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Abstract: Our study is devoted to a subject popular in the field of matrix population models, namely,
estimating the stochastic growth rate, λS, a quantitative measure of long-term population viability,
for a discrete-stage-structured population monitored during many years. “Reproductive uncertainty”
refers to a feature inherent in the data and life cycle graph (LCG) when the LCG has more than one
reproductive stage, but when the progeny cannot be associated to a parent stage in a unique way.
Reproductive uncertainty complicates the procedure of λS estimation following the defining of λS

from the limit of a sequence consisting of population projection matrices (PPMs) chosen randomly
from a given set of annual PPMs. To construct a Markov chain that governs the choice of PPMs
for a local population of Eritrichium caucasicum, an short-lived perennial alpine plant species, we
have found a local weather index that is correlated with the variations in the annual PPMs, and
we considered its long time series as a realization of the Markov chain that was to be constructed.
Reproductive uncertainty has required a proper modification of how to restore the transition matrix
from a long realization of the chain, and the restored matrix has been governing random choice in
several series of Monte Carlo simulations of long-enough sequences. The resulting ranges of λS

estimates turn out to be more narrow than those obtained by the popular i.i.d. methods of random
choice (independent and identically distributed matrices); hence, we receive a more accurate and
reliable forecast of population viability.

Keywords: discrete-structured population; matrix population model; population projection matrices;
reproductive uncertainty; stochastic growth rate; random choice; weather indices; Markov chain;
Monte Carlo simulations

1. Introduction

The citation in the title is taken from that of the former publication [1] devoted to the
estimation of λS, in which the stochastic growth rate of a population was calculated in the
framework of a matrix population model (MPM, [2]).

The mathematical demography of plant and animal populations is at present based
mostly on MPMs as basic research tools [2] for organizing data gained by the obser-
vations/measurements of the population structure, x(t) ∈ Rn

+, with regard to a certain
classification trait, e.g., age, size, or the stage of ontogenesis [2] in the individuals of
a local population of a given species. In mathematical terms, the MPM is a system of
difference equations,

x(t + 1) = L(t)x(t), t = 0, 1, 2, . . . , (1)

for the n-vector of a population structure that belongs to the positive orthant of the n-
dimensional Euclidean space. Matrix L(t) is non-negative and called the population projec-
tion matrix (PPM) [2,3]: “Each component of x(t) is the (absolute or relative) number of
individuals in the corresponding status-specific group at time moment t, while the elements
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of L(t), called vital rates [2], carry information about the rates of demographic processes in
the population. They are time-dependent in general, but the zero-nonzero pattern of the
PPM corresponds invariably to a single associated directed graph [4], which is called the life
cycle graph [2] (LCG) as a condensed graphical representation of the biological knowledge
involved into the model and the way the population structure is observed in the study”
([1], p. 1) (see the next Section for a sample).

When L(t) = L does not change in time, the dynamics of x(t) as t→ ∞ is provided
by the classical Perron–Frobenius Theorem for non-negative irreducible matrices [4]. By
the Theorem, the spectrum of L contains a simple eigenvalue, λ1 > 0, that is positive and
equal to the spectral radius, ρ(L), of the matrix; this eigenvalue is called dominant. There
also exists a positive eigenvector, x* > 0, corresponding to the dominant eigenvalue. It
follows that, when matrix L is primitive, the sequence of x(t)/λ1

t converges to a vector
proportional to x* for any nonzero x(0) ≥ 0 [4,5] and to a periodic vector function of t
when L is imprimitive [5]. Clearly, the population declines when λ1(L) < 1, and it grows
exponentially when λ1(L) > 1, so that λ1(L) represents the asymptotic growth rate.

In applications, λ1(L) measures “the adaptation that the local population possessed in
the place where, and at the time when, the population data were collected to calibrate the
matrix L“ ([6], p. 176; [7]). Two successive years of observation are typically sufficient to
calibrate L(t), the annual PPM, in a unique way [1], although situations occur where the
reproduction rates can only be determined up to a bounded positive parameter [8,9]; we
call this reproductive uncertainty [10] since the calibrating equation (1) is satisfied for any
feasible values of the reproduction rates. As a result, we obtain a finite range of possible λ1
values, rather than a single value for a uniquely calibrated L(t).

In both cases however, more than two observation years provide, respectively, more
than two annual PPMs with values ([11], Table 3) or ranges ([12], Table 3) of λ1 that differ
both quantitatively and qualitatively (less or greater than 1). The task is therefore to assess
the state of a population from multi-year observation data; hence, a finite set of annual
PPMs, and λS, the stochastic growth rate [2,13], provides for such an assessment. A variety
of methods is known to estimate λS for a given set of annual PPMs (see a survey in [2]),
but we have proposed an original method [1], which related (for the first time to our
knowledge) the estimation of λS to the variations in local meteodata. This new method has
resulted in more accurate estimates of λS than another popular method also applicable to
the population data in hand has done previously [1].

