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Abstract: This paper presents a novel method for multi-objective optimisation under uncertainty
developed to study a range of mission trade-offs, and the impact of uncertainties on the evaluation
of launch system mission designs. A memetic multi-objective optimisation algorithm, named MOD-
HOC, which combines the Direct Finite Elements in Time transcription method with Multi Agent
Collaborative Search, is extended to account for model uncertainties. An Unscented Transformation
is used to capture the first two statistical moments of the quantities of interest. A quantification
model of the uncertainty was developed for the atmospheric model parameters. An optimisation
under uncertainty was run for the design of descent trajectories for a spaceplane-based two-stage
launch system.

Keywords: optimal control; multi-objective optimisation; robust design; trajectory optimisation;
uncertainty quantification; unscented transformation; spaceplanes; space systems; launchers

1. Introduction

This paper presents a novel method for multi-objective optimisation under uncertainty,
developed to study a range of mission trade-offs and the impact of uncertainties on
system models for space launch systems. This is applied to the analysis and design
of descent trajectories for a two-stage, partially re-usable launch system based on the
Orbital-500R, a commercial system developed by Orbital Access Ltd. (Prestwick, UK) [1].
The set of Pareto-optimal solutions show the trade-off between minimising the induced
acceleration limits and maximising the robustness of the solutions by minimising the
sensitivity to uncertainties.

Uncertainty quantification (UQ), the science of quantifying the uncertainty in the
desired performance of a system, can be a key step in analysing the robustness of a
control solution and of the whole guidance, navigation and control chain. Common
approaches to UQ use extensive Monte Carlo simulations to account for errors, unmodelled
components and disturbances. At a system level, UQ analysis can translate into the
assessment of the reliability of the system as a whole, or only of one or more components.
An uncertainty quantification analysis is, therefore, a fundamental step towards de-risking
any technological solution as it provides a quantification of the variation in performance
and probability of recoverable or unrecoverable system failures, given existing information.

The goal here is, therefore, to design a robust guidance trajectory considering the
uncertainty related to the atmospheric model which in turn affects the aero-, aerothermal
and flight dynamics.

The trajectories are designed using a MODHOC (Multi-Objective Direct Hybrid Opti-
mal Control) solver [2,3]. MODHOC, first developed in collaboration with ESA, is based
on a transcription using temporal finite elements (DFET, Direct Finite Elements in Time) of
the optimal control problem and a solution of the transcribed problem with a multi-agent
multi-objective optimisation algorithm (MACS, Multi-Agent Collaborative Search).

Mathematics 2021, 9, 3010. https://doi.org/10.3390/math9233010 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0895-7961
https://orcid.org/0000-0003-1079-4863
https://orcid.org/0000-0001-8302-6465
https://doi.org/10.3390/math9233010
https://doi.org/10.3390/math9233010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9233010
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9233010?type=check_update&version=1


Mathematics 2021, 9, 3010 2 of 22

This paper presents an extension of the multi-objective optimal control to account
for uncertainties. The extension is based on an unscented transformation to capture the
first two statistical moments of the quantities of interest. The result is an unscented multi-
objective optimal control approach that can efficiently handle the level of uncertainty in
model parameters.

Ross et al. [4] introduced unscented optimal control as the combination of the un-
scented transform by Julier and Uhlmann [5] combined with deterministic optimal control
theory to directly manage uncertainties within an open-loop control framework. This has
been applied to single objective optimisation problems mainly in the field of guidance and
attitude control [6,7], using pseudospectral optimal control methods [8] with the common
Legendre and Chebyhsev polynomials as the bases. Ross et al. [9] later extended the work
to account for path constraints on the states and controls. This paper builds on this work by
adapting and applying it to a multi-objective optimal control problem, subject to nonlinear
boundary and path constraints. The transcription method here uses finite elements on a
temporal basis, using Bernstein polynomials, which have been mathematically shown to
ensure both the states and controls representations remains feasible over the entire time
domain, not just at collocation nodes [10].

The methods presented will be applied to trade-off studies on the first stage of a
multi-stage horizontal take-off and landing launch system. The analysis focuses on the
unpowered descent trajectory of a spaceplane, starting from the stage separation point at
100 km altitude. Uncertainties are introduced on the atmospheric parameters, which in
turn strongly affect the aerodynamics and flight performance of the vehicle. The optimisa-
tion will trade-off robustness, by minimising the effect of these uncertainties, against the
structural loads induced by the flight dynamics.

The paper is structured first introducing the mathematical method and implementa-
tion, followed by the description of the applied test case and results. Specifically, Section 2
describes the integration of an unscented transform into a multi-objective optimal control
problem, including the direct transcription method using temporal finite elements with
Bernstein bases. Section 3 details the solution of the multi-objective nonlinear programming
problem through an adaption of a global evolutionary Multi-Agent Collaborative Search
(MACS) algorithm tailored to optimal control problems. Section 4 presents the quantifica-
tion of the uncertainty on the atmospheric parameters predicted by the International and
US-76 Standard Atmospheric models. Section 5 describes the vehicle and environment
models for the launch vehicle test case, with Section 6 presenting and discussing the results,
including a validation of the methods and results against a Monte Carlo analysis.

2. Unscented Multi-Objective Optimal Control

In order to perform robust optimisation of the trajectory, an Unscented Transformation [5]
was included in the formulation of the optimal control problem. An unscented transfor-
mation is defined as “the application of a given nonlinear transformation to a discrete
distribution of points, computed so as to capture a set of known statistics of an unknown
distribution, is referred to as an unscented transformation” [11]. These points are referred
to as sigma points.

