
mathematics

Article

Contrast-Independent, Partially-Explicit Time Discretizations
for Nonlinear Multiscale Problems

Eric T. Chung 1, Yalchin Efendiev 2,3,*, Wing Tat Leung 4 and Wenyuan Li 2

����������
�������

Citation: Chung, E.T.; Efendiev, Y.;

Leung, W.T.; Li, W. Contrast-

Independent, Partially-Explicit Time

Discretizations for Nonlinear

Multiscale Problems. Mathematics

2021, 9, 3000. https://doi.org/

10.3390/math9233000

Academic Editor: Andrey Amosov

Received: 1 October 2021

Accepted: 11 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong, China; tschung@math.cuhk.edu.hk

2 Department of Mathematics, Institute for Scientific Computation (ISC), Texas A&M University,
College Station, TX 77845, USA; wenyuanli@tamu.edu

3 Multiscale Model Reduction Laboratory, North-Eastern Federal University, 677980 Yakutsk, Russia
4 Department of Mathematics, University of California, Irvine, CA 92697, USA; sidnet123@gmail.com
* Correspondence: efendiev@math.tamu.edu

Abstract: This work continues a line of work on developing partially explicit methods for mul-
tiscale problems. In our previous works, we considered linear multiscale problems where the
spatial heterogeneities are at the subgrid level and are not resolved. In these works, we have
introduced contrast-independent, partially explicit time discretizations for linear equations. The
contrast-independent, partially explicit time discretization divides the spatial space into two com-
ponents: contrast dependent (fast) and contrast independent (slow) spaces defined via multiscale
space decomposition. Following this decomposition, temporal splitting was proposed, which treats
fast components implicitly and slow components explicitly. The space decomposition and temporal
splitting are chosen such that they guarantees stability, and we formulated a condition for the time
stepping. This condition was formulated as a condition on slow spaces. In this paper, we extend
this approach to nonlinear problems. We propose a splitting approach and derive a condition that
guarantees stability. This condition requires some type of contrast-independent spaces for slow
components of the solution. We present numerical results and show that the proposed methods
provide results similar to implicit methods with a time step that is independent of the contrast.

Keywords: multiscale method; GMsFEM; splitting; nonlinear reaction; CEM-GMsFEM; explicit–implicit

1. Introduction

Nonlinear problems arise in many applications, and they are typically described
by some nonlinear partial differential equations. In many applications, these problems
have multiscale nature and contain multiple scales and high contrast. Examples include
nonlinear porous media flows (Richards’ equations, Forchheimer flow and so on; see [1,2]),
where the media properties contain many spatial scales and high contrast. Due to high
contrast in the media properties, these processes also occur on multiple time scales. E.g.,
for nonlinear diffusion, the flow can be fast in high conductivity regions and slow in low
conductivity regions. Due to a disparity of time scales, special temporal discretizations are
often sought, which is the main goal of the paper in the context of multiscale problems.

When the media properties are high, the flow and transport become fast and require
small time steps to resolve the dynamics. Implicit discretization can be used to handle
fast dynamics; however, this requires solving large-scale nonlinear systems. For nonlinear
problems, explicit methods are used when possible to avoid solving nonlinear systems.
The main drawback of explicit methods is that they require small time steps that scale
as the fine mesh and depend on physical parameters, e.g., the contrast. To alleviate this
issue, we propose a novel nonlinear splitting algorithm following our earlier works [3,4]
for linear equations. The main idea of our approaches is to use multiscale methods on a
coarse spatial grid such that the time step scales with the coarse mesh size.
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Next, we give a brief overview of multiscale methods for spatial discretizations that
are used in our paper. Multiscale spatial algorithms have been extensively studied for linear
and nonlinear problems. For linear problems, many multiscale methods have been de-
veloped. These include homogenization-based approaches [5,6], multiscale finite element
methods [5,7,8], generalized multiscale finite element methods (GMsFEM) [9,10], constraint
energy minimizing GMsFEM (CEM-GMsFEM) [11,12], nonlocal multi-continua (NLMC)
approaches [13], metric-based upscaling [14], the heterogeneous multiscale method [15],
localized orthogonal decomposition (LOD) [16], equation-free approaches [17,18], mul-
tiscale stochastic approaches [19–21] and the hierarchical multiscale method [22]. For
high-contrast problems, approaches such as GMsFEM and NLMC have been developed.
For example, in the GMsFEM [11], multiple basis functions or continua were designed
to capture the multiscale features due to high contrast [12,13]. These approaches require
careful designing of multiscale dominant modes. For nonlinear problems, linear multiscale
basis functions can be replaced by nonlinear maps [23–25].

Our proposed approaches follow concepts developed in [3,4] for linear equations. In
these works, we designed splitting algorithms for solving flow and wave equations. In
both cases, the solution space was divided into two parts, the coarse-grid part and the
correction part. The coarse-grid solution is computed using multiscale basis functions
with CEM-GMsFEM. The correction part uses special spaces in the complement space
(the complement to the coarse space). A careful choice of these spaces guarantees that the
method is stable. Our analysis in [3,4] shows that for the stability, the correction space
should be free of contrast, and thus, this requires a special multiscale space construction.
These splitting algorithms have their origins in earlier works [26,27]. In this paper, we
extend the linear concepts to nonlinear problems.

Splitting algorithms for nonlinear problems have often been used in the literature.
Earlier approaches include implicit-explicit approaches and other techniques [28–40]. In
many approaches, nonlinear contributions are roughly divided into two parts depending
on whether it is easy to implicitly solve discretized system. For easy to solve part, implicit
discretization is used, and for the rest, explicit discretization is used. However, in general,
one cannot separate these parts for the problems under consideration. Our goal is to use
splitting concepts and treat implicitly and explicitly some parts of the solution. As a result,
we can use larger time steps that scale with the coarse mesh size.