With the purpose to develop our method further, we expose it, in the next section,
with an emphasis on the reproductive uncertainty feature of the population data gained
in a case study of Eritrichium caucasicum, a short-lived perennial alpine plant species.
Reproductive uncertainty in observation data causes certain sets of annual PPMs, instead
of single matrices, that are calibrated from data, and we modify the successive steps of
our procedure to reconstruct a governing Markov chain that is related to variations in the
environment. The “Results” section contains the outcome of comparing our estimates of
λS to those obtained by the so-called “i.i.d.” rules of random choice (independent and
identically distributed matrices, [2]). In the final section, we discuss the novelty of our
method caused by the reproductive uncertainty and what might follow from our current
findings for the Red Data Book status of E. caucasicum.

In Table 1, we enlist the abbreviations and formal notations used throughout the text.
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Table 1. List of abbreviations and formal notations used throughout the text 1.

Abbreviations and Notations Meaning

LCG Life Cycle Graph

PPM Population Projection Matrix

i.i.d. Independent, identically distributed

MPM Matrix Population Model

MC Monte Carlo

x(t) Vector of population structure

j(t), v(t), g(t), gt(t) Components of x(t) for Eritrichium caucasicum

a(t), b(t) Uncertain fertility rates for E. caucasicum at time t

Rn
+ Positive orthant of the n-dimension vector space

L(t) PPM at time t

L(t; a) PPM at time t for parameter value a

{L(t; a)} A set of PPMs at time t for all feasible values of a

λ1(L) Dominant eigenvalue of matrix L

ρ(L) Spectral radius of matrix L

λ1(t; a) Dominant eigenvalue of matrix L(t; a)

Λ(t; a) A set of λ1(t; a)s at time t for all feasible values of a

λ1min, λ1
max The minimal and maximal values of λ1 over a set Λ

x* Positive eigenvector corresponding to λ1(L)

λS The stochastic growth rate

P = [pij], Markov chain transition matrix and its elements

ss* Steady-state distribution of Markov chain states

θ(t) Observed time series of the temperature index, θ
1 Except for those standard in the statistical treatment of data.

2. Materials and Methods
2.1. Case Study of Eritrichium Caucasicum

Eritrichium caucasicum (Albov) Grossh. is a short-lived herbaceous perennial poly-
carpic plant species that is endemic to Caucasus and that inhabits alpine heaths. We
described the biology, ecology, and ontogenesis of the species (Figure 1) in earlier publica-
tions [8,14], and the corresponding LCG was developed (Figure 2).
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Figure 1. Ontogenetic stages of Eritrichium caucasicum: pl, seedlings; j, juvenile plants; v, adult
vegetative plants; g, generative plants; gt, terminal generative plants, the stages being distinguishable
in the field [8].

Figure 2. LCG for a local population of Eritrichium caucasicum observed once a year. Ontogenetic
stage notations as in Figure 1. Solid arrows indicate transitions occurring for one year (no transitions,
in particular); dashed arrows correspond to annual recruitments [12].

The stage structure, i.e., vector x(t) = [j(t), v(t), g(t), gt(t)]T, of a local E. caucasicum
population has been annually observed on permanent plots laid down on the Malaya
Khatipara mountain (2800 m asl., Teberda State Nature Reserve, north-western Caucasus)
in 2009 [8]; the observation has been done at the end of growing season, every August for,
now, a total of 12 years (2009–2020). Each individual plant was marked and its fate was
traced through years, so that the observation data are of the “identified individuals” type [2],
enabling, also, the record of each transition between stages and each recruited individual.

Stage j incorporates seedlings pl as they transition to juveniles quite quickly, within a
single growing season. Along with successive transitions from stage to stage for one year,
the following events were also observed in the E. caucasicum life history:

– delays 	 in stages va and g, which can be explained by the harsh conditions of the
highlands [15]. Some virginal plants also accumulate resources for fruiting longer
than one year because of soil poorness [16–19];

– returns va← g because of adverse climatic conditions and insufficiency of a single
growing season for a generative plant to accumulate resources for fruiting [15,20,21];
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– accelerated transitions va y gt as a manifestation of polyvariant ontogeny in E.
caucasicum under the conditions of the alpine belt in north-western Caucasus.

Two generative stages provide for the population recruitment, the new individuals
being observed at stage j (Figure 2). However, the stage of their parent plants cannot,
unfortunately, be determined, and this is a fundamental reason for what we call reproductive
uncertainty [10,12]. The corresponding scalar equation of system (1) for x(t) = [j(t), v(t), g(t),
gt(t)]T thus takes on the following form:

j(t + 1) = a(t)g(t) + b(t)gt(t), t = 2009, 2010, . . . , 2019, (2)

for the unknowns a(t) and b(t). The left-hand side and coefficients of Equation (2) are
integers, whereby the solution to this Diophantine equation represents a finite set of
rational numbers expressed in terms of, say, parameter a. As a result of 12 observation
years under reproductive uncertainty, we obtain 11 finite sets, {L(t; a)}, of annual PPMs
shown in Table 2. Correspondingly, their lambdas1 constitute 11 finite sets, Λ(t; a) 3 λ1(t;
a), with their minimal and maximal values at the boundary values of a.