Unscented transformations capture the first statistical moments, mean and covariance,
of the distributions of the states of a system subject to uncertainty and undergoing arbi-
trary nonlinear transformations by propagating a small number of sigma points. If the
system depends on Nuq uncertain variables, whose mean and covariances are known, the
unscented transformation requires the propagation of (2Nuq + 1) samples. The first sigma
point takes the mean value for all the uncertain variables, while the others assume the mean
plus (or minus) the square root of the matrix of the covariances of the uncertain variables.
All the sigma points are propagated simultaneously with the mean and covariance of the
final states computed as a weighted combination of the final states of each sigma point.

Let the dynamics of the system be given by

ẋ = f (x(u, t), u(t), b, t) (1)
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where x is the system state vector, u are the controls, t is time, and b are additional static
(time independent) parameters. Similar to (1), the dynamics of each sigma point χi are
given by

χ̇i = f (χi(u, t), u(t), bi, t) (2)

where i = [1, . . . , (2Nuq + 1)]. Each sigma point has a different value for the static variables,
its dynamics evolve independently of the other sigma points, but all sigma points are
controlled by the same control law u. The goal is to find a single control law that, when
applied to all sigma points, allows the system to reach a desired final condition and to be
optimal, in some sense. The particular values for each static variable bi is decided by the
application of the Unscented Transformation.

A known problem of the unscented transformation is that it can generate covariance
matrices that are not semidefinite positive. To avoid this problem, the Square Root Un-
scented Transformation [12] was implemented. Algorithmically, it is very similar to the
standard Unscented Transformation but differs in the way the samples are generated and
has the advantage that the resulting covariance matrix is guaranteed to be semidefinite
positive (up to machine precision). The sigma points are computed from the Cholesky
factorisation of the covariance matrix, which decomposes the matrix into lower triangular
matrix with real and positive diagonal entries, and its conjugate transpose [12].

The problem can be described as follows. Let X be a state vector of length Nσ Nx
defined as

X =
[
χ0, χ1, · · · , χNσ

]T (3)

where Nσ is the number of sigma points and Nx is the number of states of the system. The
state dynamics are then defined as

Ẋ =


F(χ1, u, b0, t)
F(χ2, u, b1, t)

...
F
(
χNσ

, u, bNσ , t
)
 = F(X, u, B, t) (4)

The multi-objective unscented optimal control problem is then formulated as

min
u∈U

J(X, u, B, t) (5)

Ẋ = F(X, u, B, t) (6)

g(X, u, B, t) ≥ 0 (7)

ψ
(

X(t0), X(t f ), u(t0), u(t f ), b, t0, t f

)
≥ 0 (8)

t ∈ [t0, t f ]

where J = [J1, ..., Jm]T is, in general, a vector function of the state variables χi : [t0, t f ]→ RNx ,
control variables u ∈ L∞(U ⊂ RNu) and time t. Functions X belong to the Sobolev space
W1,∞, objective functions are Ji : R2Nx+Nx × RNu × [t0, t f ] −→ R, F : RNx Nσ × RNu ×
[t0, t f ] −→ RNx Nσ , algebraic constraint function g : RNx Nσ ×RNu × [t0, t f ] −→ RNg , and
boundary condition functions ψ : R2Nx Nσ+2 −→ RNψ .

Direct Transcription with Temporal Finite Elements

The optimal control problem in (5)–(8) is transcribed into a many-objective, nonlinear
programming problem via Direct Transcription with Finite Elements in Time (DFET) [13].
DFET was first proposed by Vasile [14] in 2000, and uses finite elements in time on spectral
bases to transcribe the differential and algebraic constraints, and objective function into a
set of algebraic equations. The formation allows different bases to be selected for both the
states and controls, and for different segments. As a scheme, DFET has been proven to be
robust, accurate and flexible [13].
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For the continuous optimal control problem in (5), the time domain T = [t0, t f ]
is decomposed into N finite elements Tj(τj−1, τj), with each element normalised to the
interval [−1, 1] through the transformation

τ = 2
t− 1

2 (tj − tj−1)

tj − tj−1
tj−1 ≤ t ≤ tj for j = 1, . . . , N. (9)

This ensures the domain of the basis functions are consistent irrespective of the element
size. The differential constraints in (6) are first recast in weak variation form as∫

Tj

ẇTX + wTF(X, u, b, t) dt−wT(tj)Xb
j + wT(tj−1)Xb

j−1 = 0 (10)

where w are generalised weight functions, and Xb
j and Xb

j−1 are the values of the states
at the boundaries of each element. For each element Tj, the states, controls, and weight
functions can be parameterised according to the basis functions fs,j such that:

Xj =
lx

∑
s=0

f
Xj
s,j (τ)Xs,j (11)

uj =
lu

∑
s=0

f
uj
s,j(τ) us,j (12)

wj =
lx+1

∑
s=0

f
wj
s,j (τ)ws,j (13)

For this paper, Bernstein polynomials are used as the bases functions for all the
elements, of order lx for the states, lu for the controls and (lx + 1) for the weights. Bernstein
basis polynomials are defined generally as

bν,n(t) =
(

n
ν

)
tν(1− t)n−ν for ν = 0, . . . , n and 0 ≤ t ≤ 1 (14)

where n is the order. Bernstein bases have the advantage of smooth control profiles with no
oscillations near discontinuities or step changes, meaning the polynomial representation of
both states and controls remains within the feasible set [10,15].

