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Abstract: This paper studies the global dynamics of a cholera model incorporating age structures
and general infection rates. First, we explore the existence and point dissipativeness of the orbit
and analyze the asymptotical smoothness. Then, we perform rigorous mathematical analysis on the
existence and local stability of equilibria. Based on the uniform persistence, we further investigate the
global behavior of the cholera infection model. The results of theoretical analysis are well confirmed
by numerical simulations. This research generalizes some known results and provides deeper insights
into the dynamics of cholera propagation.
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1. Introduction

Cholera is a serious infectious disease that is caused by the bacterium Vibrio cholera.
Due to the cholera toxin produced by the bacterium Vibrio cholera, it is characterized by
severe symptoms, including acute diarrhea, vomiting, hypotension and a weak pulse.
Without proper medical treatment, it can cause dehydration and death within hours. This
disease peaks in summer and its propagation among humans depends on direct person-
to-person contact, as well as indirect contact through contaminated food and water [1,2].
Due to the lack of clean food and water, cholera can spread quickly in regions with poor
sanitation conditions and has long been a threat to the public health of human society. In
2018, it was estimated that there were 2.9 million burden cases worldwide, with a death
toll of around 95,000, which corresponds to dozens of countries and regions [3].

A mathematical model of cholera propagation was first proposed to study cholera
infection in 1973 around the Mediterranean region [4]. Henceforward, there have been nu-
merous studies on the dynamics of cholera infection models. Tien and Earn [2] established
a water-borne infectious disease model including multiple propagation paths. Control
strategies, such as vaccination, were also considered in cholera models in Posny et al. [5] to
inhibit the propagation of epidemics. Recently, by combining the cholera infection around
aquatic regions, as well as the interaction between the bacteriophage and the cholera bac-
terium, researchers constructed a refined cholera infection model and provided reasonable
cholera control strategies [6]. Considering environmental uncertainties and stochastic fac-
tors, researchers also studied a cholera system with respect to the Itô stochastic differential
equation and confirmed the decisive effect of the stochastic basic reproduction number on
the system [7].

Age structure, incorporating the age structure of the pathogen the infection age of
individuals, is a significant characteristic in the cholera model [8–11]. A cholera model with
bilinear incidence rates including two age structures was introduced and discussed in the
work of Brauer et al. [12] and was further investigated in the work of Wang and Zhang [13].
The relative compactness of the orbits and the uniform persistence of the system were
explored in [13]. The local stability of disease-free equilibrium and endemic equilibrium
was analyzed in [13] and global stability was studied in [12]. Furthermore, a cholera
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transmission model incorporating vaccination age was analyzed in [14]. Actually, incidence
rates are influenced by the complicated connections between susceptible individuals and
the infected individuals/pathons. Various nonlinear incidence rates have been considered
by researchers [15–19].

Inspired by the above works, we aim to discuss an age-structured cholera model. At
time t, let S(t) and i(t, a) stand for the number of susceptible individuals and infected
individuals with infection age a, with p(t, b) representing the quantity of aquatic cholera
pathogens at the age of b. Then, the infectivity of infected individuals and the total
infectivity of the cholera pathogen at time t can be measured by J(t) =

∫ ∞
0 k(a)i(t, a)da

and Q(t) =
∫ ∞

0 q(b)p(t, b)db, in which kernel functions denote the infectivity of infected
individuals and pathogens at corresponding ages. In this manuscript, we consider the
following cholera model, taking general incidence rates into account, which is a generation
of the model in Brauer et al. [12].

dS(t)
dt

= Λ− µS(t)− S(t) f (J(t))− S(t)g(Q(t)),

∂i(t, a)
∂t

+
∂i(t, a)

∂a
= −δ(a)i(t, a),

∂p(t, b)
∂t

+
∂p(t, b)

∂b
= −γ(b)p(t, b),

(1)

with boundary conditions

i(t, 0) = S(t) f (J(t)) + S(t)g(Q(t)), t > 0,

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da := P(t), t > 0,

(2)

and the initial condition

X0 := (S(0), i(0, ·), p(0, ·)) = (S0, i0(·), p0(·)) ∈ χ+, (3)

where χ+ = R+ ×L1
+(0, ∞)×L1

+(0, ∞) is a functional space equipped with the norm

‖(`, ϕ, φ)‖χ+
= |`|+

∫ ∞

0
|ϕ(a)|da +

∫ ∞

0
|φ(b)|db.

In model (1), Λ ∈ R+ denotes the recruitment of the susceptible, and µ ∈ R+ repre-
sents the natural death rate of individuals. γ(b) describes the removal rate of pathogens at
age b and ξ(a) describes the pathogen shedding rate of an infected patient with infection
age a. δ(a) = µ + δ1(a) + δ2(a), where δ1(a) is the disease-related death rate and δ2(a)
accounts for the recovery rate of infected individuals at infection age a. S(t) f (J(t)) and
S(t)g(Q(t)) represent the direct and indirect transmission of cholera. For system (1), we
make the following assumptions.

Assumption 1. (I) The functions δ(a), γ(b), ξ(a), k(a), q(b) ∈ L∞
+(0,+∞) are bounded,

integrable and Lipschitz-continuous. Denote r = ess. sup
a∈R+

r(a) and r = ess. inf
a∈R+

r(a) as

essential upper and lower bound of r(a) for a ∈ R+.
(II) There exists one positive constant a satisfying i(t, a) = 0 for a ∈ [a,+∞).