Table 2. One-parameter sets of annual PPMs L(t; a) calibrated from the E. caucasicum data at the years t, t + 1 and the
corresponding bounds of λ1 (modification and expansion of Table 3 from [12]).

t
i = t − 2008

Matrix L(t; a) = Li(a) Recruitment Equation; {a Values}
a◦, λ1(a◦) 1

Range of λ1(L(t))

λ1min λ1
max

2009
1


0 0 a 31−10a

4
68
149

63
80

5
10 0

0 6
80

3
10 0

0 0 1
10 0


10a + 4b = 31;

{0, 1
10 , 2

10 , . . . , 31
10 }

14
10 , 0.948257

0.9035 0.9949

2010
2


0 0 a 150−9a

1
17
31

106
136

6
9 0

0 9
136

1
9 0

0 2
136

1
9 0


9a + b = 150;

{0, 1
9 , 2

9 , . . . , 150
9 }

87
9 , 1.383299

1.2460 1.5201

2011
3


0 0 a 211−10a

3
76
150

101
129

4
10 0

0 7
129

2
10 0

0 4
129

3
10 0


10a + 3b = 211;

{0, 1
10 , 2

10 , . . . , 211
10 }

121
10 , 1.371439

1.2476 1.4948

2012
4


0 0 a 119−9a

7
137
211

153
181

6
9 0

0 6
181

0
9 0

0 0 1
9 0


9a + 7b = 119;

{0, 1
9 , 2

9 , . . . , 119
9 }

52
9 , 1.010985

0.9213 1.1004

2013
5


0 0 a 99−6a

1
23

119
139
296

4
6 0

0 9
296

2
6 0

0 4
296

0
6 0


6a + b = 99;

{0, 1
6 , 2

6 , . . . , 99
6 }

49
6 , 0.822941

0.7864 0.8588

2014
6


0 0 a 49−11a

4
22
99

103
166

3
11 0

0 14
166

3
11 0

0 3
166

5
11 0


11a + 4b = 49;

{0, 1
11 , 2

11 , . . . , 49
11 }

28
11 , 0.874279

0.8376 0.9119
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Table 2. Cont.

t
i = t − 2008

Matrix L(t; a) = Li(a) Recruitment Equation; {a Values}
a◦, λ1(a◦) 1

Range of λ1(L(t))

λ1min λ1
max

2015
7


0 0 a 73−17a

8
9
49

86
128

8
17 0

0 0
128

1
17 0

0 1
128

0
17 0


17a + 8b = 73;

{0, 1
17 , 2

17 , . . . , 73
17 }

38
17 , 0.685245

0.6719 0.6987

2016
8


0 0 a 13−a

1
15
73

60
103

0
1 0

0 5
103

0
1 0

0 1
103

0
1 0


a + b = 13;

{0, 1, 2, . . . , 13}
5, 0.712283

0.6449 0.7902

2017
9


0 0 a 49−5a

1
5

13
58
75

3
5 0

0 2
75

1
5 0

0 0
75

1
5 0


5a + b = 49;

{0, 1
5 , 2

5 , . . . , 49
5 }

26
5 , 0.942585

0.9396 0.9456

2018
10


0 0 a 72−3a

1
2

49
40
66

0
3 0

0 0
66

0
3 0

0 1
66

0
3 0


3a + b = 72;

{0, 1
3 , 2

3 , . . . , 72
3 }

41
3 , 0.651261

0.6061 0.6976

2019
11


0 0 a 7− a
31
72

14
42

0
1 0

0 12
42

1
1 0

0 2
42

0
1 0


a + b = 7;

{0, 1, 2, . . . , 7}
2, 1.237478

1.0000 1.4955

1 Nearest to the average of λ1: λ1(a◦) = mina|λ1(a)−(λ1min + λ1
max)/2|.

In spite of reproductive uncertainty, all of (a finite number of) the λ1(L(t; a)) values,
except for t = 2012, are qualitatively certain: either less or greater than 1, 1 /∈ Λ(t; a).
Nevertheless, the final outcome of the 12-year monitoring of population states remains
uncertain, while the certainty can be reached in the paradigm of the stochastic growth rate.

2.2. Stochastic Growth Rate, λS

The idea of the stochastic growth rate ensues from the paradigm of population dy-
namics in a stochastic environment ([2] and the references therein). Given a set of annual
PPMs, each of them is considered to correspond to a state of the environment that would
provide for either further exponential growth or decline of the population if the state did
not change. The stochastic environment is thereafter considered as a sequence of PPMs
chosen at random from the given set [2]. Each of the PPMs projects the current population
vector for one step further, and the sequence of total population sizes (‖ . . . ‖1) converges,
under unrestrictive technical conditions, to a finite limit

lim
1
τ

τ→∞

ln N(τ) = lim
1
τ

τ→∞

ln‖Lτ−1 . . . L0‖1 = ln λS (3)

with probability 1 [22–24]. The value of λS is then called the stochastic growth rate, and we
concentrate our efforts on how to estimate the limit (3) when a set of calibrated annual
PPMs is available together with their λ1s.