Recasting (10) into Gauss quadrature using the polynomials in (11)–(13) gives

lu

∑
k=0

βk

[
ẇj(τk)

TXj(τk) + wj(τk)
TFj(τk)

∆tj

2

]
−wT(1)Xb

j + wT(−1)Xb
j−1 = 0 (15)

where τk and βk are Gauss nodes and weights, respectively, ∆tj = (tj − tj−1) and Fj(τk)
is the shorthand notation for F

(
Xj(τk), uj(τk), b, t(τk)

)
. Since (15) must be valid for every

arbitrary ws,j, this can be written as a system of equations for each element:

lu

∑
k=0

βk

[
ḟ0,j(τk)Xj(τk) + f1,j(τk)Fj(τk)

∆tj

2

]
+ Xb

j−1 = 0 for k = 0 (16)

lu

∑
k=0

βk

[
ḟs,j(τk)Xj(τk) + fs,j(τk)Fj(τk)

∆tj

2

]
= 0 for k = 1, . . . , lx (17)

lu

∑
k=0

βk

[
ḟlx+1,j(τk)Xj(τk) + flx+1,j(τk)Fj(τk)

∆tj

2

]
− Xb

j = 0 for k = (lx + 1) (18)
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The path constraints from (7) are directly collocated at the Gauss nodes, generating a
set of constraint equations for each element given by

g
(
Xj(τk), uj(τk), b, t(τk)

)
≥ 0 (19)

Constraints are also imposed on the boundary states of all adjacent elements to
ensure continuity.

The transcribed objective functions from (5) are therefore

J̃i =


∑lu

k=0 φk(Xk, uk, τk, b)

φi(Xb
0, Xb

f , t0, t f , b)
(20)

which equate to the two terms in a Bolza optimisation problem [16].
The time domain T corresponds to a single time period [t0, t f ]. For launch systems,

however, trajectories often have multiple phases either in series, or in parallel. For example,
a multi-stage vehicle can have one phase per vehicle stage with all phases connected in
series for the ascent, and/or branching parallel phases for the upper stage ascent, and
first stage descent and landing. For a problem with Np distinct phases, the dynamic
constraints (15), path constraints (19), boundary constraints (8) and objective functions (20)
are defined per phase. An additional set of Np boundary constraints are introduced to
manage the connections between phases defined by

ψsp

(
Xb

0,Is,p
, Xb

f ,Isp
, t0,Isp

, t f ,Isp

)
≥ 0 sp = 1, . . . , Np (21)

where the index vector Isp collects all the indexes of the phases that are connected by the
constraint ψsp . Note that, while the number of phases Np is fixed, their temporal order is
defined by the phase boundary constraints (21).

The resulting multi-objective nonlinear programming (MONLP) problem coming
from the transcription of (5)–(8), with the inclusion of phase constraints (21), is given by

min
y∈Y,p∈Π

J̃(y, p) (22)

C(y, p) ≥ 0

where y = [X0,1, . . . , Xs,j, . . . , Xlx ,N ]
T , Y is a box in RnY with nY = n(lx + 1)N,

p = [u0,1, . . . , us,j, . . . , ulu ,N , b∗]T is a solution, or decision, vector that collects all the
static and discretised control variables with b∗ = [b, xb

0, xb
f , t0, t f ]

T , Π ⊆ Rns ×Rn∗b with
ns = nu(lu + 1)N (assuming that each element has the same number of control parameters)
and nb∗ = nb + 2n + 2, and C collects all path and boundary constraints.

Similar to (5), the solution of (22) is a subset ΩΠ ⊂ Π that satisfies the constraints
C and contains solution vectors that are Pareto efficient. Given the subset ΩΠ of feasible
solution vectors, a solution vector p∗ ∈ ΩΠ is said to be Pareto efficient if p∗ � p, ∀p ∈ ΩΠ.
The symbol of dominance � indicates that, if p1 � p2, then J̃i(p2) ≤ J̃i(p1) for i = 1, . . . , m
and ∃j such that J̃j(p2) < J̃j(p1). In other words, a solution is non-dominated if the
values of any of the objective functions, using that solution, cannot be improved without
sacrificing at least one of the other objectives [17]. For continuous functions, the subset ΩΠ
is a manifold in Rns+nb∗ with dimension (ns + nb∗) ≤ (m− 1) [18]. In the following, the
goal is to identify a pre-defined countable number of Pareto-efficient solutions contained
in ΩΠ.

3. Solution of the Transcribed Problem

The MONLP problem in (22) is solved with an adaption of the Multi-Agent Col-
laborative Search (MACS) tailored to optimal control problems [10]. MACSoc combines
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the stochastic agent-based global search in MACS [19,20] with a local refinement of the
solutions [21,22] (see Algorithm 1).

Algorithm 1 MACS optimal control (MACSoc)

1: Initialise population P0 and global archive A0, k = 0, ρB = 1
2: Initialise weight vectors ω
3: while n_ f un_eval < max_ f un_eval do
4: Run individualistic heuristics on Pk using bi-level formulation
5: Pk → P+

k
6: Update archive Ak with potential field filter
7: Run social heuristics combining P+

k and Ak using bilevel formulation
8: Update archive Ak with potential field filter
9: P+

k → P
†
k

10: if local search triggered then
11: Run gradient based refinement using single level formulation
12: P†

k → P
∗
k

13: Update archive Ak with potential field filter
14: P∗k → Pk+1
15: else
16: P†

k → Pk+1
17: end if
18: k = k + 1
19: Update ρB
20: end while

At the start of MACSoc, an initial population P0 is generated with Na agents repre-
senting feasible candidate solutions. Next, a set of Nw uniformly spread weight vectors ω
are generated. Each agent is associated with a different weight vector, allowing the agent
to converge to a different part of the Pareto-optimal set (set of non-dominated solutions for
the multi-objective optimisation problem).

The global search generates candidate solutions for the decision vector using a com-
bination of social and individualistic actions (lines 4 and 7 in Algorithm 1). Each action
generates a candidate decision vector, starting from the current solution allocated to a
given agent j, and submits it to a bi-level optimisation problem, where the inner level
makes the candidate decision vector feasible with respect to constraints, and the outer level
assesses whether the solution of the inner level represents an improvement with respect
to the current solution allocated to agent j. All feasible and non-dominated solutions are
added to the current population Pk, and saved in an archive Ak (lines 5, 6, 8, 9 and 13
in Algorithm 1). A local refinement is triggered periodically after a user-defined number
of iterations, and at the end of the algorithm, which update the current population and
archive (lines 10–17 in Algorithm 1). The local refinement solves a single level scalarised
version of (22).