(III) f (`) and g(`) are Lipschitz-continuous on R+ with f (0) = g(0) = 0, f (`)
` ≥ f ′(`) ≥

0, g(`)
` ≥ g′(`) ≥ 0 and f ′′(`) ≤ 0, g′′(`) ≤ 0, for ` ∈ R+.

In this paper, for an age-infection model, we analyze the qualitative behavior by
means of the Lyapunov functional method [20–22]. By considering the routes of the spread
from the pathogen to the susceptible group and from the infected group to the susceptible
group spread with generalized infection functions, we form a unified theoretical structure
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to present the propagation features of the epidemic. The basic reproduction number
R0 is defined as the threshold value, determining whether the epidemic dies out or not.
Specifically, the cholera epidemic withers away if R0 < 1, whereas if R0 > 1, the disease
persists at the endemic level.

The plan of this article is as follows. We give some preliminaries in the next section.
In Section 3, we explore the existence and local stability of equilibria. In Section 4, we
construct Lyapunov functionals to discuss the global stability of equilibria. In Section 5, we
perform numerical simulations. Section 6 presents brief conclusions and a discussion.

2. Preliminaries
2.1. Existence and Uniqueness of Solutions

The standard theory for age-dependent models [8,11] can be applied to establish the
existence and uniqueness of solutions for system (1) with boundary conditions (2) and
initial condition (3). For this, we introduce the following Banach spaces

χ =R×R×L1(R+,R)×R×L1(R+,R),
χ0 =R× {0} × L1(R+,R)× {0} × L1(R+,R),

χ+ =R+ ×R+ ×L1(R+,R)×R+ ×L1(R+,R),
χ0+ =χ+ ∩ χ0 = R+ × {0} × L1(R+,R)× {0} × L1(R+,R).

In order to formulate system (1) as an abstract Cauchy problem [23], we define the
following linear operator, where Dom(z0) = R× {0} × w1,1(0, ∞)× {0} × w1,1(0, ∞),

z0 : Dom(z0) ⊂ χ→ χ,

z0


φ1(
0
ϕ1

)
(

0
ϕ2

)
 =


−µφ1(
−ϕ1(0)

−δ(·)ϕ1 − ϕ′1

)
(

−ϕ2(0)
−γ(·)ϕ2 − ϕ′2

)
,

and the nonlinear operator

z : Dom(z0) ⊂ χ→ χ,

z


φ1(
0
ϕ1

)
(

0
ϕ2

)
 =


Λ− φ1 f (

∫ ∞
0 k(a)ϕ1(a)da)− φ1g(

∫ ∞
0 q(b)ϕ2(b)db)(

φ1 f (
∫ ∞

0 k(a)ϕ1(a)da) + φ1g(
∫ ∞

0 q(b)ϕ2(b)db)
0

)
(∫ ∞

0 ξ(a)ϕ1(a)da
0

)
.

Similarly to the proof process in [24,25], we can verify that operator z0 is a Hille–
Yosida operator [23].

Let u(t) = (S(t), (0, i(t, ·))T , (0, p(t, ·))T)T ∈ χ0+. System (1) can be expressed by the
following abstract cauchy problem:

du(t)
dt

= z0u(t) +z(u(t)), ∀t ≥ 0,

u(0) = u0 ∈ χ0
⋂

χ0+.

Let (S(t), (0, i(t, ·))T , (0, p(t, ·))T)T ∈ χ0+. We have the following theorem by [23,26]:

Theorem 1. There exists one unique determined semiflow {U (t)}t≥0 on χ0+ such that for any
X0, there exists one unique continuous map U ∈ C([0, ∞], χ0+), acting as an integrated solution
of the Cauchy problem, that is
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
∫ t

0
U (s)X0ds ∈ Dom(z0), ∀t ≥ 0,

U (t)X0 = X0 +z0

∫ t

0
U (s)X0ds +

∫ ∞

0
z(U (s)X0)ds, ∀t ≥ 0.

2.2. Point Dissipativeness

Let

Ξ := {(S(t), i(t, a), p(t, b)) ∈ χ0+|

S(t) +
∫ ∞

0
i(t, a)da ≤ Λ

min{µ, δ} ,
∫ ∞

0
p(t, b)db ≤ Λξ

min{µ, δ}γ}.

Then we have the following proposition:

Theorem 2. Ξ is a positive invariant set under the semiflow {U (t)}t≥0. Moreover, the semiflow
{U (t)}t≥0 is point-dissipative and attracts all the positive solutions of system (1) in χ0+.

Proof. From the first equation of (1), we have dS(t)
dt ≤ Λ− µS(t). Due to S(0) ≤ Λ

µ , we

have S(t) ≤ Λ
µ . Note that

d
dt

∫ ∞

0
i(t, a)da =

∫ ∞

0
(− ∂

∂a
i(t, a)− δ(a)i(t, a))da

=− i(t, a)|∞0 −
∫ ∞

0
δ(a)i(t, a)da

≤i(t, 0)−
∫ ∞

0
δ(a)i(t, a)da

=S(t) f (J(t)) + S(t)g(Q(t))−
∫ ∞

0
δ(a)i(t, a)da.

Combining the first equation of (1), one yields

d
dt

(
S(t) +

∫ ∞

0
i(t, a)da

)
≤Λ− µS(t)−

∫ ∞

0
δ(a)i(t, a)da

≤Λ− µS(t)− δ
∫ ∞

0
i(t, a)da

≤Λ−min{µ, δ}
(

S(t) +
∫ ∞

0
i(t, a)da

)
.

Since S(0) +
∫ ∞

0 i(0, a)da ≤ Λ
min{µ,δ} , we have S(t) +

∫ ∞
0 i(t, a)da ