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Abstract: Recently developed methods in spontaneous speech analytics require the use of speaker
separation based on audio data, referred to as diarization. It is applied to widespread use cases,
such as meeting transcription based on recordings from distant microphones and the extraction of
the target speaker’s voice profiles from noisy audio. However, speech recognition and analysis can
be hindered by background and point-source noise, overlapping speech, and reverberation, which
all affect diarization quality in conjunction with each other. To compensate for the impact of these
factors, there are a variety of supportive speech analytics methods, such as quality assessments in
terms of SNR and RT60 reverberation time metrics, overlapping speech detection, instant speaker
number estimation, etc. The improvements in speaker verification methods have benefits in the area
of speaker separation as well. This paper introduces several approaches aimed towards improving
diarization system quality. The presented experimental results demonstrate the possibility of refining
initial speaker labels from neural-based VAD data by means of fusion with labels from quality
estimation models, overlapping speech detectors, and speaker number estimation models, which
contain CNN and LSTM modules. Such fusing approaches allow us to significantly decrease DER
values compared to standalone VAD methods. Cases of ideal VAD labeling are utilized to show
the positive impact of ResNet-101 neural networks on diarization quality in comparison with basic
x-vectors and ECAPA-TDNN architectures trained on 8 kHz data. Moreover, this paper highlights
the advantage of spectral clustering over other clustering methods applied to diarization. The overall
quality of diarization is improved at all stages of the pipeline, and the combination of various speech
analytics methods makes a significant contribution to the improvement of diarization quality.

Keywords: speaker diarization; spontaneous speech processing; voice activity detection; overlapping
speech detection; speaker extractor models; speaker number estimation; model fusion; quality
estimation; distant speech processing; artificial neural networks

1. Introduction

The widespread availability of tools for sound acquisition, as well as the cost reduction
of audio data storage systems, require new methods for automatic processing. Such tasks
as the generation of meeting minutes, the processing of telephone conversations, and
the automatic transcription of news or entertainment programs, not only require speech
recognition [1], but also involve audio annotation by speakers, which is usually referred to
as speaker diarization.

Diarization is the process of partitioning an input audio stream into homogeneous
segments according to the speaker identity [2]. This means that the goal is to determine
who is speaking in each audio segment. Diarization can be used as a preliminary stage in
speech recognition systems, in automatic translation or meeting recording transcription.
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The choice of a suitable diarization scenario depends on the specific task and corresponding
data. So, processed data can be characterized based on the channel specifics (telephone,
microphone or microphone array), the presence of noise and the reverberation level,
etc. Preliminary information can also influence the choice of diarization methods: whether
the exact number of speakers is known or whether individual speech samples of their
voices are available. When it comes to meeting minutes, it is helpful to know in advance if
the participants can move around the room or tend to interrupt each other. All of these
factors can significantly affect the quality of diarization [3].

The diarization scenario may consist of the following steps [4]. The first step usually
tends to apply the voice activity detector (VAD) in order to obtain the markup of speech
and non-speech segments of an audio recording. This stage can be affected by the quality of
the recording or the presence of speaker interruptions, as mentioned above. Nevertheless,
the accuracy in the finding of speech boundaries can affect the overall quality of diarization.
The next step is the extraction of speaker features (speaker models) for each speech segment.
This is necessary for the main purpose of diarization, in order to determine exactly who
is speaking in a given segment. At this stage, well-proven representations of the speaker
patterns are used: i-vectors obtained via factor analysis [5], x-vectors extracted using a time
delay neural network [6] or other types of DNN-embeddings [7]. Having been obtained for
each segment, the speaker representations are subject to clustering procedures during the
third step of diarization. Pre-selected similarity metrics are used to divide speech segments
into clusters and to match the speaker label to each cluster. Thus, in the output of the
diarization system, the markup “who speaks when” is obtained. In our paper we consider
approaches to improve the quality of diarization at each stage, with particular attention to
the detection of speech boundaries.

The accuracy of speech boundary detection can be improved through the choice of an
appropriate VAD method. Recently, in addition to standard energy-based voice activity
detectors, neural network-based VADs are gaining popularity, which allows one to obtain
better resistance to noise conditions [8]. In this paper, we consider the use of the DNN-based
VAD described in [9] for a diarization task applied to the AMI Meeting Corpus [10]. To deal
with the inherent problems of multi-dialogue recordings such as speaker interruptions and
the simultaneous utterances of multiple speakers, we examine options for fusing VAD with
other speech analytic systems. At a certain stage we apply instantaneous speaker number
estimation, which we further refer to as a speaker counter (SC) model. The model resolves
a classification problem, where each class represents the number of simultaneous speakers
detected. If the speaker counter is analyzed in terms of two classes, “zero speakers” and
“one or more speakers”, it can be considered an alternative to VAD, and fusing VAD and
SC can increase accuracy in locating speech boundaries. In turn, the performance of SC in
conversations with frequent interruptions can be improved by fusing SC with the model
which detects overlapping speech segments [11]. We refer to this model as the overlapping
speech detector (OSD). The fusion of these two models allows one to tackle the problem of
simultaneous speaker detection from separate perspectives.

Information about acoustic conditions in terms of the speech-to-noise ratio (SNR)
and reverberation time (RT60) for each audio segment can also be used to distinguish
speech and non-speech frames. We apply an automatic quality estimation (QE) system,
described in [9], to cluster estimated SNR-RT60 vectors into speech and non-speech clusters
and thereby retrieve an approximate voice activity markup. Although this method is not
accurate, we investigate its usefulness in fusing it with the base DNN-VAD.

The next stage of the diarization process consists of generating speaker models for
each segment located during the previous stages of speech detection. The algorithms at
this stage can be implemented through speaker DNN-embedding extraction, similar to the
speaker verification task. The current state-of-the-art systems in speaker verification are
completely guided by the deep learning paradigm. Previously, the frame-level portion of
these extractors was based on TDNN (time delay neural network) blocks that contained
only five convolutional layers with temporal context [6]. Such types of embeddings,
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referred to as x-vectors, are often applied to diarization tasks in state-of-the-art systems [12].
The newer ECAPA-TDNN (emphasized channel attention, propagation and aggregation
TDNN) [13] architecture develops the idea of TDNN and contains additional blocks with
hierarchical filters for the extraction of different scale features. ECAPA-TDNN and various
modifications of the well-known ResNet [7] architecture are compared in our research in
terms of EER, minDCF, and DER metrics.

The speaker models obtained for each speech segment must then be clustered. The pur-
pose of clustering is to associate segments from the same speaker to one another. The clus-
tering procedure ideally yields one cluster per each speaker in the recording, with all
the segments from a given speaker contained in a single cluster. The common approach
used in diarization systems is agglomerative hierarchical clustering, which can be used in
the absence of prior knowledge about the number of speakers [14–16]. As an alternative
method, spectral clustering [17] can also be used, as well as methods that require the
specification of the number of clusters, such as KMeans or DBSCAN [18].