Known from the literature, theoretical estimates of λS [2,13] suggest certain assump-
tions about the set of L(t)s, such as, e.g., their distribution around an average matrix with
a known variance. However, when the given PPMs differ dramatically from one another
(Table 1, see also [11,12]), we have just to resort to definition (3). The well-known Monte
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Carlo (MC) method prompts the way of constructing a finite piece of the infinite sequence
once a rule for the random choice of matrices at each step τ has been accepted. The simplest
and most popular rule is reduced to the independent, identically distributed (i.i.d.) matrices,
and we obtain a set of random realizations of sequence (3) and the corresponding range of
λS estimates over the set [12].

However, the i.i.d. matrices can hardly be accepted as an adequate model of real
stochastic environments, where the population vital rates (elements of PPMs) would rather
react to variations in the environment than obey any i.i.d. rule, while the variations
themselves are caused by changing weather or other factors. A step towards reality was
associated with Markov chains [25], which have become a popular tool in present-day
weather modeling [26–28]. Markov chains were also suggested to govern the random
choice of PPMs in the paradigm of λS [24,29], and they are used for both theoretical and
practical estimations of λS, “varying from very simple, such as switching between ‘bad’
and ‘good’ environments [30], to highly sophisticated ones [31–33], yet still invented by
the authors rather than by nature” ([1], p. 2/15).

On the contrary, we have already constructed a Markov chain that describes those
real variations in the environment of a local population that were indirectly expressed
in a given set of 10 annual PPMs, yet without reproductive uncertainty [1]. Neither the
graph of transitions nor the transition probabilities were known a priori, and the task was
to reconstruct the graph and to estimate the probabilities, thus obtaining the transition
matrix, P = (pij), from a variety of local meteorological and microphysical data that scoped
59 observation years. Constructed in this way, matrix P enabled us to obtain more narrow,
hence more accurate, ranges of λS estimates (Table 4 in [1]) than those obtained before
under the i.i.d. equiprobable matrices (Table 6 in [34]); a less trivial i.i.d. choice still generated
worse estimates (Table 4 in [1]).

The challenge is now to develop our method for the case of reproductive uncertainty,
and further sections report our response to this challenge.

2.3. Local Meteodata, Statistical Treatment

Along with the monitoring of the local E. caucasicum population, certain climatic
parameters at the site (an alpine heath), close to the permanent plots under study, were
monitored. “From a variety of meteorological data on the air and soil registered by the
local temperature/humidity sensors, we have selected certain key environmental factors
effecting the population status and development, i.e., seed germination, seedling survival
and growth, under severe conditions of the alpine belt. Twenty-one parameters were
selected: the minimal, maximal, and average air temperatures in the previous-year autumn
(September–October) and current-year spring plus early summer period (May–June); the
soil surface and 10-cm depth temperatures in the previous-year autumn (September–
October) and current-year spring plus early summer period (May–June); the duration of
freezing on the soil surface and 10-cm depth during the winter period (the sum of the
days when the maximal temperature was not exceeding –1 ◦C from the previous-year
November to the current-year April); the daily average soil moisture pressure at the 10-cm
soil depth during June, 17–30. The data on meteorological and soil indicators were collected
by standard methods with automatic sensors” (p. 6/15 in [1]).

Additionally, the formerly developed database of 13 years (2007–2019) of observations
at the Teberda State Meteorological Station (TSMS, the Karachay-Cherkess Republic, Rus-
sian Federation) accounting for 15 climatic indicators [1] has been updated with one more
year of observations (2020). The database contains 15 ecologically sound indicators, which
might reveal statistical relationships with the status and growth of the population under
study, namely: “the average, minimal and maximal temperatures in the previous-year
autumn (September and October); the minimum, maximum, and average temperatures in
spring (May) and early summer (June); the amount of precipitation in the previous-year
fall (September and October), the current-year spring to early summer period (May and
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June), and the winter period (from the previous-year November to the current-year May)”
(p. 6/15 in [1]).

The task was to detect the factor (or factors) most correlated with the λ1(t; a◦) vari-
ations in time (Table 2), and we have developed a multiple regression model by the
least-squares method (ordinary least squares). The number of factors to be analyzed
significantly exceeds the number of observations, while three predictors at most could
be included into the model. Therefore, we selected the factors by stepwise regression
(forward regression). The distribution of λ1(t; a◦) as the dependent variable corresponds
to the normal one (p = 0.1420 according to the Shapiro–Wilk test [35]). Whether the error
distribution corresponds to the normal is assessed visually on the quantile-quantile graph.