The entire process alternates between social and individualistic actions, with periodic
local refinement, until a maximum number of calls to the objective vector max_fun_eval
is reached.

3.1. Bi-Level Global Optimisation Problem

The NLP problem for the global optimisation is defined by

min
p∗

J̃(y∗, p∗) (23)

(y∗, p∗) = argmin
y,p

{
δp(y, p) |C(y, p) ≥ 0

}
and represents two optimisation sub-problems at two different levels. The outer level
minimises the objective function vector J̃ and generates a first set of candidate solutions
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p. The inner level looks for state y∗ and control p∗ vectors that satisfy the constraint
functions C, and minimise a cost function based on the candidate solutions of the outer
loop δp = ‖p∗−p‖ that look the closest feasible solution to the candidate solution provided
by the outer loop. The feasible solution is then passed back to the outer loop to evaluate
the objective functions J̃ with (y∗, p∗). The inner level problem is solved with a local,
gradient-based optimiser such as SQP or interior point.

In order to reduce the number of iterations required by the inner level to converge, the
outer level stores the feasible states y∗ from one iteration to be used as a first guess for the
inner level at the next iteration. As shown in Figure 1, the feasible states y∗k are preserved
from iteration k to iteration (k + 1); therefore, the outer level only generates candidate
solutions for pk+1. Thus, for iteration (k + 1), the inner level is given (y∗k , pk+1) as initial
guesses for states and controls. Despite y∗k being associated with p∗k , it has been shown to
work well as an initial guess also when associated with pk+1.

When individualistic actions are applied, each agent generates one or more candidate
solution vectors through three mechanisms that are triggered sequentially in the order:
Inertia→ Pattern Search→ Differential Evolution. If any of these mechanisms produces
an improved solution, the process is stopped and proceeds to update the population and
archive (line 5 and 6 of Algorithm 1).

Inertia is triggered by agent j only if, in the previous iteration, agent j generated an
improved solution. In this case, a step with random length is taken in the direction defined
by (p∗k − p∗k−1).

Pattern Search will change one optimisation parameter at a time, by a random amount
in each direction, within a given neighbourhood Bj of agent j. The order by which the
parameters are changed is a random permutation of the number of decision parameters.
The process is repeated until either an improvement is registered or the maximum number
of trials has been reached. As in Ricciardi and Vasile [20], the maximum number of trials
is dynamically adjusted during the optimisation process: when the archive is empty, the
maximum number of parameters scanned is equal to the total number of optimisation
parameters. This maximum value is decreased linearly as the archive fills up, until only
one optimisation parameter is changed when the archive is full. The neighbourhood Bj is a
box centred in the position of the agent in parameter space and with the edges equal to the
edges of the search space Π multiplied by the scaling parameter ρBj .

Differential Evolution generates a sample with the simple heuristic:

ptrial,j = pj + ξ1e
((

pj − pj1
)
+ cF

(
pj2 − pj3

))
(24)

where pj is the current candidate solution, pj1 , pj2 , pj3 are three randomly chosen solutions
from the current population Pk, ξ1 is a uniformly distributed random number in the unit
interval, cF is a user-defined constant and e is a mask vector defined as

ej =

{
1, if ξ2 < CR
0, otherwise

(25)

where ξ2 is another uniformly distributed random number in the unit interval, and CR is
the crossover rate. For the following test cases, cF = 0.9 and CR = 1.

If no improvement is made after trying all the three heuristics, ρB → 0.5ρB ; if instead
an improvement is made, ρB → 2ρB until the initial value ρB = 1 is reached again.

When social actions are applied, the outer level uses the population to generate a
candidate solution using the same heuristics of Differential Evolution (24), with the parent
solutions pj1 , pj2 , pj3 chosen from the union of the current population Pk and the current
archive Ak.
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Figure 1. Schematic representation of the bilevel approach acting on a single solution.

A candidate solution (y∗, p∗) generated by the inner level is evaluated in the outer
level by computing the weighted Chebychev norm

Φi = max
i

ωi
(

J̃i(y∗, p∗)− zi
)

(26)

zi = min
Pk∪Ak

J̃i

where ω is the weight vector in objective space and z is the current utopia point.
Given the value of Φi at step k, or Φk

i , an improvement corresponds to Φk+1
i < Φk

i .
This improvement criterion has two very important properties: first, it allows the search
to reach even non-convex parts of the Pareto front, and, second, if the weights are cho-
sen appropriately, it enables an efficient convergence to the global minimum for each
objective function.

Note that, if the inner level does not converge to the required tolerance, the objective
functions of the outer level are recalculated to be the infinity norm of the constraint violation
plus the maximum values of each objective functions in the archive and population. This
creates an adaptive rejection mechanism: if none of the agents are feasible, the ones that
best satisfy the feasibility are entered in the archive, with the next iterations trying to
improve their feasibility. Once an agent finds a feasible solution, it will explore the search
space through the global bi-level approach, generating several feasible and non-dominated
solutions. These solutions will enter in the archive as they will dominate many of the
existing infeasible solutions, and due to the social actions, some agents will be directly
moved onto those solutions, allowing the entire population to converge to feasible solutions
in a handful of iterations.

Finally, if any candidate solutions for y and p fall outside the boundaries of the search
space Y×Π, the solution vector is reduced until it is back within the search space.

3.2. Single Level Local Search

The local refinement solves the following scalarised problem for each agent j:

min
ε≥0

ε (27)

ωi,j ϑi,j(y, p) ≤ ε for i = 1, . . . , m

C(y, p) ≥ 0

where ωi,j is the ith component of the weights for the jth agent, ϑi,j is the ith component of
the rescaled objective vector of the jth agent, and ε is a slack variable.