In this study, we aimed to enhance separate parts of the neural-based diarization sys-
tem and analyze their contributions to the final assessment. In particular, our experiments
were based on the following system components: feature extraction, VAD methods, speaker
extractor models, speaker verification, and diarization. VAD results coupled with SC and
QE estimates were applied to speaker extractor and diarization models’ results through
fusion algorithms in order to achieve an increase in diarization quality. Thus, separate
state-of-the-art and proposed diarization system components, as well as the pipeline in
their entirety, are studied and evaluated.

Since the study focuses specifically on cases of noisy overlapping speech acquired by a
far-field microphone in real-life conversation conditions, it is important to take into account
the same conditions when comparing our solution with those of other studies. In this
sense, our proposed neural network-based VAD is compared to the publicly-available
SileroVAD [19] on the evaluation subset of the Third DIHARD Speech Diarization Chal-
lenge. Our method demonstrated an ability to deal with noisy conditions and showed a
16.9% EER versus the 26.37% EER of SileroVAD. However, it is not always possible to cor-
rectly compare the results of different studies. For example, the accuracy of our proposed
speaker counter detector, obtained on a realistic AMI dataset, was 65.6%, and, although this
percentage was less than those presented in similar works, unlike those works, we did not
employ synthesized datasets. As described below, our results in regard to diarization of
the AMI evaluation set are comparable to the state-of-the-art papers, and the proposed
fusion methods can be further improved.

The paper is structured as follows. Section 2 presents the datasets applied for the
training and evaluation of the presented diarization pipeline and its system components
and discusses the methods of feature extraction applied in these components. Section 3
describes the separate system pipeline components, namely, the approaches to VAD, SC,
OSD, and QE, speaker extraction models, and the fusion methods applied to these system
components. Section 4 is devoted to the experimental evaluation of the system components
and the diarization pipeline. Finally, Section 5 discusses the results achieved during the
study and addresses the prospects of future developments in the considered direction
of research.

2. Data Processing

In this section we describe the data used to train and test all systems included in the
investigated diarization pipeline. The section begins by describing the process of extracting
features from raw audio as the first and primary stage of data processing.

2.1. Feature Extraction

For audio signal processing, we extract several feature types from the raw audio signal
that can be fed into machine learning models. In our paper, feature extraction methods
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vary depending on the diarization system units, the main components of which are speaker
embedding extractor, VAD, SC, OSD, and QE models.

All speaker embedding extractors presented in this paper expect log Mel-filterbank
(LMFB) energy coefficients extracted from raw input signals using the standard Kaldi
recipe [20] at the sampling rates of 8 kHz or 16 kHz:

• consisting of 64 LMFB components extracted from a raw signal with a sampling rate
of 8 kHz;

• consisting of 80 LMFB components extracted from a raw signal with a sampling rate
of 16 kHz.

Extracted features additionally go through either one of the two different post-
processing steps, depending on the type of speaker embedding extractor used afterwards:

• local cepstral mean normalization (CMN-normalization) over a 3-s sliding window;
• global cepstral mean and variance Normalization (CMVN-normalization) over the

whole utterance.

The application of the above methods for each type of speaker-embedding extractor is
discussed in Section 3.5.

To obtain speech segments from the audio signal, we apply a neural network-based
voice activity detector (VAD) system developed by us. The model receives mel-frequency
cepstral coefficients (MFCCs) extracted from the raw signal with a sampling rate of 8 kHz.

Modified versions of the voice activity detection system integrate OSD, SC or QE
models with DNN-VAD. As the features, the OSD and SC neural network models use the
short-term Fourier transform (STFT) coefficients extracted from the preprocessed input
audio with a sampling rate of 16 kHz. The QE models use LMFB feature coefficients with
CMN-normalization. The parameters of the extracted features are presented in Table 1.

Table 1. Types of applied audio features.

Model Feature Type Number of
Coefficients

Frame
Length, ms Overlap, ms Sampling

Rate, kHz

Speaker
Embedding
Extractors

LMFB 64/80 25 15 8/16

VAD MFCC 23 30 10 8
SC STFT 201 25 10 16

OSD STFT 81 25 10 16
QE LMFB 64 25 15 8

2.2. Datasets

In this paper, two different sets are used for the test protocol. The target dataset
for measuring the quality of diarization is the AMI corpus. This dataset is also used to
train SC and OSD models, evaluate individual parts of the system (SC, OSD, clustering)
and fusion. Additionally, during the study, Voxceleb1 and NIST SRE 2019 evaluation
datasets are used to measure the quality of speaker verification models. In the current
work, we decided to investigate the degradation of speaker extraction systems trained
on the utterances sampled at 8 kHz, compared to the systems trained on files sampled at
16 kHz. For this purpose, two different datasets were created. For all datasets, the division
into train/dev/test sets suggested by their original authors was used. The application of
each of these datasets is discussed in detail below.

The main dataset for assessing the quality of diarization is the AMI corpus [10].
The dataset consists of over 100 h of meeting recordings. In general, the total number
of participants in a single meeting is four (approximately 80%), and rarely three or five.
The meetings were recorded in specially equipped rooms of various configurations and
locations using microphone arrays, lapel microphones and headphones. In addition,
each meeting attendee was provided with graphics such as videos, slides, whiteboards,
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and notebooks. All recordings were synchronized. The dataset contains both the recordings
of real meetings and meetings with predefined scenarios and roles. For about 70% of the
recording duration only one speaker is active, whereas for about 20% of the duration
speech is absent, and only 10% corresponds to the simultaneous speech of several people.

Several recent studies on the diarization problem include experiments based on the
AMI corpus to measure quality. The proposed methods can differ in speaker extractor
models, clustering methods, whether they include or exclude overlapping speech in the
scoring, as well as whether they use references or predicted speech/non-speech labels.
It is also essential to use the same evaluation protocols for the AMI database for a fair
comparison, in particular, to select data from the same set of microphones: Headset-
Mix, Lapel-Mix or Distant-Mic. The work [21] closest to our solution compares the x-
vector TDNN and ECAPA-TDNN architectures for speaker model extraction and ignores
overlapping speech segments during scoring. In this work, the best results are obtained
using the ECAPA-TDNN architecture with a spectral clustering back-end, which achieved
3.01% DER for the case of the estimated number of speakers and 2.65% DER for the case of
a known number of speakers on the AMI Headset-Mix evaluation set. Another work [22]
compares the well-known agglomerative hierarchical clustering (AHC) method and a
proposed modification of the variational Bayes diarization back-end (VBx) method, which
clusters x-vectors using a Bayesian hidden Markov model (BHMM). The AHC in their
experiments showed 3.96% DER, whereas VBx with a single Gaussian model per speaker
showed 2.10% DER for the AMI Headset-Mix evaluation set. Since the analysis in both
of the abovementioned papers focuses on oracle VAD, they can be comparable with our
results, presented in Section 4.3.