Our approach starts with a nonlinear dynamical system

ut + f (u) + g(u) = 0,

where f (u) represents diffusion-like operator, and g(u) represents reaction-like terms. In
linear problems, for the stability, we formulate a condition that involves the time step, the
energy and the L2 norm of the solution in the complement space. This is a constraint for the
time step. With an appropriate choice of the complement space, this condition guarantees
stability for the time steps that scale with the coarse mesh size. To obtain similar conditions
for nonlinear problems, we carried out the analysis for nonlinear f (u) and g(u) functions.
The analysis revealed conditions that are required for stability. The conditions of multiscale
spaces share some similarities with those for nonlinear multiscale methods [25]. We made
several observations.

• Additional degrees of freedom are needed for dynamic problems, in general, to handle
missing information.

• We note that restrictive time steps scale with the coarse mesh size, and thus, are
much coarser.

We would like to note that the proposed concepts of partially explicit methods can be
used in conjunction with other multiscale methods that deal with high contrast. However,
multiscale approaches that do not explicitly take into account the high contrast via addi-
tional degrees of freedom (when necessary) may not benefit from our proposed concepts
(cf. [15,41,42]). Due to high contrast, small time scales appear, and our goal is to find
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out those few degrees of freedom that are responsible for the fast dynamics and handle
them separately. This condition is rigorously derived and any approaches that split spaces
accordingly can be used in the framework of partially explicit methods.

We present several numerical results. In our numerical demonstrations, we consider
two cases. In the first case, we took the reaction term, g(u), to be nonlinear and the diffusion
term, f (u), to be linear. In the second case, we consider both to be nonlinear and used for
f (u) the form f (u) = −div(κ(x, u)∇u). The media properties for the diffusion are taken
to be heterogeneous, and we chose smooth and singular source terms. We compared the
proposed approach to the approach where all degrees of freedom are handled implicitly.
We show here that the proposed method provides an approximation similar to fully
implicit methods.

The paper is organized as follows. In the next section, we provide some preliminaries.
In Section 3, we present our main assumptions and stability estimates for a fine-grid
problem. In Section 4, we describe the partially explicit method and its stability. The
discussion is in Section 5. Numerical results are presented in Section 6.

2. Problem Setting

We consider the following equation:

ut = − f (u)− g(u), (1)

where f =
δF
δu

and g =
δG
δu

which are the variational derivative of energies F(u) :=
∫

Ω E1(u)

and G(u) :=
∫

Ω E2(u). Here, f is assumed to be contrast dependent nonlinear (or linear)
(i.e., f introduces stiffness in the system) and g is contrast independent (i.e., g does not
introduce stiffness).

We assume f (u) ∈ V∗ and g(u) ∈ L2(Ω) for all u ∈ V. We can then consider the weak
formulation of the problem, namely, finding u ∈ V such that

(ut, v) = −( f (u), v)V∗ ,V − (g(u), v)L2 ∀v ∈ V.

To simplify the notation, we simply write (·, ·) instead of (·, ·)V∗ ,V in the following discus-
sion.

Example 1. For F(u) =
1
2
∫

Ω κ|∇u|2 and G(u) = 0, we have f (u′) =
δF
δu
∈ H1(Ω) =

(H1(Ω))∗ for V = H1(Ω).

(
δF
δu

(u′), v) =
∫

Ω
κ∇u′ · ∇v,

and thus, we have
− f (u′) = ∇ · (κ∇u′).

In strong form, we have
ut = ∇ · (κ∇u).

Example 2. For F =
1
p
∫

κ|∇u|p and G(u) = 0, we have f (u′) =
δF
δu
∈ W1, p

p−1 (Ω) =

(W1,p(Ω))∗ for V = W1,p(Ω)

(
δF
δu

(u′), v) =
∫

κ|∇u′|p−2∇u′ · ∇v,

and thus, we have
− f (u′) = ∇ · (κ|∇u′|p−2∇u′).

In strong form, we have
ut = ∇ · (κ|∇u|p−2∇u).
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In the following discussion, we make the following assumptions about the second
variational derivatives of F and G.

• The second variational derivatives δ2F and δ2G satisfy

δ2F(u)(v, v) ≥ c(u)‖v‖2
V ∀u, v ∈ V

δ2G(u)(v, v) ≥ b(u)‖v‖2 ∀u, v ∈ V,

where 0 ≤ c(u) < ∞ and −b ≤ b(u) < ∞ are independent of v.
• The second variational derivatives δ2F and δ2G are bounded. That is,

|δ2F(u)(w, v)| ≤ C(u)‖v‖V‖w‖V ∀u, v, w ∈ V

|δ2G(u)(w, v)| ≤ B‖v‖L2‖w‖L2 ∀u, v, w ∈ V,

where 0 < C(u) < ∞ and 0 < B < ∞ are independent on v, w.

3. Discretization

To solve the problem, a standard method is the finite element approach. We can
consider that the numerical solution uH(t, ·) ∈ VH satisfies

(uH,t, v) = −( f (u) + g(u), v) ∀v ∈ VH , (2)

where VH is a finite element space in V.
For the time discretization, we can consider two simplest discretizations which are

forward Euler and backward Euler methods. For the forward Euler method, we consider
{uk

H}N
k=0 ⊂ VH such that

(
un+1

H − un
H

∆t
, v) + ( f (un

H) + g(un
H), v) = 0 ∀v ∈ VH .

For the backward Euler method, we consider {uk
H}N

k=0 ⊂ VH such that

(
un+1

H − un
H

∆t
, v) + ( f (un+1

H ) + g(un+1
H ), v) = 0 ∀v ∈ VH .

