub in Montgomery form.406

407

def findGenPoint(prime , A, EC, N):408
Fp = GF(prime)409
for uInt in range(1, 1e3):410

u = Fp(uInt)411
v2 = u^3 + A*u^2 + u412
if not v2.is_square ():413

continue414
v = v2.sqrt()415

416
point = EC(u, v)417
pointOrder = point.order()418
if pointOrder == N:419

return point420
421

def findBasePoint(EC , h, u, v):422
return h*EC(u, v)423

424
# Generator and base points of Baby Jubjub in Montgomery form425
gen_u , gen_v , gen_w = findGenPoint(prime , A, EC, n)426
base_u , base_v , base_w = findBasePoint(EC, h, gen_u , gen_v)427

Listing 2: Generator G0 and base point G1 of EM.

The resulting points from Listing 2, are the generator GM
0 = (xM

0 , yM
0 ) with coordinates

xM
0 = 7,

yM
0 = 42587277738759406903626075504983045981

01071202821725296872974770776423442226,

and the base point GM
1 = (xM

1 , yM
1 ) with coordinates

xM
1 = 71179280504075836181111764215552147566

75765419608405867398403713213306743542,

yM
1 = 145772682188818994209667796876902054252

27431577728659819975198491127179315626.

Algorithm 3 maps a Montgomery curve to its twisted Edwards form. We divided the428

algorithm in three different functions. The first function mont_to_ted converts a Mont-429

gomery point to a twisted Edwards point, the function ted_to_mont does the opposite,430

and is_on_ted checks if a point is a solution to a given twisted Edwards equation. Al-431

though the last two functions are not needed in the original algorithm, we implemented432

them in order to have sanity checks after the conversion from Montgomery to twisted433

Edwards form.434

435

Listing 2. Generator G0 and base point G1 of EM.

The resulting points from Listing 2 are the generator GM
0 = (xM

0 , yM
0 ) with coordinates

xM
0 = 7,

yM
0 = 4258727773875940690362607550498304598101071202821725296872974770776423442226,

and the base point GM
1 = (xM

1 , yM
1 ) with coordinates

xM
1 = 7117928050407583618111176421555214756675765419608405867398403713213306743542,

yM
1 = 14577268218881899420966779687690205425227431577728659819975198491127179315626.

Algorithm 3 maps a Montgomery curve to its twisted Edwards form. We divided the
algorithm in three different functions. The first function mont_to_ted converts a Mont-
gomery point to a twisted Edwards point, the function ted_to_mont does the opposite,
and is_on_ted checks if a point is a solution to a given twisted Edwards equation. Al-
though the last two functions are not needed in the original algorithm, we implemented
them in order to have sanity checks after the conversion from Montgomery to twisted
Edwards form.

After the conversion maps, we get that the twisted Edwards form of Baby Jubjub is
described by equation

168700x2 + y2 = 1 + 168696x2y2.

The code from Listing 3 also outputs the generator G0 = (x0, y0) and base point G1 = (x1, y1)
in twisted Edwards form. The specific outputs are that G0 has coordinates
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x0 = 995203441582195749578291179787384436505546430278305826713579947235728471134,

y0 = 5472060717959818805561601436314318772137091100104008585924551046643952123905,

and G1 has coordinates

x1 = 5299619240641551281634865583518297030282874472190772894086521144482721001553,

y1 = 16950150798460657717958625567821834550301663161624707787222815936182638968203.
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def mont_to_ted(u, v , prime ):436
Fp = GF(prime)437
x = Fp(u / v)438
y = Fp((u -1)/(u+1))439
return(x, y)440

441
def ted_to_mont(x, y , prime):442

Fp = GF(prime)443
u = Fp((1 + y )/ ( 1 - y))444
v = Fp((1 + y ) / ( (1 - y) * x))445
return(u, v)446