In our research, we applied full-corpus-ASR [10] partitioning of meetings and used
the evaluation part of the lapel-mix AMI corpus for diarization experiments and system
fusion. For the training and evaluation of the speaker counter and overlapping speech
detector models the training and evaluation parts of the Array1-01 AMI corpus were used,
respectively. Additionally, the following datasets were used during the intermediate steps
of our proposed approach.

The Voxceleb1 dataset [23,24] is composed of audio files extracted from YouTube
videos and contains 4874 utterances recorded at 16 kHz. The speakers span a wide range of
different ethnicities, accents, professions and ages. Segments include interviews from red
carpets, outdoor stadiums and indoor studios, speeches given to large audiences, excerpts
from professionally-shot multimedia, and even crude videos shot on hand-held devices.
Crucially, all are degraded with real-world noise, consisting of background chatter, laughter,
overlapping speech, and room acoustics [25]. The quality of the recording equipment and
channel noise quantity also vary quite noticeably.

The NIST SRE 2019 evaluation dataset [26] is composed of PSTN and VoIP data col-
lected outside of North America, spoken in Tunisian Arabic, and contains 1364 enrollment
and 13,587 test utterances recorded at 8 kHz. Speakers were encouraged to use different
telephone instruments (e.g., cell phones, landlines) in a variety of settings (e.g., a noisy cafe,
a quiet office) for their initiated calls [26]. Enrollment segments approximately contain 60 s
of speech to build the model of the target speaker. The speech duration of the test segments
is further uniformly sampled with lengths varying from approximately 10 s to 60 s.

The 16 kHz training set. For this set we concatenated VoxCeleb1 and VoxCeleb2
(SLR47) [25] corpora. We used videos from VoxCeleb1 and VoxCeleb2, and concatenated
all the corresponding audio files into one chunk. Augmented data were generated using
the standard Kaldi augmentation recipe (reverberation, babble, music and noise) using the
freely available MUSAN and simulated room impulse response (RIR). In total, the training
dataset contains 833,840 recordings from 7205 speakers.

The 8 kHz training set. For this set we used a wide variety of datasets, containing
telephone and microphone data from private datasets and from those available online.
The dataset includes Switchboard2 Phases 1, 2 and 3, Switchboard Cellular, Mixer 6 Speech,
data from NIST SREs from 2004 through 2010 and 2018, concatenated VoxCeleb 1 and 2 data,
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extended versions of the Russian speech subcorpus named RusTelecom v2 and the RusIVR
corpus. RusTelecom is a private Russian speech corpus of telephone speech, collected
by call centers in Russia. RusIVR is a private Russian speech corpus containing speech,
collected in different scenarios, such as noisy microphones, telephone calls, recordings from
distant recorders, etc. All files are sampled at 8 kHz. In order to increase the amount and
diversity of the training data, augmentation using the standard Kaldi augmentation recipe
(reverberation, babble, music and noise) was applied using the freely available MUSAN
and simulated room impulse response (RIR) datasets. In total, this training dataset contains
1,679,541 recordings from 33,466 speakers.

3. Methods

In this section a detailed description of the main systems included in our diarization
pipeline is provided. The first four subsections (VAD, SC, OSD and QE) describe the
models used in various types of speech boundary detection and the fusion of these models.
Section 3.5 is devoted to speaker extraction models and the methods used for their training.

3.1. Voice Activity Detection

This work proposes a fusion method of three different models, each of which shows
different quality on the same evaluation subset of the AMI corpus. The first one is the voice
activity detector (VAD), which is trained purposefully for the task of speech boundary
detection on the AMI corpus. In our case, we use the method proposed in [7], which
adapts the idea of using the U-Net architecture for segmentation from the spatial to the
time domain. This architecture was originally introduced in [27], as a fairly precise method
for object localization in microscopic images. U-Net is a convolutional architecture, that
involves the idea of the deconvolution of small and deep image representation with many
small layers into an image of the original size by applying the upsampling operation.
In this study, we apply a reduced version of the original U-Net architecture, which is
presented in Figure 1. Since the task of detecting speech activity is a task of segmentation
in the time domain, we apply the combination of Dice and cross-entropy losses as the main
loss-function in the VAD model training process [28].

The training process pipeline of the model for the AMI task consists of two stages:

1. Fitting on the main training set;
2. Adaptation on the AMI corpus.

During the first stage of training we use the concatenation of the NIST 2002/2008
speech recognition datasets and the RusTelecom corpus, described in Section 2.2. This data
setup leads to a confident VAD quality of about a 10% equal error rate (EER) on different
configurations of the model. Adaptation on the AMI corpus is described via the same
training process as during the first stage, but using a smaller learning rate for the fitting
of new data without the loss of already learned knowledge. In general, and also in our
specific case, the adaptation process should last for a small amount of training iterations to
prevent the overfitting on the new adaptation dataset and the reduction of the previous
ability to detect speech in common.
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Figure 1. The applied U-Net VAD model architecture.

To compare VAD performance under the same conditions, we computed EER scores
on the evaluation subset of the Third DIHARD Speech Diarization Challenge using our
VAD and a similar method called SileroVAD [19]. The results were 16.9% EER using our
method and 26.37% using SileroVAD.

3.2. Speaker Counter Model

Another model, the results of which can be interpreted as a time-domain speech
detection markup, involves a detector of the number of simultaneous speakers, known as a
speaker counter (SC).Theoretically, the estimation of the number of concurrent speakers
is closely related to the problem of speaker identification, which is considered one of the
tasks involved in speaker diarization [2,29–31].

We have compared the results of our model with the state-of-the-art systems in speaker
number estimation presented in [11,32], which are based on convolutional neural networks.
We have taken into consideration the models from the cited papers and the model presented
in the current work, trained on 1-s recording segments to count the number of speakers.
In [32], the authors present a model trained and evaluated on a synthetic dataset, which
performs the speaker counting task with an average F1-score of 92.15% for classes with
0–3 speakers. In [11], the authors present a model trained and evaluated on mixtures of
speaker recordings of the LibriSpeech dataset; this model achieves 77.3% accuracy for
classes with 1–4 speakers.

Previously referenced works in the field mainly consider the synthetic mixtures of
different speaker recordings and thus obtain permissible results for active speaker number
estimations. We, however, focus specifically on real-life recordings of natural conversations
that are contained in the AMI corpus, which reduces estimation quality. Our study has
shown that no similar works in the field contain results based specifically on the AMI
corpus; thus, exact comparison with our results is not possible. To train the model we
applied data augmentation to the AMI corpus, and tested the model on the evaluation
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set of this corpus. The model achieved an F1-score of 65.6% in real-speech conditions.
The results are further discussed in Section 4.4.