Next, we would like to derive stability conditions for backward and forward Euler methods.
Since

F(un
H) = F(un+1

H )− ( f (un+1
H ), un+1

H − un
H) +

1
2

δ2F(ξn
1 )(u

n+1
H − un

H , un+1
H − un

H)

and

G(un
H) = G(un+1

H )− (g(un+1
H ), un+1

H − un
H) +

1
2

δ2G(ξn
2 )(u

n+1
H − un

H , un+1
H − un

H)

for some ξn
i = (1− λi)un+1

H + λiun
H with λi ∈ (0, 1) and i = 1, 2, we have

0 =(
un+1

H − un
H

∆t
, un+1

H − un
H) + ( f (un+1

H ) + g(un+1
H ), un+1

H − un
H)

=
1

∆t
‖un+1

H − un
H‖2 + F(un+1

H )− F(un
H) + G(un+1

H )− G(un
H)

+
1
2

δ2F(ξn
1 )(u

n+1
H − un

H , un+1
H − un

H) +
1
2

δ2G(ξn
2 )(u

n+1
H − un

H , un+1
H − un

H)

≥
( 1

∆t
+ b(u)

)
‖un+1

H − un
H‖2 + F(un+1

H )− F(un
H) + G(un+1

H )− G(un
H) +

c(u)
2
‖un+1

H − un
H‖2

V .
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We have

F(un+1
H ) + G(un+1

H ) ≤ F(un+1
H ) + G(un+1

H ) +
c(u)

2
‖un+1

H − un
H‖2

V +
( 1

∆t
− b
)
‖un+1

H − un
H‖2

≤ F(un
H) + G(un

H)

for any ∆t, and thus, the backward Euler method is stable if ∆tb ≤ 1.
Similarly, for the forward Euler method, we can use

F(un+1
H ) = F(un

H) + ( f (un
H), un+1

H − un
H) +

1
2

δ2F(ξn
1 )(u

n+1
H − un

H , un+1
H − un

H),

G(un+1
H ) = G(un

H) + (g(un
H), un+1

H − un
H) +

1
2

δ2G(ξn
2 )(u

n+1
H − un

H , un+1
H − un

H)

and obtain

0 =(
un+1

H − un
H

∆t
, un+1

H − un
H) + ( f (un) + g(un

H), un+1
H − un

H)

=
1

∆t
‖un+1

H − un
H‖2 + F(un+1

H )− F(un
H) + G(un+1

H )− G(un
H)

−
1
2

δ2F(ξn
1 )(u

n+1
H − un

H , un+1
H − un

H)−
1
2

δ2G(ξn
2 )(u

n+1
H − un

H , un+1
H − un

H)

≥(
1

∆t
− B)‖un+1

H − un
H‖2 + F(un+1

H )− F(un
H) + G(un+1

H )− G(un
H)−

C(ξn)

2
‖un+1

H − un
H‖2

V .

Therefore, if ∆t
(C(ξ)

2
‖un+1

H − un
H‖2

V

‖un+1
H − un

H‖2
+ B

)
≤ 1 for any ξ = (1− λ)uk+1

H + λuk
H with 0 ≤

k ≤ N − 1, we have

F(un+1
H ) + G(un+1

H ) ≤ F(un
H) + G(un

H).

We can see that although forward Euler method is easier for implementation, we

require a small time step for stability if supv∈VH

‖v‖2
V

‖v‖2 or C(ξ) is large.

We remark that in typical cases we consider values of b and B that are not too large.
Therefore, ∆tb and ∆tB are small and the energy G will not affect the stability too much.

4. Partially Explicit Scheme with Space Splitting

To obtain an efficient method, one can consider partially explicit scheme by splitting
finite element space. We consider that VH is a direct sum of two subspaces VH,1 and VH,2,
namely, VH = VH,1 ⊕VH,2. The finite element solution is then satisfying

(uH,1,t + uH,2,t, v1) + ( f (uH,1 + uH,2) + g(uH,1 + uH,2), v1) = 0 ∀v1 ∈ VH,1,

(uH,1,t + uH,2,t, v2) + ( f (uH,1 + uH,2) + g(uH,1 + uH,2), v2) = 0 ∀v2 ∈ VH,2,

where uH = uH,1 + uH,2. We can use a partially explicit time discretization. For example,
we can consider

(
un+1

H,1 − un
H,1

∆t
+

un
H,2 − un−1

H,2

∆t
, v1) + ( f (un+1

H,1 + un
H,2) + g(un

H,1 + un
H,2), v1) = 0 ∀v1 ∈ VH,1,

(
un

H,1 − un−1
H,1

∆t
+

un+1
H,2 − un

H,2

∆t
, v2) + ( f (un+1

H,1 + un
H,2) + g(un

H,1 + un
H,2), v2) = 0 ∀v2 ∈ VH,2.
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Energy Stability

Lemma 1. If

( f (un+1
H )− f (un+1

H,1 + un
H,2), un+1

H − un
H) ≤

c̄
2
‖un+1

H − un
H‖2

V +
( (1− γ)

∆t
− (1 + γ)

B
2

)
∑

i
‖un+1

H,i − un
H,i‖2,

(3)

where c̄ = infu∈VH c(u) and γ = supv1∈VH,1,v2∈VH,2

(v1, v2)

‖v1‖‖v2‖
< 1 [43], we have

γ

2∆t ∑
i
‖un+1

H,i − un
H,i‖2 + F(un+1

H ) + G(un+1
H ) ≤

γ

2∆t ∑
i
‖un

H,i − un−1
H,i ‖

2 + F(un
H) + G(un

H).

Proof. By substituting v1 = un+1
H,1 − un

H,1 and v2 = un+1
H,2 − un

H,2, we have

1
∆t
‖un+1

H,1 − un
H,1‖2 +

1
∆t

(un
H,2 − un−1

H,2 , un+1
H,1 − un

H,1)

+( f (un+1
H,1 + un

H,2) + g(un
H), un+1

H,1 − un
H,1) = 0,

and

1
∆t
‖un+1

H,2 − un
H,2‖2 +

1
∆t

(un
H,1 − un−1

H,1 , un+1
H,2 − un

H,2)

+( f (un+1
H,1 + un

H,2) + g(un
H), un+1

H,2 − un
H,2) = 0.