This reformulation of the problem, which uses Pascoletti–Serafini scalarisation [23],
constrains the movement of the agent to within a descent cone defined by the point
(εdj + ıj) and along the direction dj = (1/ω1,j, . . . , 1/ωi,j, . . . , 1/ωm,j). The rescaled vector
of the objective functions is therefore

ϑ j(y, p) =
J̃i,j(y, p)− z̃i

z∗i,j − z̃i
for i = 1, . . . , m (28)
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where z∗j is equal to J̃j(y, p), (y, p) is the initial guess for the solution of (27), and
z̃ = (z − zA) where zA is the nadir of the archive. The components of the vector ζ j
are derived from the normalisation

ζi,j =
zi

z∗i,j − z̃i
for i = 1, . . . , m (29)

This allows the components of ϑ j(y, p) to have values of 1 at the beginning of the local
search, and 0 if the agent converges to the target point z̃. Thus, the single level approach
avoids biases when the objectives have significantly different scales.

The weighted Chebychev norm in (26) and (27) are equivalent and lead to the same
optimal solution if the target point for the Pascoletti–Serafini scalarisation coincides with
the utopia point, and the weight vectors are the same [24]. By combining (26) in the global
search phase with (27) in the refinement phase, the algorithm ensures a smooth transition
from global exploration of the Pareto set, to local convergence.

3.3. Archiving Strategy

MACSoc, through MACS, employs an archiving strategy described in Ricciardi and
Vasile [20]. When the elements in the archive A are less than the maximum allowed
cardinality of A, every new feasible and non-dominated solution is recorded in the archive.
Once the defined maximum size for the archive is reached, new elements are added to A
only if they minimise the potential function,

E
(
J̃1, · · · , J̃NA

)
=

NA

∑
i=1

NA

∑
j=i+1

1
(J̃i − J̃j)T(J̃i − J̃j)

(30)

where NA is the number of elements in the archive A.
To avoid biasing in the rejection–retention process when the objectives have different

scales, the objective values of the set of non-dominated solutions are all normalised between
0 and 1. This leads to a combinatorial problem that can be solved approximately but
efficiently and returns a uniformly spread set of points [20].

3.4. Generation of the Initial Feasible Population

Before the optimisation starts, MACSoc generates an initial population of agents P0
representing feasible candidate solutions.

A first guess for the candidate solutions is generated using Latin Hypercube sampling
within the given boundaries, which gives a near-random sample of parameter values from
a multidimensional distribution [18]. State variables for each phase are initialised with a
linear interpolation between initial and final conditions. For each phase, each equation
in (15) is optimised using the inner level subproblem (23) to ensure feasibility through a
local gradient-based optimiser. Additional constraints within the phase are then added in,
and the problem is re-optimised. Lastly, the linking constraints between phases are then
included, and the full resulting problem is optimised for a final time (always using a local
optimiser with the inner level objective function in (23)). If at the end of the initialisation
phase, an agent is associated with a solution that is not feasible within the prescribed
tolerance, that solution is still included in the initial population P0 and submitted to the
subsequent optimisation cycle.

For the test case, the tolerance on feasibility is set to 10−6, both for the initial popu-
lation generation, and for determining feasibility within loop. By default, the maximum
number of calls to the constraint function is set equal to 10(n∗b + ns + nY). An interior
point NLP solver was used as it delivered a more robust and consistent convergence to
feasible solutions.
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3.5. Definition of the Descent Directions and Target Points

The weight vectors for the bi-level global search are generated as follows: first, a
simplex in objective space is generated through simplex lattice design [25]. Then, the points
of this simplex lattice are projected on the unit sphere by dividing their position vectors by
their distance to the origin. This gives a fairly uniform distribution of weight vectors (and
thus descent directions) in any Nw dimensional space.

In order to generate a more uniform distribution, however, these weight vectors are
refined using a local optimisation of the same potential function E given in (30),

min E(ω1, . . . , ωNw) (31)

ωT
i ωi = 1

While this approach is valid for general m-objective problems, for two objectives,
it is simpler and faster to generate uniform angularly spaced weight vectors. In the
following, Na = Nw and each agent is associated with the closest descent direction in
criteria space, at the initialisation stage, with the constraint that no two agents can have the
same descent direction.

For the single level approach, the weight vectors ωj = [
√

2, . . . ,
√

2]T are allocated
to all agents except to those m agents that minimise each individual objective function.
For these m agents, the weight vectors are ωj = [0, . . . , j, . . . , 0]T with j = 1, . . . , m. These
weights are orthogonal because they correspond to the m orthogonal directions in criteria
space. If agent j associated with weight ωj does not generate any improvement after two
iterations, a new random orthogonal weight is associated with j and (27) is solved with the
added constraints,

J̃i ≤ zi ∀i 6= j (32)

The reason for the different choice of weight vectors between the bi-level and the
single level formulation can be explained as follows: the bi-level formulation explores
globally the search space with a population of agents, thus there is the need to maximise
the spreading of the solutions; on the contrary, the single-level is used to improve the local
convergence of each agent in a normalised criteria space. Thus, the goal of the single level is
to return dominating solutions without altering too much their spreading in criteria space.

4. Uncertainty Model for Atmospheric Parameters

Preliminary design and trade-off studies, in particular those employing computa-
tionally intensive multidisciplinary design and multi-objective optimisations, typically
use global static atmospheric models such as US-76 Standard Atmospheric model, or the
International Standard Atmospheric (ISA) model. These models predict the atmospheric
pressure p, temperature T and density ρ as function solely of altitude, and employ simpli-
fied algebraic expressions for the different atmospheric layers. The models are based on
average values for year-round, mid-latitude conditions with moderate solar activity. The
ISA is valid up to an altitude above mean sea level of 86 km, while US-76 has an extension
up to 1000 km. Due to this, US-76 is often preferred in the field of space launchers over
ISA. These two models rely on similar assumptions and methodologies, differing only in
the prediction of the temperature in the upper atmosphere (above 32 km).