The SC model solves the task of estimating the number of concurrent speakers, which
is formulated as a classification task with 5 classes, from 0 to 4+ concurrent speakers.
The model is based on the architecture described in [33]. The solution is based on the
application of several deep neural network (DNN) models, a diagram of which is presented
in Figure 2. These models consist of several convolutional layers, max-pooling layers, a Bi-
LSTM layer with 40 hidden units for processing input features, and a fully connected layer,
which implements the classification of the number of active speakers. The softmax function
is used for the output layer; thus, the prediction is specified by the highest probability of
the output distribution [34].
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Figure 2. Speaker counter and overlapping speech detector model architecture.

To create the markup that is applicable to the SC model, we employed the manual
annotations provided with the AMI corpus. These annotations specify the speech segments
for each speaker. To obtain the markup with the number of active speakers, the beginning
and end time stamps of all speech segments are combined into one set and sorted. This
sorted set is then divided into subsegments, and for each subsegment the number of
concurrent speakers is calculated using the original annotation [34]. Thus, we extract the
subsegments where the number of simultaneous speakers remains unchanged, from 0
(silence) to 4+ overlapping speakers in a subsegment.

3.3. Overlapping Speech Detection

The model for the task of overlapping speech detection is similar to the SC model in its
architecture (see Figure 2), but employs a different type of speech markup. The overlapping
speech detector (OSD) is applied for the detection of overlapping speech segments in a
conversation involving multiple speakers [11,35–40]. The OSD performs a binary classifica-
tion task of detecting overlapping and non-overlapping speech. The markup for this task
is produced using the speaker number markup of the SC task:

lOSD =

{
0, lSC ∈ {0, 1},
1, lSC ∈ {2, 3, 4+},

(1)

where lOSD is an OSD segment class label and lSC is an SC segment class label. The model
presented in Figure 2 is trained with the OSD labels to perform the detection of overlaps.
The model accepts the features extracted from short audio segments as input, whereas the
output corresponds to the probabilities of the classes overlapping/non-overlapping per
each speech segment.

3.4. QE-Vectors System

As an alternative method of separating speech and non-speech segments, we used the
information about the acoustic characteristics of the signal from the microphone array of
the AMI corpus. During evaluation, for each 0.5 s signal frame we estimated the SNR and
RT60 parameters using the signal quality estimation (QE) model described in [9]. SNR and
RT60 parameters were predicted for all 8 channels of the microphone array, so for each 0.5 s
frame we obtained a vector of 16 values. The resulting vectors were clustered using the
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K-means method into two clusters. To decide which of the clusters represented the speech
segments and which represented non-speech, the centers of each cluster were compared
with the mean speech vector, which is calculated in advance for the speech segments of the
development part of the AMI database. This way it was possible to retrieve the markup of
speech and non-speech segments for further fusing with a more accurate method, such as
base DNN-VAD.

3.5. Speaker Extractor Models

This section contains the descriptions of the foremost architectural details, train-
ing techniques, and distinctive features of the implemented speaker verification models.
The most common approaches for speaker verification today are based on blocks with
one-dimensional (TDNN) or two-dimensional (ResNet) convolutions, which influenced our
choice regarding the speaker extractors’ architecture. Thus, in this paper, we explore the
ECAPA-TDNN architecture, which develops the idea of an x-vector TDNN, and ResNet-
based models, trained on 8 kHz and 16 kHz datasets. We used ResNet34 as a baseline model
and attempted to increase the quality of the speaker model by increasing the depth and
width of the layers and by investigating the model architectural configuration.

ECAPA-TDNN. Emphasized channel attention, propagation and aggregation in
TDNN (ECAPA-TDNN), proposed in [13], is a modification of the standard time de-
lay neural network (TDNN) architecture, containing squeeze-excitation (SE) blocks and
Res2Net modules in the frame level with hierarchical filters for the extraction of features
of different scales. To process signals of arbitrary duration, the architecture uses attentive
statistic pooling instead of the usual statistic pooling. For this work, we chose the offi-
cial pre-trained model from https://github.com/speechbrain/speechbrain (accessed on
2 March 2021), which was trained on the original VoxCeleb1 and VoxCeleb2 datasets with
SpecAugment [41], speed perturbation, noise, and reverberation augmentation. In detail,
the model configuration and training are described in [42].

ResNet34. This extractor is based on the ResNet34 model with some modifications,
as well as the Maxout activation function on the embedding layer, set to one stride in the
first BasicBlock and changed to a simple Conv2D stem block. This model was trained
on the 16 kHz dataset with local CMN-normalization and global CMVN-normalization,
sequentially. During the training process, the extractor handles short audio segments with
the length fixed at 2 s using AM-Softmax loss. During the training stage, the parameters m
and s were set equal to 0.2 and 30, respectively. The learning rate was set to 0.001 for the
first two epochs, and then it was decreased by a factor of 10 for each consecutive epoch.
Detailed information about the model configuration is presented in [7].

ResNet72. For this extractor, the ResNet architecture from [43] was adapted to the
task of speaker verification. The model was trained on the 16-kHz dataset with local
CMN-normalization. As a loss function, we used adaptive curriculum learning [44].
Parameters m and s were respectively equal to 0.35 and 32 during the whole training stage.
The optimization process was based on the SGD optimizer with the momentum of 0.9 and
weight decay of 10–5 for the head and 10–6 for the rest of the layers. Moreover, for learning
rate control the OneCycleLR scheduler was used with the maximum learning rate fixed
to 2. To increase the training speed, we also used AMP (Automatic Mixed Precision)
with half-precision, which raised the batch size per GPU. The model was trained during
15 epochs on randomly sampled 4-s crops of each utterance from the training dataset.
The comprehensive description of the model configuration is presented in [45].

ResNet101_8k. The ResNet101 model modification included the Maxout activation
function on the embedding layer, set to one stride in the first BotleneckBlock and changed
to a simple Conv2D stem block, which provided the basis for this extractor. The training set
for this model was the 8 kHz dataset with local CMN-normalization performed in several
stages. In the first stage, the model was trained for 20 epochs on randomly sampled 6-s
crops of each training dataset utterance. AAM-Softmax losses with parameters m and s
were respectively equal to 0.35 and 32. In the second stage, crop duration was increased to

https://github.com/speechbrain/speechbrain
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12 s and the parameters of AAM-Softmax loss were set to 0.45 and 32, respectively. Then,
the model went through 10 epochs of training with these settings.

ResNet101_48_8k. The ResNet101_8k model was set to be used directly as a basis
for the extractor at hand, with the extension number of convolution layers in the model
architecture ranging from 32 N to 48 N, where N ∈ {1, 2, 4, 8} for different model blocks.
Higher quality was achieved through an increase in the size of convolutional layers;
however, the increase in the number of model parameters resulted in an increase of training
time compared to the ResNet101_8k model.