Summing up the above two equations, we have

1
∆t ∑

i
‖un+1

H,i − un
H,i‖2 +

1
∆t ∑

i 6=j
(un

H,i − un−1
H,i , un+1

H,j − un
H,j)

+( f (un+1
H,1 + un

H,2) + g(un
H), un+1

H − un
H) = 0.

We first use

1
∆t
|∑

i 6=j
(un

H,i − un−1
H,i , un+1

H,j − un
H,j)| ≤

γ

∆t ∑
i 6=j
‖un

H,i − un−1
H,i ‖‖u

n+1
H,j − un

H,j‖

≤
γ

2∆t ∑
i

(
‖un+1

H,i − un
H,i‖2 + ‖un

H,i − un−1
H,i ‖

2
)

and obtain

1
∆t ∑

i
‖un+1

H,i − un
H,i‖2 +

1
∆t ∑

i 6=j
(un

H,i − un−1
H,i , un+1

H,j − un
H,j)

≥
2− γ

2∆t ∑
i
‖un+1

H,i − un
H,i‖2 −

γ

2∆t ∑
i
‖un

H,i − un−1
H,i ‖

2.

To prove the stability of the method, we can consider

F(un
H) = F(un+1

H )− ( f (un+1
H ), un+1

H − un
H) +

1
2

δ2F(ξn
1 )(u

n+1
H − un

H , un+1
H − un

H),

G(un+1
H ) = G(un

H) + (g(un
H), un+1

H − un
H) +

1
2

δ2G(ξn
2 )(u

n+1
H − un

H , un+1
H − un

H)
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for some ξn
i = (1− λi)un+1

H + λiun
H with λi ∈ (0, 1) and i = 1, 2.

Therefore, we have

( f (un+1
H,1 + un

H,2), un+1
H − un

H)

=( f (un+1
H,1 + un

H,2)− f (un+1
H ), un+1

H − un
H)

+ F(un+1
H )− F(un

H) +
1
2

δ2F(ξn
1 )(u

n+1
H − un

H , un+1
H − un

H)

(4)

and

(g(un
H), un+1

H − un
H)

=G(un+1
H )− G(un

H)−
1
2

δ2G(ξn
2 )(u

n+1
H − un

H , un+1
H − un

H).

Thus, we obtain

γ

2∆t ∑
i
‖un+1

H,i − un
H,i‖2 +

(1− γ)

∆t ∑
i
‖un+1

H,i − un
H,i‖2

+ F(un+1
H ) + G(un+1

H ) +
c(ξn)

2
‖un+1

H − un
H‖2

V

≤
γ

2∆t ∑
i
‖un

H,i − un−1
H,i ‖

2 + F(un
H) + G(un

H) +
B
2
‖un+1

H − un
H‖2

+ ( f (un+1
H )− f (un+1

H,1 + un
H,2), un+1

H − un
H)

and
B
2
‖un+1

H − un
H‖2 ≤ (1 + γ)

B
2 ∑

i
‖un+1

H,i − un
H,i‖2.

If

( f (un+1
H )− f (un+1

H,1 + un
H,2), un+1

H − un
H)

≤
c(ξn)

2
‖un+1

H − un
H‖2

V +
( (1− γ)

∆t
− (1 + γ)

B
2

)
∑

i
‖un+1

H,i − un
H,i‖2,

then we have

γ

2∆t ∑
i
‖un+1

H,i − un
H,i‖2 + F(un+1

H ) + G(un+1
H )

≤
γ

2∆t ∑
i
‖un

H,i − un−1
H,i ‖

2 + F(un
H) + G(un

H).

Lemma 2. If

C̄2
2

2c̄
sup

v2∈VH,2

‖v2‖2
V

‖v2‖2 + (1 + γ)
B
2
≤

(1− γ)

∆t
, (5)

where c̄ = infu∈VH c(u), C̄2 = supξ∈VH
C2(ξ) and

C2(ξ) = sup
v∈VH ,w∈VH,2

1
‖v‖V‖w‖V

δ2F(ξ)(w, v) ≤ C(ξ),
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we have

γ

2∆t ∑
i
‖un+1

H,i − un
H,i‖2 + F(un+1

H ) + G(un+1
H ) ≤

γ

2∆t ∑
i
‖un

H,i − un−1
H,i ‖

2 + F(un
H) + G(un

H).

Proof. For the proof of this lemma, we will show that if the condition of Lemma 2 holds,
then the condition of Lemma 1 holds. For this reason, we will need to estimate ( f (un+1

H )−
( f (un+1

H,1 + un
H,2), un+1

H − un
H). Similarly to the proof in previous lemma, we consider

( f (un+1
H ), un+1

H − un
H) = ( f (un+1

H,1 + un
H,2), un+1

H − un
H)+ (δ2F(ξ̃n)(un+1

H − un
H), un+1

H,2 − un
H,2)

for some ξ̃n = (1− λ̃)un+1
H + λ̃(un+1

H,1 + un
H,2) with λ̃ ∈ (0, 1). We have

( f (un+1
H )− f (un+1

H,1 + un
H,2), un+1

H − un
H) = (δ2F(ξ̃n)(un+1

H − un
H), un+1

H,2 − un
H,2)

≤ C2(ξ̃
n)‖un+1

H − un
H‖V‖un+1

H,2 − un
H,2‖V .

Since

C2(ξ̃
n)‖un+1

H − un
H‖V‖un+1

H,2 − un
H,2‖V ≤

c̄
2
‖un+1

H − un
H‖2

V +
C2

2(ξ̃
n)

2c̄
‖un+1

H,2 − un
H,2‖2

V ,

we have

( f (un+1
H )− f (un+1

H,1 + un
H,2), un+1

H − un
H) ≤

c̄
2
‖un+1

H − un
H‖2

V +
C2

2(ξ̃
n)

2c̄
‖un+1

H,2 − un
H,2‖2

V .