In order to assess the robustness of the mission design against uncertainties in the
atmospheric model, a model of the uncertainty was developed using higher fidelity atmo-
spheric models to create a data set. A number of empirical, global reference atmospheric
models exist, for example, to analyse the effect of atmospheric drag on satellites. The
Committee on Space Research (COSPAR) in their International Reference Atmosphere
reports details three of these models [26]: NRLMSISE-00 [27], Jacchia Bowman reference
atmospheric model JB2008 [28], and DTM2013 [29].

The NRLMSISE-00 is a model developed by the US Naval Research Laboratory and
accounts for geographic, temporal, solar and magnetic effects through inputs for: date,
time of day, geodetic altitude from 0 to 1000 km, geodetic latitude and longitude, local
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apparent solar time, 81-day average of F10.7 solar flux, daily F10.7 solar flux for previous
day, and daily magnetic index.

A statistical analysis of the difference in the models was performed treating those
all the input parameters save altitude as uncertain. A set of 105 quasi-random samples
were generated for the altitude using a low discrepancy Halton sequence [30], with the
corresponding values for T, P and ρ computed using the NRLMSISE-00 model for all
altitudes in the range between 0 and 100 km. The altitude limit of 100 km was driven by
the test case of the descent phase of a first stage, reusuable spaceplane which is designed to
operate within this range.

Every sample of the NRLMSISE-00 model was treated as an equivalent static global
atmospheric model, and used to compare against the US-76 model. These differences were
treated as random fluctuations in order to quantify the uncertainty.

As shown in Figure 2, the means and standard deviations σ were determined for each
of the three atmospheric parameters. It can be observed that, for the temperature, the mean
differences, or relative errors, are very low, with a 1σ relative error around 5% for altitudes
below 80 km. The mean relative errors for pressure and density are also low for relatively
low altitudes, but increase at higher altitudes, with the largest 1σ bands around 60 km.
Above 40 km, the pressure and density have a very low absolute value, so a large relative
error still means a low absolute error.
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Figure 2. Mean and standard deviation (±1σ) of the differences between every sample (representing
an equivalent global static atmospheric model) and the US-76 model for each of the atmospheric
parameters as a function of altitude. (a) Atmospheric density (kg/m3); (b) Atmospheric pressure
(kPa); (c) Atmospheric temperature (K).

Since the approach employed is that of the Square Root Unscented Transformation,
different models were generated: one employing the mean relative error, and the others
adding to the mean the Cholesky factorisation of the covariance matrix of the uncertain
quantities at each altitude. Figure 3 shows the five generated temperature profiles, and
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their comparison with respect to the US-76 model. A similar approach was followed for
the density.

As it can be seen, the Sigma Point 0 model is quite close to the US-76 model. Sigma
points 1 and 2 add the standard deviation to this mean, while Sigma points 3 and 4
also include the correlation between variations in temperature and variations in density.
The correlation between temperature and density changes sign repeatedly as the altitude
changes, thus the profiles assume values lower than one standard deviation only to cross
the mean and assume values higher than one standard deviation elsewhere.

Among the 105 samples generated by the Halton sequence on the NRLMSISE-00
model, several profiles do indeed have this kind of shape, which is significantly different to
the US-76 model. The temperature affects the computation of the Mach number, on which
the aerodynamic coefficients depend. The dependence of the aerodynamic coefficients on
the Mach number is stronger around Mach 1 and weaker for high Mach numbers, thus it is
not easy to foresee the effect of these variations.
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Figure 3. Temperature profiles for the models of each sigma point, and comparison with the
US76 model.

5. Vehicle System Models

The Orbital-500R launch system is composed of a first stage reusable spaceplane,
capable of rocket-powered ascent and an unpowered, glided descent, and an expendable,
rocket-based upper stage. The system is air-launched from a carrier aircraft. The system
was designed to launch from the UK and carry small payloads (500 kg) to Low Earth Orbits
(e.g., up to 1500 km). The dry mass of the spaceplane is 20 tonnes.

The flight dynamics are modelled as a variable-mass point with three degrees of
freedom in the Earth-centered Earth-fixed reference frame, subject to gravitational, aerody-
namic lift and drag forces. The state vector contains the translational position and velocity
components, x = [h, λ, θ, v, γ, χ], where h = rE − r is the altitude given radial distance
r and the Earth’s radius rE(λ, θ), (λ, θ) are the geodetic latitude and longitude, v is the
magnitude of the relative velocity vector directed by the flight path angle γ and the flight
heading angle χ. The vehicle is controlled through the angle of attack α, and the bank angle
µ of the vehicle. The dynamic model is therefore [31]
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ṙ = ḣ = v sin γ (33)

λ̇ =
v cos γ cos χ

r
(34)

θ̇ =
v cos γ sin χ

r cos λ
(35)

v̇ =
−D
m
− gr sin γ + gφ cos γ cos χ + ω2

Er cos λ(sin γ cos λ− cos γ cos χ sin λ) (36)

γ̇ =
1
v

(
L cos µ

m
− gr cos γ− gφ sin γ cos χ

)
+

v
r

cos γ

+
ω2

Er
v

cos λ(sin γ cos χ sin λ + cos γ cos λ) + 2ωE sin χ cos λ (37)

χ̇ =
1

v cos γ

(
L sin µ

m
− gφ sin χ

)
+

v
r

cos γ sin χ tan λ

+ ω2
Er

sin χ sin λ cos λ

v cos γ
+ 2ωE(sin λ− tan γ cos χ cos λ) (38)

The Earth is modelled using WSG-84, with gravitational acceleration expressed in
radial gr and tangential gφ components.