447
def is_on_ted(x, y, prime , a, d):448

Fp = GF(prime)449
return Fp(a*(x**2) + y**2 - 1 - d*(x**2)*(y**2)) == 0450

451
# Conversion of Baby Jubjub to twisted Edwards452
a = Fp((A + 2) / B)453
d = Fp((A - 2) / B)454

455
# Check we have a safe twist and discriminant != 0456
assert(not d.is_square ())457
assert(a*d*(a-d)!=0)458

459
# Conversion of generator to twisted Edwards460
gen_x , gen_y = mont_to_ted(gen_u , gen_v , prime)461
assert(is_on_ted(gen_x , gen_y , prime , a , d))462

463
# Sanity check: the inverse map returns the original point in Montgomery464
u , v = ted_to_mont(gen_x , gen_y , prime)465
assert (u == gen_u)466
assert (v == gen_v)467

468
# Conversion of base point to twisted Edwards469
base_x , base_y = mont_to_ted(base_u , base_v , prime)470
assert(is_on_ted(base_x ,base_y , prime , a , d))471

Listing 3: Conversion of EM to E.

After the conversion maps, we get that the twisted Edwards form of Baby Jubjub is
described by equation

168700x2 + y2 = 1 + 168696x2y2.

The code from Listing 3 also outputs the generator G0 = (x0, y0) and base point G1 =
(x1, y1) in twisted Edwards form. The specific outputs are that G0 has coordinates

x0 = 99520344158219574957829117978738443650

5546430278305826713579947235728471134,

y0 = 547206071795981880556160143631431877213

7091100104008585924551046643952123905,

and G1 has coordinates

x1 = 52996192406415512816348655835182970302

82874472190772894086521144482721001553,

y1 = 169501507984606577179586255678218345503

01663161624707787222815936182638968203.

The last Algorithm 4 tries to escalate the twisted Edwards form of the curve, so that the
equation has parameter a = −1. This last step is implemented in Listing 4 and in the
case of Baby Jubjub, the resulting scaling factor is

f =19119828543052250743812513441033299316

37610209014896889891168275855466657090.

This way, the optimal version of Baby Jubjub in twisted Edwards form is by equation

−x2 + y2 = 1 + d′x2y2,

where

d′ = 121816440234217301248741585216995556817

64249180949974110617291017600649128846.

Listing 3. Conversion of EM to E.

The last Algorithm 4 tries to escalate the twisted Edwards form of the curve, so that the
equation has parameter a = −1. This last step is implemented in Listing 4 and in the case
of Baby Jubjub, the resulting scaling factor is

f = 1911982854305225074381251344103329931637610209014896889891168275855466657090.

This way, the optimal version of Baby Jubjub in twisted Edwards form is given by equation

−x2 + y2 = 1 + d′x2y2,

where

d′ = 12181644023421730124874158521699555681764249180949974110617291017600649128846.
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def scaling(a, d, prime):472
Fp = GF(prime)473
if Fp(-a). is_square ():474

f = sqrt(Fp(-a));475
a_ = Fp(a / (f*f));476
d_ = Fp(d / (-a));477
if a_ == Fp(-1):478

a_ = -1479
else:480

a_ = a;481
d_ = a;482

return a_, d_, f483
484

def ted_to_tedprime(x, y, prime , scaling_factor ):485
Fp = GF(prime)486
x_ = Fp(x * (-scaling_factor ))487
y_ = y;488
return(x_, y_)489

490
def tedprime_to_ted(x_, y_, prime , scaling_factor ):491

Fp = GF(prime)492
x = Fp(x_ / (-scaling_factor ))493
y = y_494
return(x, y)495

496
def is_on_ted_prime(x, y, prime , a_ , d_):497

Fp = GF(prime)498
return Fp(a_*(x**2) + y**2 - 1 - d_*(x**2)*(y**2)) == 0499

500
# Conversion of E to E’501
a_, d_ , f = scaling (a, d, prime)502

503
# Conversion of generator to E’504
gen_x_ , gen_y_ = ted_to_tedprime(gen_x , gen_y , prime , f);505
assert(is_on_ted_prime(gen_x_ , gen_y_ , prime , a_ , d_))506