If
C̄2

2
2c̄
‖un+1

H,2 − un
H,2‖2

V

‖un+1
H,2 − un

H,2‖2
+ (1 + γ)

B
2
≤

(1− γ)

∆t
,

we have the condition formulated in Lemma 1

( f (un+1
H )− f (un+1

H,1 + un
H,2), un+1

H − un
H) ≤

c̄
2
‖un+1

H − un
H‖2

V +
( (1− γ)

∆t
− (1 + γ)

B
2

)
∑

i
‖un+1

H,i − un
H,i‖2.

(6)

By Lemma 1, we get the result.

Example 1. For F =
1
2
∫

Ω κ|∇u|2 and G(u) = 0, we have

(
δF
δu

, v) =
∫

Ω
κ∇u · ∇v,

and
δ2F(u)(w, v) =

∫
Ω

κ∇v · ∇w ∀u ∈ V,

and thus, we have
c̄ = C2

2 = 1, B = 0

and the partially explicit scheme is stable when

∆t
2

sup
v2∈VH,2

‖κ 1
2∇v2‖2

‖v2‖2 ≤ (1− γ) ∀v2 ∈ VH,2.
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We note that if we select the space VH,1 appropriately, then

sup
v2∈VH,2

‖κ 1
2∇v2‖2

‖v2‖2 = O(H−2)

and thus, the time step scales as H2 (instead of the fine mesh size) and is independent of
the contrast.

5. Discussions
5.1. G = 0 Case

First, we present some discussions for G = 0 case. In this case, the first stability
condition for a partial explicit scheme is

( f (un+1
H,1 + un+1

H,2 )− f (un+1
H,1 + un

H,2), un+1
H − un

H) ≤
c̄
2
‖un+1

H − un
H‖2

V +
(1− γ)

∆t ∑
i
‖un+1

H,i − un
H,i‖2.

(7)

This condition can be understood as a nonlinear constraint on the "second space" that
represents un

H,2, and in order to have a small bound, one needs to guarantee that un
H,1

captures important degrees of freedom. Indeed, the smallness of

( f (un+1
H,1 + un+1

H,2 )− f (un+1
H,1 + un

H,2), un+1
H − un

H)

‖un+1
H − un

H‖2
V

is a condition on un
H,1 (on the coarse space) and requires that this term is chosen such that

the difference is independent of the contrast. This condition is more evident in Lemma 2,
where the condition on V2 is

C̄2
2

2c̄
sup

v2∈VH,2

‖v2‖2
V

‖v2‖2 ≤
(1− γ)

∆t
.

5.2. G 6= 0 Case

In this case, our goal is to treat the nonlinear forcing explicitly as we assume that the
contrast dependent part of the operator is in f .

6. Numerical Results

In this section, we present numerical results for various cases. We consider several
choices for f (u) and g(u). For f (u), we use diffusion operators for the linear case

f (u) = −∇ · (κ∇u),

and the nonlinear case
f (u) = −∇ · (κα(u)∇u). (8)

In all examples, we use two heterogeneous high contrast κ(x) that represent the media,
where one is more complex (more channels). We note that our approach can handle the
general case κ = κij(x, u). In the paper, we consider simpler cases to demonstrate our main
concepts. As for g(u), we consider several choices of nonlinear reaction terms, as discussed
below. This term contains a nonlinear reaction and steady state spatial source term. One
source term is more regular and the other more singular. The singular source term was
chosen so that the CEM solution would require additional basis functions, as the source
term contains subgrid features. In all numerical examples, the coarse mesh size was 1

10 and
the fine mesh size was 1

100 . For the time discretization, we consider the final time T = 0.05.
In our numerical examples, we compare three methods.
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• First, we used implicit CEM to compute the solution without additional degrees of
freedom (called “Implicit CEM” in our graphs).

• Secondly, we computed the solution with additional degrees of freedom using implicit
CEM (called “Implicit CEM with additional basis” in our graphs).

• Finally, we computed the solution with additional degrees of freedom using our
proposed partially explicit approach (called “Partially Explicit Splitting CEM” in
our graphs).

In all examples, we used Newton or Picard iterations to find the solutions of nonlinear
equations. In all examples, our proposed partially explicit method provided similar
accuracy as the implicit CEM approach that uses additional degrees of freedom.

6.1. VH,1 and VH,2 Constructions

In this section, we present a way to construct the spaces [3] satisfying (5).We used the
CEM finite element space as VH,1. To find a VH,2 satisfying the condition (5), we can use an
eigenvalue problem to construct the local basis functions. We first introduce the CEM finite
element space, followed by the discussion of constructing VH,2. In the following, we let
V(S) = H1

0(S) for a proper subset S ⊂ Ω.

6.1.1. CEM Method

In this section, we introduce the CEM method for solving the problem (2). We construct
the finite element space by solving a constrained energy minimization problem. Let TH be
a coarse grid partition of Ω. For Ki ∈ TH , we first need to define a set of auxiliary basis
functions in V(Ki). We solve∫

Ki

κ∇ψ
(i)
j · ∇vs. = λ

(i)
j si(ψ

(i)
j , v) ∀vs. ∈ V(Ki),

where

si(u, v) =
∫

Ki

κ̃uv, κ̃ = κH−2 or κ̃ = κ ∑
i
|∇χi|2

with {χi} being a partition of unity functions corresponding to an overlapping partition of
the domain. We then collect the first Li eigenfunctions corresponding to the first Li smallest
eigenvalues. We define

V(i)
aux := span{ψ(i)

j : 1 ≤ j ≤ Li}.

Next, we define a projection operator Π : L2(Ω) 7→ Vaux ⊂ L2(Ω)

s(Πu, v) = s(u, v) ∀v ∈ Vaux :=
Ne

∑
i=1

V(i)
aux,

where s(u, v) := ∑Ne
i=1 si(u|Ki , v|Ki ) and Ne is the number of coarse elements. We let K+

i be
an oversampling domain of Ki, which is a few coarse blocks larger than Ki [11]. For each
auxiliary basis functions ψ

(i)
j , we can find a local basis function φ

(i)
j ∈ V(K+

i ) such that

a(φ(i)
j , v) + s(µ(i)

j , v) = 0 ∀v ∈ V(K+
i ),

s(φ(i)
j , ν) = s(ψ(i)

j , ν) ∀ν ∈ Vaux(K+
i )

for some µ
(i)
j ∈ Vaux. We then define the space Vcem as

Vcem := span{φ(i)
j : 1 ≤ i ≤ Ne, 1 ≤ j ≤ Li}.
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The CEM solution ucem is given by

(
∂ucem

∂t
, v) + ( f (ucem) + g(ucem), vs.) = 0 ∀v ∈ Vcem.