The best regression models of the λ1(t; a◦) time series have been checked for auto-
correlations under the condition that the incorporated factors were measured at all years
of observation. To do so, two generalized linear models (function gls of the nlme package
in the statistical environment R [36]) are built with and without level-1 autocorrelation
(AR1) and compared to each other by means of the log-likelihood ratio (ANOVA function
in R [37]).

As a result, any significant autocorrelations with a one-year lag have not been found
(p = 0.301). The λ1(t; a◦) variable correlates positively with the average minimum air tem-
peratures in May–June, and it turns out to be the only significant predictor in the models
with one factor included: it explains 49.3% of the variance (Table S1 in Supplementary
Materials). There is also a positive relationship between λ1(t; a◦) and the number of days
with freezing at the soil level (ibidem), which explains 49.7% of the variance, but has a
borderline significance (p = 0.051) because of a smaller number of years with data on soil
freezing compared to the previous factor. The combination of these factors is also not sig-
nificant and weakly increases the proportion of explained variance, compared to the model
where there is only one factor of soil freezing (55.1%, p = 0.135). Moreover, it is impossible
to simultaneously include these factors into the model since they are significantly corre-
lated with each other (Spearman’s correlation coefficient ρ = 0.824, p = 0.006). Including
other factors does not improve the model, nor does the introduction of the autocorrelation
condition. Thus, none of the multiple regression models are found to be significant.

2.4. Revealing the Pattern of Transition Matrix and Estimating Its Elements

We are looking for a Markov chain to govern the random choice of a matrix from the
given set of 11 sets {{Li(a)}, i = 1, . . . , 11}, of annual PPMs (Table 2) in the construction of
sequence (3), defining the stochastic growth rate, λS. The chain is supposed to follow the
variations in the weather conditions that determine particular sets of vital rates for the
local E. caucasicum population, in particular, the variations in a fairly long time series of the
temperature index, θ(k), k = 1960, . . . , 2019. To do so, we have to associate each point of
the series, θ(k), to a set, {{Li(a)}, of annual PPMs, or simply to its number i, i = 1, 2, . . . , 11,
identified with the chain state. Thereafter, we consider the 60-member sequence of states
as a realization of the Markov chain, and the task is to restore its transition matrix from
this realization.

In order to obtain a longer-than-11 stochastic sequence of PPMs, we identify each of
the 11 given PPM sets, {L(t; a)}, t = 2009, . . . , 2019, with the value of temperature index, θ(t),
during the corresponding, t→ t + 1, period (see Section 2.3). All these sets are different
(we call them reference sets); we number them with 1 to 11 in chronological order and use
λ1(a◦) (Table 2) as a reference value. Climatic parameters, including the temperature one,
θ(t), have, fortunately, been measured in the TSMS since the year of 1960, so that we have a
60-point time series. The task is thereafter to associate each successive point, θ(k), k = 1960,
. . . , 2019, of that series to one of the 11 reference values, and we do so using the absolute
difference, |θ(k) − θ(t)|, as a measure of distance, selecting the closest reference point:

tnext = t ∈ {2009, . . . , 2019|θ(k) − θ(t)|= mint|θ(k) − θ(t)|}. (4)
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When solving the minimization problem (4) at some successive steps of k, we have
unfortunately faced the non-uniqueness (in fact, duality) of its solutions. For example,
when k = 1966, we have

mint |θ(1966) − θ(t)| = 0.2 (5)

(Table S2, Supplementary Materials), and this minimum is reached at two different
values of t, namely,

θ(1966) − θ(2016) = −0.2 (6)

θ(1966) − θ(2017) = +0.2

The information at this point is not sufficient to make a choice between 2016 and 2017,
i.e., between {L8(a)} and {L9(a)}, so we investigate what has happened at the previous step,
k − 1 = 1965. In other words, we try to imagine our long time series as a realization of a
2nd-order Markov chain, where the probability distribution of transitions from the current
state depends both on this state and the previous one. We see that the state at k − 1 = 1965
has been associated to t = 2018, i.e., the PPM set {L10(a)}, with λ1(2018; a) < 1 for each a
(Table 2). Consequently, to promote the qualitative changeability of conditions at k = 1966,
we have to choose, between the years 2016 and 2017, the one in which λ1(t; a) > 1, or at
least the max {λ1(2016; a), λ1(2017, a)}. This is obviously 2017 (Table 2), i.e., the transition at
k = 1966 goes to {L9(a)}. In the opposite case, when k = 1997, we have

mint |θ(1997) − θ(t)| = 0.5

(Table S2, Supplementary Materials), with

θ(1997) − θ(2015) = −0.5 (7)

θ(1997) − θ(2011) = +0.5

and we investigate what happened at k − 1 = 1996. Since 1996 is associated with {L2(a)},
with λ1(L2(a)) > 1, we choose, by symmetrical logic, the minimal from λ1(L7(a)) and
λ1(L3(a)), namely, {L7(a)} with λ1(L7(a)) < 1.