3.6. Model Fusion

In order to improve the accuracy of speech boundary detection, we conduct a series of
experiments by fusing the speech markups obtained using DNN-VAD with the markups
obtained using other systems discussed above: SC, OD and QE. The following options for
fusion were considered:

• VAD + QE, on the assumption that information about acoustic conditions (RT60,
SNR) can correlate with the speech component properties and thereby improve
VAD markup;

• VAD + SC, on the assumption that the above-described model for counting the number
of speakers can be considered as an alternative approach to the detection of speech
activity;

• VAD + QE + SC + OD, on the assumption that the SC + OD fusion is shown to produce
good quality estimates (see Section 4.4), and the combination of different approaches
in the conditions of a multispeaker conversation can improve the accuracy of voice
annotation compared to baseline DNN-VAD.

According to the diarization pipeline, the obtained speech markup was then used
for speaker model extraction; so, the accuracy of speech boundary detection affected the
overall diarization quality. We describe the details of the applied voice annotation system
fusion and analyze the influence of different fusion approaches on speaker diarization
quality in terms of DER in Section 4.5.

4. Experiments

Our main experiment was aimed at the fusion of different speech analytics techniques
to improve the overall quality of diarization. A description is available in Section 4.5, which
includes the comparison of different combinations of speech markup methods in terms of
DER: VAD, QE, SC and OSD, outlined above. In the final experiment we intended to apply
the speaker extractor model chosen in Sections 4.1 and 4.2, the selected clustering method
(Section 4.3), and the SC + OSD fusion method (Section 4.4) in combination.

Thus, Sections 4.1–4.4 describe preliminary experiments aimed at independently im-
proving each of the stages of fusion. Section 4.1 contains the comparison of different speaker
extractor models in the speaker verification task. We tested the generalizability of different
neural network architectures trained on the 16 kHz training set and the combined 8 kHz
training set described in Section 2.2 to cope with unknown evaluation data. Section 4.2
compares the same speaker extractor models for an AMI-based diarization problem using
ideal VAD markup. As a result of these experiments, we defined the ResNet101_8k model
as the most optimal, so it was chosen for the final experiments. Section 4.3 is devoted to the
next stage of the diarization pipeline—the comparison of clustering methods for extracted
voice models of speakers. The experiments were carried out on the ResNet101_8k and
ECAPA_TDNN models. Finally, Section 4.4 focuses on SC and OSD fusion to refine speech
boundaries under interruption conditions.

4.1. Speaker Verification

We investigated the quality of different speaker extractors for the speaker verification
task on the Voxceleb1 test and NIST SRE 2019 eval sets. Since the speaker verification
system receives two sets of speech recordings during the evaluation process, originating
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either from the same speaker or from two different speakers, there arise two types of errors:
the false acceptance rate (FA) and the false rejection rate (FR), which are dependent on
the decision threshold. Then, the equal error rate (EER) is the point at which both rates
are equal to each other. The lower the EER value, the higher the overall accuracy of the
biometric system [46].

In order to take into account the different FR and FA error costs, there exists the
detection cost function (DCF or Cdet) measure, which is described by the following equation:

Cdet(θ) = CFR · Ptar · PFR(θ) + CFA · (1− Ptar) · PFA(θ), (2)

where CFR and CFA are the estimated cost parameters for false accept and false reject errors,
Ptar is a prior probability of targets in the considered application; error-rates PFR and PFA
are determined by counting errors during evaluation, and θ is the decision threshold.

The optimal value of DCF obtained via the adjustment of the detection threshold
is minDCF. In our experiments we used the EER measure and minDCF with the a priori
probability of the specified target speaker (Ptar) set to 0.01, CFR = 1, CFA = 1.

The main idea of this experiment consisted of comparing the models trained on
different types of data (8 kHz or 16 kHz) and tested on the test subsets of the same data
(8 kHz or 16 kHz as well). For this task, we upsampled the 8 kHz audio files to 16 kHz or
downsampled the 16 kHz audio files to 8 kHz. For ECAPA-TDNN, we used the official
implementation of the model and data processing pipeline from [42]. Note that VAD was
not used for feature processing for ECAPA-TDNN, according to the official implementation.
No normalization or adaptation techniques were used for speaker embedding comparisons.
Simple cosine similarity between speaker embedding vectors was used as a score for
speaker model comparisons. The results of the comparison between the speaker verification
models are presented in Table 2. To determine the confidence intervals for the EER estimates,
we used the fast equal error rate confidence interval (FEERCI) algorithm to calculate non-
parametric, bootstrapped EER confidence intervals [47]. The main idea of this approach is
to use random subsets from genuine and imposter score lists for estimation. We used 95%
confidence intervals on 50 bootstrap iterations for this task. We estimated the confidence
intervals for the fixed architecture of the model and its weights due to the significant
computational complexity of the task of retraining the speaker recognition model. Based
on the results, the following conclusions can be drawn:

• The system trained for specific data types works better on the test set of the corre-
sponding type. Data type mismatches led to significant quality degradations for all
tested systems;

• The quality degradation of models trained on a combined dataset (ResNet101_8k,
ResNet101_48_8k) was less than the degradation of the models trained only on Vox-
Celeb datasets. This can be explained by the growth of the generalizing ability of the
network with the increase in samples of the training dataset;

• The ResNet-based models trained on VoxCeleb datasets showed better quality on out-
of-domain tasks, compared to ECAPA-TDNN, which can be observed by comparing
the results of speaker verification. However, ECAPA-TDNN shows a better result on
the in-domain test dataset.
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Table 2. Results of speaker verification systems for the in-domain Voxceleb1 test and the out-of-
domain NIST SRE 2019 eval sets in terms of the EER ± 95% confidence interval/minDCF (%). Lower
error values are better.

Model EER ± ci = 0.95/MinDCF0.01 (%)
Train Set VoxCeleb1 Test NIST SRE 2019 Eval Set

ECAPA-TDNN VoxCeleb1,
VoxCeleb2 [13]

0.71 ± 0.09/0.092 14.52 ± 0.11/0.785

ResNet34 16 kHz 1.18 ± 0.10/0.126 14.37 ± 0.12/0.748
ResNet72 16 kHz 1.11 ± 0.07/0.093 12.75 ± 0.11/0.723
ResNet101_8k 8 kHz Combined 1.54 ± 0.15/0.156 2.97 ± 0.07/0.276
ResNet101_48_8k 8 kHz Combined 1.43 ± 0.14/0.135 2.85 ± 0.07/0.280

4.2. Diarization

The quality of various speaker verification systems was compared during the task of
diarization. The embeddings of each continuous speech segment were extracted with the
chosen sliding window and shift duration values. We investigated the influence of these
parameters based on the results of diarization in terms of the diarization error rate (DER),
which consists of three types of error: speaker error, missed speech, and false alarm. DER
is denoted as

DER = Espkr + Emiss + E f a, (3)

where Espkr is the speaker error, the percentage of the scored time when a speaker ID is
assigned to the wrong speaker. This type of error does not account for overlapping speakers
or any error situated within non-speech frames. Emiss is missed speech—the percentage of
scored time when a hypothesized non-speech segment corresponds to a reference speaker
segment. E f a is false-alarm speech, the percentage of scored time when a hypothesized
speaker is labeled as non-speech in the reference annotation [48].