Let Ṽ := {v ∈ V : Π(v) = 0}, and we can now construct VH,2.

6.1.2. Construction of VH,2

The construction of VH,2 is based on the CEM type finite element space. For each
coarse element Ki, we solve an eigenvalue problem to get the second type of auxiliary basis.
We obtain eigenpairs (ξ(i)j , γ

(i)
j ) ∈ (V(Ki) ∩ Ṽ)×R by solving

∫
Ki

κ∇ξ
(i)
j · ∇vs. = γ

(i)
j

∫
Ki

ξ
(i)
j v, ∀v ∈ V(Ki) ∩ Ṽ (9)

and rearranging the eigenvalues by γ
(i)
1 ≤ γ

(i)
2 ≤ · · · . For each Ki, we choose the first

few Ji eigenfunctions corresponding to the smallest Ji eigenvalues. We define Vaux,2 :=
span{ξ(i)j : 1 ≤ i ≤ Ne, 1 ≤ j ≤ Ji}. For each auxiliary basis function ξ

(i)
j ∈ Vaux,2, we

define a basis function ζ
(i)
j ∈ V(K+

i ) such that µ
(i),1
j ∈ Vaux,1, µ

(i),2
j ∈ Vaux,2 and

a(ζ(i)j , v) + s(µ(i),1
j , v) + (µ

(i),2
j , v) = 0, ∀v ∈ V(K+

i ), (10)

s(ζ(i)j , ν) = 0, ∀ν ∈ Vaux,1, (11)

(ζ
(i)
j , ν) = (ξ

(i)
j , ν), ∀ν ∈ Vaux,2, (12)

where we use the notation Vaux,1 to denote the space Vaux defined in Section 6.1.1. We define

VH,2 = span{ζ(i)j | 1 ≤ i ≤ Ne, 1 ≤ j ≤ Ji}.

6.2. Linear F(U)

In this subsection, we discuss the numerical results for

f (u) = −∇ · (κ∇u).

Equation (1) becomes

ut −∇ · (κ∇u) + g(u) = 0. (13)

For the time discretization, we consider the time step ∆t = T
500 = 10−4.

Let uh be the fine mesh solution for Equation (13). We use Newton’s method to solve
the following implicit equation.

(
un+1

h − un
h

∆t
, v) + a(un+1

h , v) + (g(un+1
h ), v) = 0 ∀vs. ∈ Vh,

where a(un+1
h , v) =

∫
Ω κ∇un+1

h · ∇vs. and (·, ·) is the L2 inner product. In finite element
methods, let {ϕi}i be fine mesh basis functions. Let m be the step number in Newton’s
method. We have un+1,m+1

h = ∑
i

Un+1,m+1
h,i ϕi, un+1,m

h = ∑
i

Un+1,m
h,i ϕi and un

h = ∑
i

Un
h,i ϕi. Let

M and A be the mass and stiffness matrices, respectively. Let Un+1,m+1
h = (Un+1,m+1

h,i ),

Un+1,m
h = (Un+1,m

h,i ) and Un
h = (Un

h,i). We define

P(Un+1,m
h ) = MUn+1,m

h + ∆t · AUn+1,m
h + ∆t · G −MUn

h ,
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where G = (Gi)
Gi = (g(un+1,m

h ), ϕi).

Then,

(JP)(Un+1,m
h ) = M + ∆t · A + ∆t · (JG),

where JG = ((JG)ij)

(JG)ij =
∂(g(un+1,m

h ), ϕi)

∂Un+1,m
h,j

.

Then, we have
Un+1,m+1

h = Un+1,m
h − (JP)−1(Un+1,m

h )P(Un+1,m
h ).

Newton’s method for the coarse mesh is similar and we do not show the details. The
partially explicit scheme is:

(
un+1

H,1 − un
H,1

∆t
+

un
H,2 − un−1

H,2

∆t
, v1) + a((un+1

H,1 + un
H,2), v1)

+(g(un
H,1 + un

H,2), v1) = 0 ∀v1 ∈ VH,1,

(
un+1

H,2 − un
H,2

∆t
+

un
H,1 − un−1

H,1

∆t
, v2) + a((un+1

H,1 + un
H,2), v2)

+(g(un
H,1 + un

H,2), v2) = 0 ∀v2 ∈ VH,2.

In our first example, we consider

g(u) = −(10 · u · (u2 − 1) + g0),

where g0 = gδ(x), gδ(x) is 1 at the fine-grid element containing (1/2, 1/2) and 0 otherwise.
In Figure 1, the permeability field (κ) and g0 are presented. As is shown, this perme-
ability field has heterogeneous high contrast channels, and g0 is a singular source term.
In Figure 2, we first present the reference solution which is implicitly solved using fine
grid basis functions. The middle plot in Figure 2 is an implicit CEM solution obtained with
additional basis functions, and the solution in the right plot is obtained using the partially
explicit scheme presented above. These three plots all show the solution at t = T. We
present two relative error plots in Figure 3. The first one is the relative L2 error plot and
the second one is the relative energy error plot. The blue, red and black curves (in both
plots) stand for the relative errors for the implicit CEM solution, the implicit CEM solution
(with additional basis) and the partially explicit solution, respectively. In each of these two
plots, there is a noticeable improvement for error when we use additional basis functions.
We find that the black curve coincides with the red curve, which means that the partially
explicit scheme can achieve similar accuracy as the fully implicit scheme.