In this way, we obtain a unique 60-member sequence of t-specific (t = 2009, . . . , 2019)
PPM sets, which we consider as a realization of the Markov chain that will govern the
choice of each next PPM in the sequence (3), defining λS. Thereafter, we restore a Markov
chain from its realization by taking the frequency of each particular transition as the corre-
sponding transition probability, thus forming the transition matrix, P = (pij), of the Markov
chain. Its dominant (stochastic) eigenvector, ss*, represents a steady-state distribution of the
chain states [38], which can be used in the subsequent i.i.d. MC simulations (ss* i.i.d.) for
the purpose of comparison.

2.5. Estimating λS by the Direct MC Method with a Markov Chain

After the transition matrix, P, of the governing Markov chain has been found, we can
construct a sequence of annual PPMs of any finite length in order to estimate λS according
to definition (3). To provide for computer outputs being reproducible, we fix, as before [1],
the initial population vector, x(τ = 0) = x(2009) (Table 1 in [1]) and the same set of PPMs,
{L(2009; a} (Table 2), the limit (3) being independent of this choice [22–24]. However, the
reproductive uncertainty causes a principal distinction from the former case already at
this point, namely, at the random choice of a particular PPM, L(2009; a), from the given set
{L(2009; a)}. To do this choice, we first estimate the variance inherent in the set as

σ 2 =
1
M ∑M

1 (ak − a◦)2 (8)

where M denotes the set power (Table 2). Second, we sample a by a Box–Muller transfor-
mation method [39] from the normal distribution around a◦, with the variance σ.
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Obtained in this way, the first matrix in sequence (3) means the first column of the
transition matrix P, as the distribution for the next MC choice of a matrix row i, hence a
PPM set {L(t; a} (t = i + 2008). Choosing a row i (1 ≤ i ≤ 11) is equivalent to tossing an
imperfect 11-faced die with unequal face probabilities (the column of P; see, e.g., Appendix A
in [1]). The choice of a PPM from the set for the next term in sequence (3) is described in
the previous paragraph. Now, putting j = i determines the next column of P to govern
the MC choice of the next t-specific set of PPMs, thereby a choice of a PPM from the set.
Repeating this basic step provides a finite sequence (3) of any given length (technical details
in Appendix A).

We use the same algorithm to obtain finite sequences (3) under the i.i.d. choice, as
it represents a particular case of the Markov chain choice with the transition matrix P
consisting of 11 identical columns. Those columns “give the desired distribution, hence the
dice becoming perfect when the distribution is uniform” ([1], p. 8/15).

3. Results
3.1. Transition Matrix of the Governing Markov Chain

The procedure introduced in Section 2.4 results in the transition matrix P = [pij] (i, j
= 1, 2, . . . , 11) presented in Table 3. It is obviously column-stochastic. The steady-state
distribution of chain states is given by ss*, the dominant stochastic eigenvalue of matrix P.

Table 3. Transition matrix of the Markov chain governing the random choice of annual PPM sets and its dominant stochastic
eigenvector.

Incoming
States

Outgoing States Eigenvec-tor,
ss*2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2009 8/22 2/6 2/4 0 0 0 4/7 3/6 2/4 0 1 0.385367
2010 4/22 0 0 0 0 0 1/7 0 0 0 0 0.086159
2011 2/22 1/6 0 0 0 0 0 1/6 0 0 0 0.066525
2012 0 0 1/4 0 0 0 0 0 0 0 0 0.016631
2013 0 0 0 1 0 0 0 0 0 2/4 0 0.048484
2014 0 0 0 0 1/3 0 0 0 0 0 0 0.016161
2015 1/22 2/6 0 0 0 1 1/7 1/6 1/4 0 0 0.112644
2016 4/22 0 1/4 0 0 0 1/7 0 0 0 0 0.102790
2017 2/22 0 0 0 0 0 0 1/6 0 1/4 0 0.068091
2018 0 1/6 0 0 2/3 0 0 0 1/4 0 0 0.063705
2019 1/22 0 0 0 0 0 0 0 0 1/4 0 0.033443

Column
sum 1 1 1 1 1 1 1 1 1 1 1 1

Note that P 6 > 0, i.e., matrix P is irreducible [4], hence the recovered Markov chain
is regular [38], providing for the existence of limit (3) [23,24] under the random choice
governed by this chain. Further estimates of λS as a finite, distant enough member of
sequence (3) are therefore well grounded.

3.2. Estimates of λS

Although the nature of finite sequences from definition (3) is random, the resulting λS
estimates should follow certain regularities. From the real analysis of converging sequences,
we know that the longer the sequence, the closer its final term is to the limit value. We apply
the same design of MC experiments as before (Tables 4 and 6 in [34]; Table 4 in [1]) and
expect a similar picture in what concerns the range of variations in the estimates obtained
from the sequences of a fixed length under varying numbers of random realizations: the
greater the number, the wider should be the range. Table 4 confirms these expectations.
One thousand realizations of the 1-million long sequence in the Markov chain series give
the most reliable estimation (green figures in Table 4).
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Table 4. Estimates of the stochastic growth rate, λS, by the direct Monte Carlo technique 1.