We used the DER metric configured according to NIST: a forgiveness collar of 0.25 s
was used and the speaker overlap regions were ignored during scoring. We used the
ideal VAD markup computed from the ground truth information from the AMI dataset.
The results of the comparison of the speaker verification models in terms of DER are
presented in Table 3. The development set was used for tuning the spectral clustering
parameters. The tuned parameters were used to perform the diarization task on the
evaluation set.

Table 3. Results of investigated systems for AMI Development and Evaluation sets (dev/eval) in
terms of DER (%) depending on the set sliding window and shift duration values. Lower error values
are better. Upper and lower 0.95 confidence intervals are indicated with a dash.

Model
DER (%) on dev with ci = 0.95

Win = 1.0 s
Shift = 0.5 s

Win = 1.5 s
Shift = 0.75 s

Win = 2.0 s
Shift = 1.0 s

Win = 3.0 s
Shift = 1.5 s

ECAPA-TDNN 3.90–5.29–6.14 1.95–2.50–2.84 1.65–2.17–2.46 1.92–2.37–2.65
ResNet34 3.51–5.12–6.09 1.48–2.35–2.76 1.54–1.78–2.03 1.74–2.65–3.05
ResNet72 2.48–3.39–3.96 1.35–2.10–2.44 1.38–1.91–2.21 1.72–2.12–2.38
ResNet101_8k 2.44–3.38–3.89 1.46–2.12–2.43 1.30–1.90–2.15 1.76–2.28–2.56
ResNet101_48_8k 2.56–3.99–4.72 1.40–1.88–2.16 1.42–1.80–2.04 1.82-2.15-2.43

Model
DER (%) on eval with ci = 0.95

win = 1.0 s
shift = 0.5 s

win = 1.5 s
shift = 0.75 s

win = 2.0 s
shift = 1.0 s

win = 3.0 s
shift = 1.5 s

ECAPA-TDNN 3.44–3.99–4.52 2.45–2.81–3.15 2.15–2.42–2.67 2.52–2.81–3.10
ResNet34 2.93–3.73–4.39 1.93–2.46–2.91 2.00–3.20–3.85 2.05–2.33–2.78
ResNet72 2.92–3.59–4.32 1.77–1.94–2.30 1.41–1.58–1.85 2.02–2.56–3.05
ResNet101_8k 3.52–3.90–4.61 1.85–2.02–2.36 1.62–1.81–2.10 1.99–2.17–2.53
ResNet101_48_8k 2.97–3.66–4.19 1.63–1.75–1.95 1.47–1.64–1.82 2.00–2.23–2.52
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To determine the confidence intervals for the DER estimates we used the
following algorithm:

1. Input: ({wi, . . . , wn}); w—diarization results for each file in subset, n—number of
unique files in subset;

2. Choose random subsets of size n− 2 from the entire subset and compute the DER
metric for the files in each of n− 2 size subsets. We use n− 2 files to maximize the
size of subset, while assuring a sufficient variability of subsets;

3. Repeat the 2nd step 50 times, sort all computed DER results, compute mean and 95%
confidence interval thresholds.

Based on the presented results, the following conclusions were drawn:

• The quality of the ResNet-based model outperformed ECAPA-TDNN in the diarization
task for the AMI dataset;

• The best quality on the evaluation set of AMI was achieved using the sliding window
and shift duration values set to 2.0 s and 1.0 s. respectively;

• High-quality diarization was achieved using the model trained on the 8 kHz dataset,
indicating that the data variability of the training dataset was no less important for
achieving better diarization results than the type of train data. The quality of the
model trained on the 8 kHz dataset matched or even exceeded the quality of models
trained on test-like data;

• The sizes of the development and evaluation parts of the AMI dataset were proba-
bly insufficient for quality assessments with high confidence intervals. For example,
the quality of all systems on the evaluation set for sliding window and a shift du-
ration values of 1.5 s and 0.75 s, accordingly, were comparable in the confidence
interval. Furthermore, the quality of ResNet72, ResNet101_8k and ResNet101_48_8k
models for the window and shift parameters larger than the abovementioned values
were comparable.

Here and in other tables of this paper, some metrics contains range values which
correspond to boundaries of confidence intervals. These values are separated with a minus
sign (“−”).

4.3. Clustering

This section compares the clustering algorithm proposed in [17,21] with other cluster-
ing methods from Kaldi and sklearn (https://scikit-learn.org/stable/ accessed on 18 May
2021) libraries. For this set of experiments, we used the ResNet101_8k speaker verification
system with the best configuration for this model, as discussed in Section 4.2. First, we
applied clustering methods with a reference number of clusters, where the number of
speakers was computed based on original AMI annotation.

1. Spectral Clustering with cosine affinity and unnormalized modification;
2. Spectral Clustering with cosine affinity and without unnormalized modification from

the sklearn package;
3. The k-means clustering algorithm from the sklearn package;
4. Gaussian mixture model with tied covariance matrices, trained on speaker-embedding

vectors. The number of used gaussians was chosen according to the reference number
of speakers;

5. The density-based spatial clustering of applications with noise (DBSCAN) algorithm
was tested but a stable configuration yielding sufficient quality was not achieved;
thus, the results of the method at hand are not presented in Table 4.

Second, several clustering algorithms with automatic estimation of the number of
clusters were compared.

1. Spectral clustering with cosine affinity and unnormalized modification. The number of
speakers was estimated using the maximum eigengap between eigenvalues, computed
on the Laplacian matrix, which was calculated based on the pruned cosine similarity
matrix between speaker-embedding vectors [21].

https://scikit-learn.org/stable/
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2. Agglomerative clustering with cosine affinity and average linkage. The sklearn and
Kaldi implementations of this clusterization were used, with insignificant differences
between the results in terms of DER.

All the results achieved for the clustering methods are presented in Table 4. Based on
these results, better performance was achieved using an unnormalized modification of the
spectral clustering algorithm for both cases of the specified reference number of speaker
clusters and for the estimated number of clusters.

For the visualization of the markups produced by different speaker models, we used
t-distributed stochastic neighbor embedding (TSNE). TSNE results for the ResNet101_8k
and the ECAPA-TDNN models are presented in Figures 3 and 4, respectively. The original
speaker embeddings and their decomposed representations after spectral decomposition
performed internally by SC are visualized. We used the ideal clustering markup with
removed speech segments of overlapping speech, estimated after K-means testing for the
original speaker embeddings after SC clustering. Note that for both models the results of
DER for this file consisted of approximately 1–2% of samples.