Figure 1. (Left) κ. (Right) g0.
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Figure 2. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.

Figure 3. (Left) Relative L2 error. (Right) Relative energy error.

In this case,
g(u) = −(10 · u · (u2 − 1) + g0),

where g0 = 2π2 sin(πx) sin(πy). The difference is that we use a smooth source term. In
Figure 4, the permeability field κ and source term g0 are shown. The reference solution at
the final time, implicit CEM solution (with additional basis) at the final time and partially
explicit solution at the final time are presented in Figure 5. We show the relative L2 error
plot and the relative energy error plot in Figure 6. We see that the relative L2 and energy
error curves for implicit CEM (with additional basis) and partially explicit scheme almost
coincide, which implies similar accuracy between them.

Figure 4. (Left) κ. (Right) g0.

Figure 5. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.



Mathematics 2021, 9, 3000 14 of 24

Figure 6. (Left) Relative L2 error. (Right) Relative energy error.

In the next example, we test our proposed method on the coarse mesh 1
20 and the fine

mesh size 1
200 . We decrease the coarse mesh size of our previous example. The reaction

term is
g(u) = −(10 · u · (u2 − 1) + g0),

where g0 = 2π2 sin(πx) sin(πy). The permeability field and the source term g0 are shown
in Figure 7. The reference solution, the implicit CEM solution (with additional basis) and
the partially explicit solution are presented in Figure 8. We show the relative L2 error plot
and the relative energy error plot in Figure 9. From these two error plots, we see that the
proposed partially explicit scheme can achieve accuracy similar to the implicit CEM scheme
(with additional basis). If we compare these results to our previous example (see Figure 6),
we can observe that the errors are smaller when using finer coarse mesh sizes. In particular,
we observe a four-fold error reduction in L2 norm and a six-fold error reduction in the
energy norm at t ≈ 0.05. Moreover, we observe that the energy error does not have a slight
increase if we use a smaller coarse mesh size.

Figure 7. (Left) κ. (Right) g0.

Figure 8. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.
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Figure 9. (Left) Relative L2 error. (Right) Relative energy error.

In the next numerical example,

g(u) = −(10 · u · (u2 − 1) + g0),

where g0 = gδ(x), gδ(x) is 1 at the fine-grid element containing (1/2, 1/2) and 0 other-
wise. We use a more complicated permeability field with more high contrast channels.
Figure 10 shows the permeability field κ and source term g0. The reference solution at
t = T, implicit CEM solution (with additional basis) at t = T and partially explicit solution
at t = T are presented in Figure 11. In Figure 12, we show the relative L2 error plot and
the relative energy error plot. In this case, in both error plots, the curves for implicit CEM
(with additional basis) and partially explicit scheme coincide. We note that the energy error
is large in this case, as we choose the case where there are not sufficient multiscale degrees
of freedom added. Consequently, there is room for improvement. Our objective is to show
that our proposed approach performs similarly to a fully implicit approach. Moreover, the
L2 error is small and the solution profile looks similar to the fine grid solution.

Figure 10. (Left) κ. (Right) g0.

Figure 11. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.
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Figure 12. (Left) Relative L2 error. (Right) Relative energy error.

In this example,
g(u) = −(10 · u · (u2 − 1) + g0),

where g0 = 2π2 sin(πx) sin(πy). We use the more complicated permeability field and the
smooth source term, which are shown in Figure 13. In Figure 14, the reference solution at
the final time, implicit CEM solution (with additional basis) at the final time and partially
explicit solution at the final time are presented. Relative L2 error and energy error plots are
shown in Figure 15. In this case, the relative error for the implicit CEM scheme is small and
comparable to the two schemes with additional basis functions. From Figure 15, we can
see that the L2 and energy error for implicit CEM (with additional basis) and the partially
explicit scheme are nearly the same. We note that the relative energy error of our scheme is
slightly higher; however, the proposed approach is stable, as it performs similarly to the
fully implicit method.

Figure 13. (Left) κ. (Right) g0.

Figure 14. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.
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Figure 15. (Left) Relative L2 error. (Right) Relative energy error.

In this case, we use a new reaction term

g = −(1 + cos(a1 · u) + g0), a1(x, y) = 2 cos(20πx) cos(20πy)

and g0 = gδ(x), gδ(x) is 1 at the fine-grid element containing (1/2, 1/2) and 0 otherwise. In
numerical experiments, we set a1 to be constant inside every fine element. Figure 16 shows
the permeability field κ, the source term g0 and the function a1. The reference solution,
implicit CEM solution (with additional basis) and partially explicit solution at the final
time are shown in Figure 17. The relative L2 error plot and relative energy error plot are
presented in Figure 18. From the relative L2 error plot, we can see that the relative L2

errors for the three schemes are comparable. For the relative energy error, we find a large
improvement when we introduce an additional basis function. The relative energy errors
for the implicit CEM solution (with additional basis) and partially explicit solution are
nearly the same.

Figure 16. (Left) κ. (Middle) g0. (Right) a1.

Figure 17. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.
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Figure 18. (Left) Relative L2 error. (Right) Relative energy error.

In this case, we take

g = −(1 + cos(a1 · u) + g0), a1(x, y) = 2 cos(20πx) cos(20πy)

and g0 = 2π2 sin(πx) sin(πy). The permeability field κ, the source term g0 and the function
a1 are presented in Figure 19. The reference solution, implicit CEM solution (with additional
basis) and partially explicit solution at the final time are shown in Figure 20. We present
the relative L2 error plot and the relative energy error plot in Figure 21. We can observe
that the L2 and energy error curves for implicit CEM (with additional basis) and partially
explicit scheme coincide.

Figure 19. (Left) κ. (Middle) g0. (Right) a1.

Figure 20. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.

Figure 21. (Left) Relative L2 error. (Right) Relative energy error.
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6.3. Nonlinear F(U)

We would like to explore the case in which the diffusion operator is nonlinear. This, in
Equation (1), we set

f (u) = −∇ · (κα(u)∇u).