507
# Sanity check: the inverse map returns the original point in E508
u , v = tedprime_to_ted(gen_x_prime , gen_y_prime , prime , f)509
assert (u == gen_x)510
assert (v == gen_y)511

512
# Conversion of base point to E’513
base_x_ , base_y_ = ted_to_tedprime(base_x , base_y , prime , f);514
assert(is_on_ted_prime(base_x_ ,base_y_ , prime , a_ , d_))515

516
# Sanity check: the inverse map returns the original point in E517
u , v = tedprime_to_ted(base_x_prime , base_y_prime , prime , f)518
assert (u == base_x)519
assert (v == base_y)520

Listing 4: Scaling of E to E′.

After generating Baby Jubjub, we checked that the curve passed all safety checks521

described in Section 5. The security evidence is shown in [44]. The determinism and522

transparency of the procedure allows any party to reproduce the generation of the curve523

and ensure its resilience against best-known security attacks [45].524

Baby Jubjub curve was accepted as an Ethereum Improvement Proposal [11], and it525

is currently being used in several projects running over Ethereum, such as Hermez, a526

Layer-2 payment system, and Tornado Cash, a payment mixer.527

7. Discussion528

In recent years, ZK proofs arose as a potential solution to blockchain privacy and529

scalability issues and today we can see many zero-knowledge protocols integrated and530

deployed in various blockchain projects. The use of cryptography in the blockchain space531

arises new efficiency needs that motivate novel lines of research that combine theoretical532

and practical aspects. In particular, the recent implementation of ZK protocols has had a533

huge impact in the interest for generating types of curves with special properties. The534

correct and transparent generation of new elliptic curves is paramount to the success of535

cryptographic primitives that can help blockchains improve their privacy and scalability536

guarantees.537

In this paper, we presented a deterministic algorithm for generating twisted Ed-538

wards elliptic curves defined over a given prime field. We also provided an algorithm539

for checking the safety of a curve against best known security attacks. Additionally, we540

gave an example that puts theory into practice: we detailed the generation of the twisted541

Edwards curve Baby Jubjub, which is currently being deployed and used in several542

projects based on Ethereum blockchain. The generation of other types of curves, such543

as pairing-friendly and prime order curves and efficient pairs of cyclic curves, which544

can help build more efficient ZK-SNARK schemes and opens the door to the creation of545

succinct blockchains, remains as future work.546

Listing 4. Scaling of E to E′.

After generating Baby Jubjub, we checked that the curve passed all safety checks
described in Section 5. The security evidence is shown in [44]. The determinism and
transparency of the procedure allows any party to reproduce the generation of the curve
and ensure its resilience against best-known security attacks [45].

Baby Jubjub curve was accepted as an Ethereum Improvement Proposal [11], and it is
currently being used in several projects running over Ethereum, such as Hermez, a Layer-2
payment system, and Tornado Cash, a payment mixer.

7. Discussion

In the recent years, ZK proofs arose as a potential solution to blockchain privacy
and scalability issues and, today, we can see many zero-knowledge protocols integrated
and deployed in various blockchain projects. The use of cryptography in the blockchain
space arises new efficiency needs that motivate novel lines of research that combine the-
oretical and practical aspects. In particular, the recent implementation of ZK protocols
has had a huge impact in the interest for generating types of curves with special proper-
ties. The correct and transparent generation of new elliptic curves is paramount to the
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success of cryptographic primitives that can help blockchains improve their privacy and
scalability guarantees.