Table 4. Results of comparing the clustering algorithms for the AMI Development and Evaluation
sets (dev/eval) in terms of DER (%) for the reference and the estimated number of speakers in each
single recording. The methods are numbered according to their presentation in Section 4.3. Lower
error values are better.

Clustering Reference Speakers Dev Eval

1. Spectral Clustering unnorm True 1.91 1.81
2. Spectral Clustering True 2.18 3.05
3. Kmeans True 2.31 4.38
4. GaussianMixture True 2.39 4.79
1. Spectral Clustering unnorm False 2.13 2.78
2. Agglomerative Clustering False 3.64 3.83

−10 −5 0 5 10 15
TSNE x

−15

−10

−5

0

5

10

TS
NE

 y

Original embeddings. Ideal marku 
label_s k
s k_2
s k_3
s k_1
s k_0

−15 −10 −5 0 5 10 15
TSNE SC x

−4

−2

0

2

4

6

TS
NE

 S
C 
y

S ectral decom osited embeddings. Ideal marku 
label_s k
s k_2
s k_3
s k_1
s k_0

−10 −5 0 5 10 15
TSNE x

−15

−10

−5

0

5

10

TS
NE

 y

Original embeddings. k-means marku 
label_s k
s k_2
s k_3
s k_0
s k_1

−15 −10 −5 0 5 10 15
TSNE SC x

−4

−2

0

2

4

6

TS
NE

 S
C 
y

S ectral decom osited embeddings. SC marku 
label_s k
s k_0
s k_2
s k_3
s k_1

ResNet 101_8k EN2002b

Figure 3. Results of TSNE visualization computed by means of the ResNet101_8k model and EN2002b
lapel-mix file from the AMI evaluation dataset. All overlapping speech segments were removedto
reduce uncertainty. In the left parts of the images, the original speaker embeddings are used; in the
right parts the speaker embeddings after spectral decomposition are used.
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Figure 4. Results of TSNE visualization computed by means of the ECAPA-TDNN model and
EN2002b lapel-mix file from the AMI evaluation dataset. All overlapping speech segments were
removed to reduce uncertainty. In the left parts of the images, the original speaker embeddings are
used; in the right parts the speaker embeddings after spectral decomposition are used.

4.4. Fusion of SC and OSD Models

The fusion of the SC and OSD models was proposed to improve the quality of di-
arization during simultaneous speech. Combining these models, the SC performance can
potentially be improved at the points of overlapping speech (Figure 5). In a case in which
the SC model does not perform well for the speaker number classes of 2, 3 and 4+ simulta-
neous speakers, but the binary problem of overlap/non-overlap detection yields sufficient
estimation quality, the performance of SC may be tuned according to OSD estimates [34].
If SC underestimates the number of speakers, marking most samples as one speaker, then,
by fusing SC with OSD the samples with one speaker can be excluded, eliminating the
classification error for samples with more than two reference speakers estimated as one
speaker. On the other hand, SC may overestimate the number of speakers. In this case,
by fusing the models and excluding samples containing 2–4+ speakers, the estimation
quality for zero and one speakers can be improved [34].

The principle of the proposed fusion method lies in adjusting the SC class probabilities
based on the decision of OSD [34]. If the decisions of the two models are logically in
concurrence with one another, the SC probabilities are increased by applying a weight
coefficient α. On the other hand, if the decisions of the two models are not in concurrence,
the SC probabilities are reduced. Specifically, if OSD defines a speech segment as non-
overlapping, then this estimate is used to increase SC probabilities for labels 0 and 1 (no
active speaker, one active speaker), and reduce the probabilities for labels 2, 3, and 4+ (2, 3,
4+ active speakers). For segments with estimated overlapping speech, the SC probabilities
for labels 2, 3, 4+ are increased, and reduced for labels 0 and 1. The fusion process is
generalized by means of the following equation [34]:

Pf usion =


PSC(lSC) + α · (1− PSC(lSC)), l̂OSD = 0, l̂SC ∈ {0, 1},
PSC(lSC)− α · PSC(lSC), l̂OSD = 1, l̂SC ∈ {0, 1},
PSC(lSC)− α · PSC(lSC), l̂OSD = 0, l̂SC ∈ {2, 3, 4+},
PSC(lSC) + α · (1− PSC(lSC)), l̂OSD = 1, l̂SC ∈ {2, 3, 4+},

(4)
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where PSC(lSC) are the probabilities of lSC labels for a given segment, l̂OSD and l̂SC are the
OSD and SC estimates, respectively, and α is the weight coefficient. The value for α was
chosen to be equal to 0.5 during our fusion experiments.

Figure 5. Diagram of speaker counter and overlapping speech detector fusion.

Table 5 presents the results for each class, as well as their weighted average in the
metrics of accuracy, completeness, and F1-score. We used the following equation to
calculate the F1-score metric, which combines the values of precision and recall; the
equation was applied as in the Python module scikit-learn (https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_score.html accessed on 14 June 2021):

F1-score = 2 · precision · recall
precision + recall

. (5)

Table 5 also presents the confidence intervals for the F1-score. To calculate the confi-
dence interval, we take the model results calculated on all files, randomly select 80% of
labels, calculate the F1-score for them, and repeat this procedure 50 times. Then we
compute 95% confidence intervals by applying the Python module scipy.stats (https:
//docs.scipy.org/doc/scipy/reference/stats.html accessed on 21 June 2021), taking into
account the fact that the obtained F1-score values belong to a normal distribution.

The SC model fused with OSD yields better speaker number estimation quality com-
pared to the non-fused SC model. Experimental results show an increase in recognition
quality for all classes, in particular for labels 1 and 2. The recall metric shows no increase,
probably due to the fact that SC is initially efficient in classifying segments with numbers
of speakers larger than two. The recall increases only when the number of speakers is equal
to 1. This means that SC often tends to overestimate the number of speakers. A noticeable
increase occurs in the precision metric. This indicates that SC has become more efficient
in cases where the number of speakers is equal to 1, whereas previously it tended to
overestimate the number of speakers in this case.

Table 5. Speaker counter and overlapping speech detector fusion results.