Equation (1) becomes

ut −∇ · (κα(u)∇u) + g(u) = 0. (14)

Let uh be the fine mesh solution for Equation (14). We use the Picard–Newton iteration to
solve the implicit equation.

(un+1,m+1
h − un

h
∆t

, v
)
+
∫

Ω
κα(un+1,m

h )∇un+1,m+1
h · ∇vs. + (g(un+1,m+1

h ), v) = 0 ∀v ∈ Vh,

where m is the Picard–Newton step number and (·, ·) is the L2 inner product. In finite ele-
ment methods, let {ϕi}i be fine mesh basis functions. We have un+1,m+1

h = ∑
i

Un+1,m+1
h,i ϕi,

un+1,m
h = ∑

i
Un+1,m

h,i ϕi and un
h = ∑

i
Un

h,i ϕi. Let M be the mass matrix. Let Un+1,m+1
h =

(Un+1,m+1
h,i ), Un+1,m

h = (Un+1,m
h,i ) and Un

h = (Un
h,i). We define

Q(Un+1,m
h ) = MUn+1,m

h + ∆t · AUn+1,m
h −MUn

h + ∆t · G,

where A = (Aij)

Aij =
∫

Ω
κα(un+1,m

h )∇ϕj∇ϕi

and G = (Gi)
Gi = (g(un+1,m

h ), ϕi).

Then,
(JQ)(Un+1,m

h ) = M + ∆tA+ ∆t · (JG),

where JG = ((JG)ij)

(JG)ij =
∂(g(un+1,m

h ), ϕi)

∂Un+1,m
h,j

.

Thus,
Un+1,m+1

h = Un+1,m
h − (JQ)−1(Un+1,m

h )Q(Un+1,m
h ).

Newton’s method for a coarse mesh is similar. For the partially explicit scheme, we
use the following Picard–Newton iteration which can be solved similarly using the method
introduced above. Note that we change the reaction term to be partially explicit.

(
un+1,m+1

H,1 − un
H,1

∆t
+

un
H,2 − un−1

H,2

∆t
, v1) +

∫
Ω

κα(un+1,m
H,1 + un

H,2)∇(u
n+1,m+1
H,1 + un

H,2) · ∇v1

= (−g(un+1,m+1
H,1 + un

H,2), v1) ∀v1 ∈ VH,1,

(
un+1

H,2 − un
H,2

∆t
+

un
H,1 − un−1

H,1

∆t
, v2) +

∫
Ω

κα(un+1
H,1 + un

H,2)∇(un+1
H,1 + un

H,2) · ∇v2

= (−g(un+1
H,1 + un

H,2), v2) ∀v2 ∈ VH,2.

In the following three examples, we use g(un+1
H,1 + un

H,2) in the partially explicit algorithm.
One can prove its stability as in Lemma 1 and Lemma 2. The proof is similar, and we omit
it here.
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In the following three cases,

g(u) = −(10u(u2 − 1) + g0).

In the first example, we consider α(u) = 1 + u2, g0 = 2π2 sin(πx) sin(πy) and the time
step ∆t = T

500 = 10−4. The permeability field κ and the source term g0 are presented
in Figure 22. The reference solution, implicit CEM solution (with additional basis) and
partially explicit solution at the final time are shown in Figure 23. We present the relative
L2 error plot and relative energy error plot in Figure 24. We observe that the curves for
implicit CEM solution (with additional basis) and partially explicit solution coincide, which
implies that our new partially explicit scheme is also effective and has similar accuracy to
the implicit CEM (with additional basis) scheme.

Figure 22. (Left) κ. (Right) g0.

Figure 23. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.

Figure 24. (Left) Relative L2 error. (Right) Relative energy error.

In the second example, we consider α(u) = 2 + cos(u), g0 = gδ(x), and gδ(x) is
1 at the fine-grid element containing (1/2, 1/2) and 0 otherwise. Figure 25 shows the
permeability field κ and the source term g0. The reference solution, implicit CEM solution
(with additional basis) and partially explicit solution at t = T are presented in Figure 26.
The relative L2 error plot and relative energy error plot are shown in Figure 27. The partially
explicit scheme also works in this case, and gives similar accuracy as the implicit CEM
(with additional basis) scheme.
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Figure 25. (Left) κ. (Right) g0.

Figure 26. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.

Figure 27. (Left) Relative L2 error. (Right) Relative energy error.

In this case, we use α(u) = 2 + cos(u), g0 = 2π2 sin(πx) sin(πy) and the time step
∆t = 0.05

1500 . The permeability field κ and the source term g0 are presented in Figure 28. We
show the reference solution, implicit CEM solution (with additional basis) and partially
explicit solution at t = T in Figure 29. The relative L2 error plot and the relative energy
error plot are presented in Figure 30. From Figure 30, we see that the curves for implicit
CEM (with additional basis) and partially explicit scheme coincide, which implies that they
have similar accuracy.

Figure 28. (Left) κ. (Right) g0.
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Figure 29. (Left) Reference solution at t = T. (Middle) Implicit CEM solution (with additional basis)
at t = T. (Right) Partially explicit solution at t = T.

Figure 30. (Left) Relative L2 error. (Right) Relative energy error.

7. Conclusions

In this work, we design and analyze contrast-independent time discretization for
nonlinear problems. The work continues our earlier work on linear problems, where we
proposed temporal splitting and associated spatial decomposition that guarantees stability.
We introduce two spatial spaces, the first accounting for spatial features related to fast time
scales and the second for spatial features related to “slow” time scales. We propose time
splitting, wherein the first equation solves for fast components implicitly and the second
equation solves for slow components explicitly. We introduce a condition for multiscale
spaces that guarantees the stability of the proposed splitting algorithm. Our proposed
method is still implicit via mass matrix; however, it is explicit in terms of stiffness matrix
for the slow component. We present numerical results, which show that the proposed
methods provide very similar results to fully implicit methods.
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