The accelerations induced on the vehicle are determined, using the relative vehicle
body reference frame B.

aBx =
−D cos α + L sin α

m
− gr(sin γ cos α + cos γ cos µ sin α)

+ gφ(cos γ cos χ cos α− cos χ sin γ cos µ sin α− sin χ sin µ sin α)

− v
r

cos γ sin α(cos µ− sin χ tan λ sin µ) (39)

aBy = gr cos γ sin µ + gφ(cos χ sin γ sin µ− cos µ sin χ)

+
v
r

cos γ(sin µ + cos µ sin χ tan λ) (40)

aBz =
−D sin α− L cos α

m
+ gr(cos γ cos µ cos α− sin γ sin α)

+ gφ(cos χ sin γ cos µ cos α + sin χ sin µ cos α + cos γ cos χ sin α)

+
v
r

cos α cos γ(cos µ− sin χ tan λ sin µ) (41)

Surrogate models were used for the lift cL and drag cD coefficients as a function
of Mach number M, angle of attack α and altitude h. An artificial neural network was
employed, using an aerodynamic database for the training data coming from a mix of
panel methods and CFD simulations (see Stindt et al. [32] for details on the generation of
the aerodynamic database). The lift and drag forces were computed assuming no wind,
with the relative velocity vrel = v−ωEr.

L =
1
2

CL(M, α, h) ρSre f v2
rel (42)

D =
1
2

CD(M, α, h) ρSre f v2
rel (43)

where Sre f is the reference area of the vehicle, and ρ is the atmospheric density.
Maddock et al. [1], Ricciardi et al. [10] performed a number trade-off studies through a

multi-disciplinary design optimisation on design of the Orbital-500R launch system and on
various missions, analysing the full trajectories for both stages. Extrapolating from these
results, a nominal starting point for the descent was set. Table 1 lists the initial and final
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conditions of the state variables. A final condition was imposed on the expected value of
the altitude, with a value of 10 km. In addition, the trajectories of all sigma points were
required to have a flight path angle greater or equal to −20°.

Table 1. Values and constraints on the boundary values of the state variables.

Initial Condition Final Condition (Requirement)

Altitude h 90 km h = 10 km
Latitude λ 60° N
Longitude θ −12° E
Velocity v 3 km/s
Flight path angle γ −5°
Heading angle χ 20° χ ≥ −20°

6. Application and Results
6.1. Problem Formulation and Set-Up

For the applied test case here, the initial conditions are fixed. The final conditions are
affected by the uncertainty, and are expressed as difference between the mean and target
values. A boundary constraint is added as follows:

ψ(X(t f )) = µχ − x(t f ) = 0 (44)

where µχ is the mean of the final states of the sigma points, and x(t f ) is the target value.
The first objective uses a metric to minimise the average induced acceleration on the

vehicle. The general formulation is

J1 =
∫ t f

t0

E
(
‖a‖2

)
dt (45)

where the transcribed version using DFET is

J1 =
N

∑
j

δtj

2

lu

∑
k

βk

Nσ

∑
i

a2(χi, τk)Wσ,i (46)

where a = ‖a‖ =
√

a2
x + a2

y + a2
z , given in (39)–(41). As part of the generation of the sigma

points, Nσ weights Wσ are generated, associated with each sigma point. The computation
of the mean of a quantity, within the transcribed NLP, is the weighted sum of the quantities
associated with each sigma point [12].

The second objective aims to reduce the uncertainty of the final state by minimising
the sum of the square of all the entries of the covariance matrix:

J2 = ∑
i,j

(
Covi,j(X(t f )

)2
(47)

where Covi,j is computed using the standard algebraic manipulations employed for the
Square Root Unscented transformation, with the additional consideration that no update
of the Cholesky factorisation is needed since no measurement is here performed and thus
no error is present. This formulation has the advantage that the quantity to compute is
smooth and differentiable, it involves all components of the covariance matrix, and does
not require iterative procedures like decomposition in eigenvalues to compute the principal
axes of the ellipsoid of the uncertainty. In order to give each element of the covariance
matrix the same weight even if the quantities of interest have different scales, the state
variables were scaled by the same factors internally employed by MODHOC to ensure that
all variables assume values between 0 and 1.
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The equations were transcribed through DFET, using 6 elements of order 7 for all the
states and the controls. Since all five sigma points are propagated simultaneously, there are
30 elements for the states and 12 elements for the controls. MODHOC was run for a total
of 30,000 function evaluations, keeping 10 solutions in the archive.

6.2. Trajectory Results

The computed Pareto front is shown in Figure 4, which confirms a trade-off between
the two objectives corresponding to metrics to minimising the induced acceleration load
on the vehicle (J1), and maximising the robustness of the trajectory by minimising the
covariance of the final values of the state variables (J2).
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Figure 4. Pareto Front for the two-objective problem. (a) Linear scale; (b) Log-log scale.

Figure 5 shows the time histories of the state variables for altitude, velocity vector
components given by the magnitude, flight path and heading angles. The solutions are
shown for a set of Pareto-optimal solutions from Figure 4, along with the ±1σ uncertainty
indicated by the dashed and dotted lines. It can be seen that Solutions 1 to 4 (in greens
and blues) have lower uncertainty for the final state, as expected as Solution 1 represents
the extrema for min(J2). This can also be seen from Figure 6, which show the standard
deviation of the same four state variables in Figure 5. As previously stated, even if the
uncertainty on atmospheric density is relatively high at high altitudes, its effect is quite
limited for the first part of the trajectory as the absolute value is very small (e.g., 10−6 at
85 km, 10−3 Pa at 40 km). The uncertainty in the density starts to have a noticeable effect
as the altitudes get to approximately 40 km and below.
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Figure 5. Cont.
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Figure 5. State variables for set of 10 Pareto-optimal solutions, with dashed and dotted lines showing
±1σ uncertainty. (a) Altitude; (b) Magnitude of the velocity; (c) Flight path angle; (d) Heading angle.
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Figure 6. Standard deviations of state variables. (a) Altitude; (b) Magnitude of velocity; (c) Flight
path angle; (d) Heading angle.