Method Class Precision Recall F1-Score ± ci = 0.95

SC

0 0.621 0.755 0.682 ± 0.003
1 0.736 0.593 0.657 ± 0.001
2 0.274 0.390 0.322 ± 0.002
3 0.196 0.242 0.216 ± 0.003

4+ 0.136 0.097 0.113 ± 0.008
weighted 0.593 0.546 0.562 ± 0.001

SC + OSD

0 0.639 0.744 0.688 ± 0.002
1 0.781 0.772 0.777 ± 0.001
2 0.400 0.412 0.406 ± 0.002
3 0.295 0.222 0.253 ± 0.004

4+ 0.163 0.093 0.119 ± 0.008
weighted 0.654 0.659 0.656 ± 0.001

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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4.5. Fusion of Voice Annotation Methods

In the following experiments, we investigated the system VAD markup and reference
number of speakers used for diarization. We focused on ways to improve the speech
markup by fusing the results of various algorithms presented earlier in this study. For this
purpose, a better configuration of VAD was obtained in terms of DER for the AMI evalua-
tion dataset. We used results estimated by applying only the VAD markup as a baseline for
other fusion results. We used the ResNet101_8k speaker verification system with the best
configuration for the construction of diarization vectors using the system VAD markup.
For each segment of the source utterance, the fusion algorithm computed a simple weighted
sum of the probability of the presence of speech in the segment according to Equation (6),
where p1 corresponds to the probability of definition of an utterance segment as speech by
VAD, p2 corresponds to the probability of definition of the utterance segment as speech
by another method, and α serves as a weight coefficient. Note that the coefficient α in this
regard differs from the coefficient applied in SC + OSD fusion in Section 4.4. The best
configuration of the independent fusion of VAD with QE and SC with OSD for the case
when more than two methods are used is denoted as

markup f usion =

{
1, α · p1 + (1− α) · p2 > 0.5,
0, else.

(6)

Note that the better VAD configuration is slightly different for the development
and evaluation sets of AMI. The experimental results of fusion are presented in Table 6.
The weight α differs depending on the methods to which fusion is applied. This allows one
to estimate the best values of α, which are presented in the table as well. Based on these
results, the following conclusions can be drawn:

• Using the fused VAD significantly reduces the diarization error compared the baseline
VAD system. In cases of the diarization of utterances recorded in simple environments
(e.g., low noise and reverberation levels), it can be assumed that VAD error will prevail
over speaker errors in terms of DER.

• The QE and SC algorithms can be used for the clarification of FR errors, which leads
to an error decrease in terms of DER. This effect can be observed for the high values
of the fusion weight coefficient, when QE and SC help to clarify the markup in case of
VAD uncertainty.

• The application of all the algorithms considered in the article in concurrence leads
to a significant improvement in the quality of diarization and reduces both FR and
FA errors. This effect can be observed for small α values, and probably indicates that
VAD can be replaced by a fusion of the QE, SC and OSD methods.

Table 6. Results for the AMI evaluation set in terms of DER decomposed to false rejection errors,
false acceptance errors and speaker errors for the fusion of different model combinations.

Fusion DER FR FA SE

VAD (baseline) 39.91–40.35–40.83 19.58 12.6 8.17
VAD + QE, α = 0.95 28.23–28.68–29.12 4.94 15.04 8.70
VAD + SC, α = 0.58 26.80–27.28–27.71 6.38 14.37 6.54
VAD + QE + SC + OSD, α = 0.05 13.76–14.31–14.90 1.46 8.03 4.82

The computation of the confidence interval for the DER metric was inspired by the
Python scipy.stats.bootstrap method, and consisted of the following steps:

1. Create samples of length N − 2 from the set of AMI scenarios, where N is the number
of scenarios;

2. Compute the overall DER on that extracted subset;
3. Repeat steps 1. and 2. M times. In our case M = 100.
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4. Compute 0.05 and 0.95 quantiles for the obtained array. The two resulting numbers
correspond to the lower and upper bounds of the confidence interval.

5. Discussion

The performance of various speaker verification systems were investigated in this
work with the aim of improving diarization quality. We found that the ResNet model
outperformed the ECAPA-TDNN model, despite achieving worse quality in the in-domain
task compared to the AMI speaker verification task. The best model configuration, diariza-
tion setup, and clustering methods were obtained for the AMI dataset to obtain better
diarization quality in terms of DER. As far as the authors know, we report state-of-the-
art results for the AMI dataset, reaching 1.58% DER for the AMI evaluation set for the
lapel-mix microphone using a deeper ResNet model with better speaker discrimination
ability. During our investigation we found that the data variability of the training dataset
is important for the achievement of better diarization results, even while using 16 kHz
telephone data. Further improving the quality of speaker verification models seems to be a
good way to improve the quality of diarization. We confirmed the best quality of clustering
for the unnormalized modification of spectral clustering compared to all other investigated
methods of clustering.

In the case of the use of VAD markup, some ways to fuse different methods allowing an
improvement in the quality of the estimated speech markup were considered. The fusion of
VAD with methods of quality estimation, the speaker counter, and the overlapping speech
detector allowed us to significantly decrease DER values from 40.35% DER to 14.31% DER.
This improvement was achieved by reducing the number of errors of false rejection of
speech fragments, as well as clarifying the markup of speech fragments by reducing the
number of errors of false acceptance. At the same time, the number of errors involving the
mixing up of speakers was still quite high, which was probably due to the difficulties in
identifying mixed speech. Finding solutions for the diarization of mixed speech remains
an important challenge.

By fusing the SC and OSD methods, the performance of speaker number estimation
improved from 0.562 (by applying only SC) to 0.656 in terms of the F1-score. However,
the estimation quality was less if the unbalanced real-life data from the AMI corpus was
used for training, compared to the results obtained on synthetic mixtures of speakers.
This is quite expected an explainable due to the nature of real conversations, specifically
acquired from the far-field. It has been noted, though, that data augmentation which
improves the balance of classes increases the estimation quality of the model. Therefore,
further steps in our research include improving the fused SC and OSD system by training
it on a more balanced and diverse dataset.

6. Conclusions

In this paper, various methods of audio signal processing, such as speaker number
estimation, overlapping speech detection, quality estimation, and different speaker ver-
ification models, were considered with the aim of improving the quality of diarization
algorithms in terms of DER. Future developments in the considered direction of research
include improving the speaker verification models and training more robust methods on
speech segment markup, which will allow us to further improve the quality of diarization.
Furthermore, training end-to-end models for speaker diarization, employing the studied
principles of speaker information estimation, may prove to be advantageous.
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The following abbreviations are used in this manuscript:

VAD Voice Activity Detector
SC Speaker Counter
OSD Overlap Speech Detector
QE Quality Estimation
DNN Deep Neural Network
TDNN Time Delay Neural Network
ECAPA-TDNN Emphasized Channel Attention, Propagation, and Aggregationin TDNN
RIR Room Impulse Response
RT60 Reverberation Time (the time of sound pressure reduction by 60 dB)
SNR Signal to Noise Ratio
STFT Short-Term Fourier transform
LMFB Log Mel-filter Bank Energies (features)
MFCC Mel Frequency Cepstral Coefficients (features)
CMN Cepstral Mean Normalization
CMVN Cepstral Mean and Variance Normalization
EER Equal Error Rate
DER Diarization Error Rate
SGD Stochastic Gradient Descent
GPU Graphics Processing Unit
DBSCAN Density-Based Spatial Clustering of Applications with Noise
TSNE t-Distributed Stochastic Neighbor Embedding
AM-Softmax Additive Margin Softmax (loss)
AAM-Softmax Additive Angular Margin Softmax (loss)
AMP Automatic Mixed Precision
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