In this paper, we presented a deterministic algorithm for generating twisted Edwards
elliptic curves defined over a given prime field. We also provided an algorithm for checking
the safety of a curve against best known security attacks. Additionally, we gave an example
that puts theory into practice: we detailed the generation of the twisted Edwards curve
Baby Jubjub, which is currently being deployed and used in several projects based on
Ethereum blockchain. The generation of other types of curves, such as pairing-friendly and
prime order curves and efficient pairs of cyclic curves, which can help build more efficient
ZK-SNARK schemes and opens the door to the creation of succinct blockchains, remains as
future work.
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1 Base point of EM
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Appendix A. Safety Checks against Known Attacks

We provide an implementation of an algorithm based on the code from [42], that
checks if a given twisted Edwards curve is safe against the attacks described in Section 5.

# It outputs all results in the console.

import os
import sys
from errno import ENOENT , EEXIST
from sortedcontainers import SortedSet

def readfile(fn):
fd = open(fn,’r’)
r = fd.read()
fd.close()
return r

# It expresses n as sums or differences of sparse powers of 2 (if possible ).
def expand2(n):

s = ""

while n != 0:
j = 1
while 2**j < abs(n): j += 1
if 2**j - abs(n) > abs(n) - 2**(j-1): j -= 1

if abs(abs(n) - 2**j) > 2**(j - 1):
if n > 0:

if s != "": s += " + "
s += str(n)

else:
s += " - " + str(-n)

n = 0
elif n > 0:

if s != "": s += " + "
s += "2^" + str(j)
n -= 2**j

else:
s += " - 2^" + str(j)
n += 2**j

return s

def verify(curve):

p = Integer(readfile(curve+’/p’)) # Prime p.
k = GF(p) # Finite field F_p.
kz.<z> = k[] # Polynomial ring k[z].
l = Integer(readfile(curve+’/l’)) # Large prime l dividing |E(F_p)|.
x0 = Integer(readfile(curve+’/x0’)) # (x0 ,y0): generating point of E.
y0 = Integer(readfile(curve+’/y0’))
x1 = Integer(readfile(curve+’/x1’)) # (x1 ,y1): base point of E[l].
y1 = Integer(readfile(curve+’/y1’))
shape = readfile(curve+’/shape’).strip ()
s = readfile(curve+’/primes ’)
rigid = readfile(curve+’/rigid’).strip ()

safefield = True
safeeq = True
safebase = True
saferho = True
safetransfer = True
safedisc = True
saferigid = True
safeladder = True
safetwist = True
safecomplete = True
safeind = True

V = [] # Distinct verified primes.
for line in s.split ():

n = Integer(line)
if n.is_prime (): # Instead of generating the original Pocklington primality proofs.

if not n in V: V += [n]

# Verify p is prime.
pstatus = ’Unverified ’
if not p.is_prime (): pstatus = ’False ’
if p in V: pstatus = ’True’
if pstatus != ’True’: safefield = False
print(’verify -pisprime: %s\n’ %pstatus)

# Verify l is prime.
pstatus = ’Unverified ’
if not l.is_prime (): pstatus = ’False ’
if l in V: pstatus = ’True’
if pstatus != ’True’: safebase = False
print(’verify -lisprime: %s\n’ %pstatus)

# Write l and p as sums or differences of sparse powers of 2 (if possible ).
print(’expand2 -p: p = %s\n’ % expand2(p))
print(’expand2 -l: l = %s\n’ % expand2(l))

# Write the variables in base 16.
print(’hex -p: %s’ %hex(p))
print(’hex -l: %s’ %hex(l))
print(’hex -x0: %s’ %hex(x0))
print(’hex -x1: %s’ %hex(x1))
print(’hex -y0: %s’ %hex(y0))
print(’hex -y1: %s\n’ %hex(y1))

# Verify gcd(l,p) = 1. (Else , if l=p -> DL easy to solve via additive transfers .)
gcdlpis1 = gcd(l,p) == 1
print(’verify -gcdlp1: %s\n’ %gcdlpis1)
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# Verify if embedding degree is large. (Else , multiplicative transfers (or MOV attacks) are easy.)
# The embedding degree is the smallest integer k such that l divides (p^k-1).