As the Pareto front (Figure 4) indicated, the solutions with a lower uncertainty of
final states have higher acceleration loads, as shown in Figure 7. This further shows the
breakdown between the accelerations in the three vehicle (or body) axes, as well as the
magnitude of the acceleration vector.
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Figure 7. Magnitude and components (in vehicle body reference frame) of the induced accelerations,
normalised against sea level gravity g = g0. (a) Magnitude of acceleration; (b) Component in x-axis;
(c) Component in y-axis; (d) Component in z-axis.

Figure 8 shows the time history for the two control variables: angle of attack α and
bank angle µ. In all cases, the angle of attack starts with the maximum possible value
of 45 deg, and then progressively decreases to a more moderate value around 5–10 deg.
Solutions with lower accelerations stay in this regime for a while, and finally conclude with
a value around 0 deg. Solutions with lower final uncertainty instead have a progressive
decrease in α until small negative values, then a sharp increase to values around 10–15 deg,
and finally stabilise around 0 deg.
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Figure 8. Control variables, which are consistent across all solutions in the Pareto-optimal set.
(a) Angle of attack; (b) Bank attack.
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Finally, Figures 9 show the time history of the states for all sigma points for extrema
Solutions 1 and 10. As it is evident, the green lines have a much lower scattering at the final
time than the black lines, indicating that Solution 1 (green) is subject to less uncertainty
than solution 10 (black). These figures also give an idea of the complexity of the problem
tackled by this approach, where the same control law is applied to multiple independent
sigma points (lines with the same colour) and is able to steer the system to a given expected
final state while also reducing the uncertainty associated with the final state, or reducing
the expected acceleration load.
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Figure 9. State variables of sigma points for the two extrema of the Pareto-optimal set (Solutions 1
and 10). (a) Altitude; (b) Velocity; (c) Flight path angle; (d) Heading angle.

6.3. Validation

A Monte Carlo analysis was run to validate the method and results. Starting from the
Pareto-optimal set of 10 solutions, the solution was re-integrated using a different sample
for the atmospheric model. A 100 different samples (for the atmospheric model) were taken
for each Pareto-optimal solution, using the same sampling bounds as used to generate the
sigma points (i.e., 1 standard deviation for each of the two atmospheric parameters, density
and temperature).

Figure 10 shows the results of the Monte Carlo analysis for a middle set solutions
(Solution 7, Figure 10a,b), and the two extrema (Solutions 1 and 10, Figure 10c,d). In each
plot, the five sigma points are shown (Point 0 is green, and Points 2–4 in blue), with each of
the 100 Monte Carlo runs shown as a grey line.

The values of the objective functions are compared in Table 2, looking at the optimised
values against the mean values for J1 and J2 across the Monte Carlo runs.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Monte Carlo analysis for Solution 7 (a,b), Solution 1 (c,d) and Solution 10 (e,f). Green is
the central Sigma point 0, blue are Sigma points 1–4, and grey lines are the 100 Monte Carlo samples.
(a) Altitude, Solution 7; (b) Velocity, Solution 7; (c) Altitude, Solution 1; (d) Velocity, Solution 1;
(e) Altitude, Solution 10; (f) Velocity, Solution 10.
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Table 2. Comparison of the mean value of the objective functions across the 100 runs of the Monte
Carlo analysis with the optimised values.

Optimisation Monte Carlo

Solution 1 Objective function J1 1.5375× 105 1.4696× 105

Objective function J2 2.1029× 10−14 1.0542× 10−8

Mean final altitude 10.00 km (target) 10.354 km

Solution 7 Objective function J1 3.6761× 104 3.5939× 104

Objective function J2 2.9916× 10−10 5.7082× 10−10

Mean final altitude 10.00 km (target) 9.9277 km

Solution 10 Objective function J1 3.2629× 104 3.2396× 104

Objective function J2 7.7731× 10−9 1.8189× 10−8

Mean final altitude 10.00 km (target) 9.9014 km

The results from Monte Carlo analysis are consistent with the results found using the
unscented transform integrated into the multi-objective optimal control solver MODHOC.
Small deviations can be seen towards the middle-end of the trajectory at altitudes below
50 km. The five sigma points chosen are all orthogonal, however the sample points for
the Monte Carlo run are not so constrained (though the boundaries are the same). The
absolute values for atmospheric parameters, in particular density ρ and pressure p, have
higher values in lower atmosphere, so it is consistent with the expectation that this area
would experience an increased impact, coupled with the larger standard deviation between
40–60 km.

7. Conclusions

This paper presented an extension of a memetic multi-objective optimisation algorithm
MODHOC to perform optimisation under uncertainty. This was applied to a test case
to determine a set of Pareto-optimal solutions for the descent trajectory of a first-stage
spaceplane, based on the conceptual commercial launch vehicle Orbital 500R. The robust
multi-objective optimisation traded off a performance objective, the induced accelerations
on the vehicle corresponding to the dynamics loads, with a metric on the robustness of the
trajectory to uncertainties on the atmospheric temperature, pressure and density.

Through a square root unscented transformation, different atmospheric models were
generated for five sigma points. All the sigma points share the same control law, thus
making the trajectory robust against model uncertainty. While only the first two statistical
moments of the uncertain values were considered for this work, future work will account
for higher order moments, making the resulting trajectory even more robust. A larger
number of sigma points will also be required, however, and the resulting optimal control
problem becomes progressively larger, requiring the use of large scale optimisation code.
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