Product
“Length”

Number of
Realizations

Range of Variations in the Estimates of λS; Range Length:

Markov Chain
Series i.i.d. Series ss* i.i.d. Series

1 × 105

13 (0.920773, 0.923780)
0.0030069

(0.972350,
0.976529)
0.0041788

(0.941310,
0.943347)
0.0020375

33 (0.920588, 0.923780)
0.0031915

(0.971819,
0.976529)
0.0047104

(0.940334,
0.944282)
0.0039485

100 (0.920191, 0.923780)
0.0035883

(0.971202,
0.977042)
0.0058391

(0.940334,
0.944282)
0.0039485

2 × 105

13 (0.921190, 0.922904)
0.0017140

(0.972791,
0.974847)
0.0020564

(0.941034,
0.943227)
0.0021931

33 (0.921071, 0.922904)
0.0018323

(0.972791,
0.975908)
0.0031171

(0.941034,
0.943227)
0.0021931

100 (0.920568, 0.923068)
0.0024998

(0.972447,
0.975908)
0.0034615

(0.940959,
0.943427)
0.0024672

3 × 105

13 (0.921528, 0.922558)
0.0010302

(0.973440,
0.975091)
0.0016510

(0.941333,
0.942742)
0.0014095

33 (0.921234, 0.922863)
0.0016290

(0.972836,
0.975091)
0.0022541

(0.941272,
0.942742)
0.0014701

100 (0.921030, 0.922863)
0.0018331

(0.972359,
0.975091)
0.0027315

(0.940817,
0.942944)
0.0021265

5 × 105

13 (0.921215, 0.922159)
0.0009435

(0.973368,
0.974421)
0.0010530

(0.941407,
0.942535)
0.0011275

33 (0.921215, 0.922447)
0.0012320

(0.972962,
0.974421)
0.0014588

(0.941183,
0.942535)
0.0013520

100 (0.921215, 0.922741)
0.0015256

(0.972796,
0.974960)
0.0021640

(0.941082,
0.942820)
0.0017376

1 × 106

13 (0.921529, 0.922326)
0.0007971

(0.972836,
0.974286)
0.0014502

(0.941703,
0.942316)
0.0006123

33 (0.921434, 0.922375)
0.0009410

(0.972836,
0.974336)
0.0015003

(0.941538,
0.942562)
0.0010235

100 (0.921433, 0.922403)
0.0009697

(0.972836,
0.974572)
0.0017355

(0.941509,
0.942562)
0.0010530

1000 (0.921158, 0.922505)
0.0013463

(0.972768,
0.974922)
0.0021542

(0.941256,
0.942702)
0.0014461

1 Threshold value z = 0.000021, scaling factor sf = 0. 918400 (see Appendix A).

As regards the expectation expressed in the paper title, it is also confirmed in the most
reliable case: the range is smaller indeed than any one from two i.i.d. series.
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4. Discussion

Although the E. caucasicum population reproduces by seeds, the stage of dormant
seeds is deliberately not incorporated into the LCG (Figure 2), and certain grounds for that
have been intensively discussed ([40]; see Section 4 in [1] and references therein).

The reproductive uncertainty feature of the E. caucasicum data and the ensuing LCG
cannot be avoided by aggregating two reproducing stages, g and gt, into a single one: there
occur situations where the aggregation changes dramatically the population dynamics,
from the declining original to increasing aggregate (cf. Tables 2 and 3 for t = 2013 in [41]).
A mathematical ground for such a change does also exist (ibidem).

Reproductive uncertainty introduces certain problems into the way we associate each
successive point, θ(k), k = 1960, . . . , 2019, of our long time series to one of the 11 reference
points, i.e., to one of the 11 PPMs, the way being, ideologically, the same as before [1],
but technically different. The first problem arises because of a duality in the choice of
the reference PPMs, and we eliminate the duality by having recourse to a 2nd-order
Markov formalism. The second problem is the set of t-specific PPMs (Table 2) instead of a
single PPM in the former case (Table 2 in [1]), and we resolve the problem by taking an
advantage of the integer-valued formalism and what has been found in our former studies
of another species with reproductive uncertainty (see [42] and references therein). While an
optimization principle to eliminate reproductive uncertainty resulted in the extreme values
of uncertain reproduction rates, their accurate calculation (after colony excavation) has led,
rather, to intermediate values close to the middles of the uncertainty ranges (Tables 3 and 4
in [42]). Therefore, we have used the ready middles (a◦ values in Table 1) as the center of a
normal distribution (with the actual variance) to select a particular a from the t-specific set,
i.e., a particular t-specific PPM.

Certain ranges of uncertainty in λ1 values (Table 2) are consonant with the well- and
long-known methodology of fuzzy logic, which might be applied to our matrix-based fuzzy
time series, similar to those in controlled thermonuclear fusion [43]. That work, even if
dated, represents a milestone of prediction systems based on fuzzy logic and, in particular,
on matrix-based fuzzy times series.