# It could also be computed (it takes longer ): k = (Integers(l)(p)). multiplicative_order ()
# Brainpool and SafeCurves require embedding degree > (l -1)/100.

# Actually , [Balasubramin , Koblitz] showed MOV is subexponential if k < (log(p))^2.
print(’verify -movsafe: Unverified ’)
print(’verify -embeddingdegree: Unverified ’)
if gcdlpis1 and l.is_prime ():

u = Integers(l)(p)
d = l-1
for v in V:

while d % v == 0: d /= v
if d == 1:

d = l-1
for v in V:

while d % v == 0:
if u^(d/v) != 1: break
d /= v

print(’verify -movsafe: %s’ %((l-1)/d <= 100) )
print(’verify -embeddingdegree: %s = (l -1)/%s\n’ % (d,(l-1)/d))

# Compute the Frobenius trace t. It should satisfy |E(F_p )|=p+1-t.
# Hasse’s theorem: |t|<2*sqrt(p).

# Also compute the cofactor such that |E(F_p)| = cofactor * l.
# If E is Montgomery curve , the cofactor has to be a multiple of 4.

t = p+1-l*round ((p+1)/l)
if l^2 > 16*p:

print(’verify -trace: %s’ % t)
f = factor (1)
d = (p+1-t)/l
for v in V:

while d % v == 0:
d //= v

f *= factor(v)
print(’verify -cofactor: %s\n’ % f)

else:
print(’verify -trace: Unverified ’)
print(’verify -cofactor: Unverified\n’)

# Compute the complex -multiplication field discriminant D:
# Let s^2 be the largest square dividing t^2-4p. Then (t^2-4p)/s^2 is a squarefree negative integer

.
# If (t^2-4p)/s^2 mod 4 = 1, then D = (t^2-4p)/s^2.
# Otherwise , D = 4(t^2-4p)/s^2.

# Verify D is big: SafeCurves requires |D| >2^100.
D = t^2-4*p
for v in V:

while D % v^2 == 0: D /= v^2
if prod([v for v in V if D % v == 0]) != -D:

print(’verify -disc: Unverified ’)
print(’verify -discisbig: Unverified ’)
safedisc = False

else:
f = -prod([ factor(v) for v in V if D % v == 0])
if D % 4 != 1:

D *= 4
f = factor (4) * f

Dbits = (log(-D)/log (2)). numerical_approx ()
print(’verify -disc: %s = %s; -2^%.1f’ % (D,f,Dbits))
print(’verify -discisbig: %s\n’ %(D < -2^100))

# Verify that the cost of the Pollard ’s rho attack is above 2^100.
pi4 = 0.78539816339744830961566084581987572105
rho = log(pi4*l)/log(4)
print(’verify -rho: %.1f’ % rho)
print(’verify -rhoabove100: %s\n’ %(rho.numerical_approx () >= 100))

# Verify security against twist attacks.
twistl = ’Unverified ’
d = p+1+t
for v in V:

while d % v == 0: d /= v
if d ==1:

d = p+1+t
for v in V:

if d % v == 0:
if twistl == ’Unverified ’ or v > twistl: twistl = v

print(’verify -twistl: %s\n’ % twistl)
print(’verify -twistmovsafe: Unverified ’)
print(’verify -twistembeddingdegree: Unverified\n’)
if twistl == ’Unverified ’:

print(’hex -twistl: Unverified\n’)
print(’expand2 -twistl: Unverified\n’)
print(’verify -twistcofactor: Unverified\n’)
print(’verify -gcdtwistlp1: Unverified\n’)
print(’verify -twistrho: Unverified\n’)
safetwist = False

else:
print(’hex -twistl: %s\n’ %hex(twistl ))
print(’expand2 -twistl: %s\n’ % expand2(twistl ))
f = factor (1)
d = (p+1+t)/ twistl
for v in V:

while d % v == 0:
d //= v
f *= factor(v)

print(’verify -twistcofactor: %s\n’ % f)
gcdtwistlpis1 = gcd(twistl ,p) == 1
print(’verify -gcdtwistlp1: %s\n’ %gcdtwistlpis1)

movsafe = ’Unverified ’
embeddingdegree = ’Unverified ’
if gcdtwistlpis1 and twistl.is_prime ():

u = Integers(twistl )(p)
d = twistl -1
for v in V:

while d % v == 0: d /= v
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if d == 1:
d = twistl -1
for v in V:

while d % v == 0:
if u^(d/v) != 1: break
d /= v

print(’verify -twistmovsafe: %s’ %((twistl -1)/d <= 100))
print(’verify -twistembeddingdegree: %s = (l‘-1)/%s\n’ % (d,(twistl -1)/d))

rho = log(pi4*twistl )/log(4)
print(’verify -twistrho %.1f’ % rho)
print(’verify -twistrhoabove100: %s\n’ %(rho.numerical_approx () >= 100))

precomp = 0
joint = l
for v in V:

d1 = p+1-t
d2 = p+1+t
while d1 % v == 0 or d2 % v == 0:

if d1 % v == 0: d1 //= v
if d2 % v == 0: d2 //= v
# best case for attack: cyclic; each power is usable

# also assume that kangaroo is as efficient as rho
if v + sqrt(pi4*joint/v) < sqrt(pi4*joint ):

precomp += v
joint /= v

rho = log(precomp + sqrt(pi4 * joint ))/log(2)
print(’verify -jointrho: %.1f’ % rho)
print(’verify -jointrhoabove100: %s\n’ %(rho.numerical_approx () >= 100))

x0 = k(x0)
y0 = k(y0)
x1 = k(x1)
y1 = k(y1)

# Verify if the equation defines and elliptic curve.
# Verify the shape of the elliptic curve.
# Verify both points [x0,y0] and [x1 ,y1] are on the curve.
if shape in (’edwards ’, ’tedwards ’):

d = Integer(readfile(curve+’/d’))
a = 1
if shape == ’tedwards ’:

a = Integer(readfile(curve+’/a’))

print(’verify -shape: Twisted Edwards ’)
print(’verify -equation: %sx^2+y^2 = 1%+dx^2y^2\n’ % (a, d))
if a == 1:

print(’verify -shape: Edwards ’)
print(’verify -equation: x^2+y^2 = 1%+dx^2y^2\n’ % d)

a = k(a)
d = k(d)
elliptic = a*d*(a-d)
level0 = a*x0^2+y0^2-1-d*x0^2*y0^2
level1 = a*x1^2+y1^2-1-d*x1^2*y1^2

if shape == ’montgomery ’:
print(’verify -shape: Montgomery ’)
A = Integer(readfile(curve+’/A’))
B = Integer(readfile(curve+’/B’))
if B == 1: print(’verify -equation: y^2 = x^3%s+dx^2+x\n’ %A)
else: print(’verify -equation: %sy^2 = x^3%s+dx^2+x\n’ %(B,A))

A = k(A)
B = k(B)
elliptic = B*(A^2-4)
level0 = B*y0^2-x0^3-A*x0^2-x0
level1 = B*y1^2-x1^3-A*x1^2-x1

if shape == ’shortw ’:
print(’verify -shape: short Weierstrass ’)
a = Integer(readfile(curve+’/a’))
b = Integer(readfile(curve+’/b’))
print(’verify -equation: y^2 = x^3%s+dx%s+d\n’ % (a,b))

a = k(a)
b = k(b)
elliptic = 4*a^3+27*b^2
level0 = y0^2-x0^3-a*x0-b
level1 = y1^2-x1^3-a*x1-b

print(’verify -elliptic: %s’ %str(elliptic )) # discriminant of the eq.
print(’verify -iselliptic: %s’ %( elliptic != 0)) # if the eq. defines an elliptic curve.
print(’verify -isoncurve0: %s’ %( level0 == 0)) # if generating point is on the curve.
print(’verify -isoncurve1: %s\n’ %( level1 == 0)) # if base point is on the curve.

# Transform an Edwards or a twised Edwards curve to a Montgomery curve.
if shape in (’edwards ’, ’tedwards ’):

A = 2*(a+d)/(a-d)
B = 4/(a-d)
x0,y0 = (1+y0)/(1-y0),((1+y0)/(1-y0))/x0
x1,y1 = (1+y1)/(1-y1),((1+y1)/(1-y1))/x1
shape = ’montgomery ’

# Transform a Montgomery curve to a short Weierstrass.
if shape == ’montgomery ’:

a = (3-A^2)/(3*B^2)
b = (2*A^3-9*A)/(27*B^3)
x0 ,y0 = (x0+A/3)/B,y0/B
x1 ,y1 = (x1+A/3)/B,y1/B
shape = ’shortw ’

try:
E = EllipticCurve ([a,b])
numorder2 = 0
numorder4 = 0
for P in E(0). division_points (4):
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if P != 0 and 2*P == 0:
numorder2 += 1

if 2*P != 0 and 4*P == 0:
numorder4 += 1

print(’verify -numorder2: %s’ %str(numorder2 ))
print(’verify -numorder4: %s\n’ %str(numorder4 ))

# Verify completeness.
completesingle = False
completemulti = False
if numorder4 == 2 and numorder2 == 1:

# Complete Edwards form , and Montgomery with unique point of order 2.
completesingle = True
completemulti = True

# Should extend this to allow complete twisted hessian.
print(’verify -completesingle: %s’ %completesingle)
print(’verify -completemulti: %s\n’ %completemulti)

print(’verify -ltimesbase1is0: %s’ %(l * E([x1,y1]) == 0))
print(’verify -ltimesbase1: %s\n’ %(str(l * E([x1,y1]))) )

print("verify -cofactorbase01: it can not be done as I do not have z0.")
print(’verify -cofactorbase01: %s\n’ %(str (((p+1-t)//l) * E([x0,y0]) == E([x1,y1]))))

except:
print(’verify -numorder2: Unverified ’)
print(’verify -numorder4: Unverified\n’)

print(’verify -ltimesbase1: Unverified ’)
print(’verify -cofactorbase01: Unverified\n’)
safecomplete = False

# Verify monladder.
montladder = False
for r,e in (z^3+a*z+b). roots ():

if (3*r^2+a). is_square ():
montladder = True

print(’verify -montladder: %s’ %montladder)

# Verify indistinguishability.
indistinguishability = False
elligator2 = False
if (p+1-t) % 2 == 0:

if b != 0:
indistinguishability = True
elligator2 = True

print(’verify -indistinguishability: %s’ %indistinguishability)
print(’verify -ind -notes: Elligator 2: %s\n’ % ([’No’,’Yes’][ elligator2 ]))

# Verify rigidity (by reading the file "rigid ").
saferigid &= (rigid == ’fully rigid’ or rigid == ’somewhat rigid’)

safecurve = True
print(’verify -safefield: %s’ %safefield)
print(’verify -safeeq: %s’ %safeeq)
print(’verify -safebase: %s’ %safebase)
print(’verify -saferho: %s’ %saferho)
print(’verify -safetransfer: %s’ %safetransfer)
print(’verify -safedisc: %s’ %safedisc)
print(’verify -saferigid: %s’ %saferigid)
print(’verify -safeladder: %s’ %safeladder)
print(’verify -safetwist: %s’ %safetwist)
print(’verify -safecomplete: %s’ %safecomplete)
print(’verify -safeind: %s’ %safeind)

Listing A1. Algorithm written in SAGE that verifies if a given twisted Edwards curve passes the
checks described in Section 5.
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