Our former attempt to estimate λS for this population of E. caucasicum was based on
the 8-year observation data (2009–2016) and equiprobable i.i.d. choice (Table 4 in [34]); it
resulted in the range (0.934156, 0.936192) (ibidem), which is apparently closer to 1 than our
present (0.921158, 0.922505) (Table 4), with the span of 0.002036 (Table 4 in [34]), which is
almost twice wider than our present 0.0013463 (Table 4). A logical reason for the former
fact is that one of our three additional PPM sets (2017–2019) has its range of {λ1(a)} shifted
strongly to the left (Table 2), while the latter is due to the Markov chain choice instead of
the i.i.d.

Smaller and more reliable estimates of the stochastic growth rate mean a higher risk
of population extinction because of environment disturbances, and this motivates the issue
of the status that the species might have in the Red Data Books.

Note that Table 4 contains four cases where the expectation of more accurate estimates
by the Markov choice fails: the range length in grey background is smaller than that under
the Markov choice on the same line. These disappointing cases can be explained first by
insufficient product “length”, in combination with insufficient number of realizations, and
second by the effect of reproductive uncertainty, which erodes the range by the uncertainty
in λ1s. All these cases are still observed under the ss* i.i.d. choice, in close relation to the
Markov chain, and they can hardly disprove the general tendency following M. Tillius
Cicero’s “Exceptio probat regulam in casibus non exceptis”.

5. Conclusions

We expand the paradigm of stochastic growth rates for the case of reproductive
uncertainty in the data and LCG using the integer-valued formalism of matrix population
models. The variable environment of a local Eritrichium caucasicum population is now
represented as a finite set of the annual PPM sets that are also finite and have certain
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bounded ranges of their λ1 uncertainty. These sets are now the objects of random choice in
constructing the finite sequences of PPM products whose limit (as the number of cofactors
tends to infinity) determines the stochastic growth rate λS. A Markov chain that governs
the choice is the same as the chain that realized a long (60-member) time series of an
observed weather index correlated with the variations in the annual λ1s. The reproductive
uncertainty causes the selection of a particular PPM from a given annual PPM set to be
random too, with the selection obeying a normal distribution around a certain central
PPM. Altogether, this makes the random choice more realistic that the artificial i.i.d. choice
(simple and popular in the literature), even when it obeys the steady-state distribution
of Markov chain states. Our extensive MC simulations of the long-enough sequences
illustrate the picture intuitively expected beforehand: “realistic choice of annual matrices
contracts the range of λS estimates under reproductive uncertainty too”.

The figures obtained by the realistic choice (0.924874, 0.926079) suggest that the local
population of E. caucasicum may decrease by 50% in 9 years under the spectrum of observed
conditions, similar to what has been predicted for Androsace albana [1], another short-lived
perennial alpine species endemic to Caucasus. The former is, however, not included into
the recent regional Red Data Books, in contrast to the latter [44,45], and our findings
motivate both the further monitoring of E. caucasicum populations and the issue of the
species’ inclusion into the Books.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9233007/s1, Table S1: Results of regression models for the λ1 (t; a◦) series of Eritrichium
caucasicum, Table S2: Associating each successive point, θ(k), k = 1960, . . . , 2019, of the temperature
index time series to one of the 11 reference values.
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Appendix A. Diverging/Vanishing Sequences and a Remedy to Cope with

“A finite sequence (3) of any given length” bears, in fact, a technical problem. A great
enough number of cofactors in a term of sequence (3) that have their λ1s less than 1 causes
the term to tend to zero, while a great-enough number of cofactors with λ1s greater than
1 causes the term to tend to infinity. The terms of both kinds do appear in a long-enough
sequence constructed randomly. As a result, the sequence realization becomes diverging or
vanishing, in contrast to the theoretical tenet. In a computer, this artifact expresses in the
term, becoming either the computer zero or computer infinity, because of a finite number
of bits in the processor bit grid (64 in modern laptops).

Our former studies [11,12] have characterized the long-term trend in E. caucasicum
population dynamics as a slow decline, and our present computer trials have resulted in
vanishing rather than diverging sequences. Therefore, to reveal the converging potential
of sequence (3), we have to avoid the computer zero in our MC simulations. To do so, we
scale the current term as soon as it approaches zero, i.e., becomes less than a threshold

https://www.mdpi.com/article/10.3390/math9233007/s1
https://www.mdpi.com/article/10.3390/math9233007/s1
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value z > 0, by dividing the term by a scaling factor sf < 1, and by properly rescaling the
final term of a finite sequence.

To obtain the random realizations, we use the MT19937 generator of pseudorandom
numbers uniformly distributed in (0, 1) [46,47] (for a 64-bit processor).

To generate normally distributed pseudorandom numbers, we use the Box–Muller
transformation of uniformly distributed numbers [39].
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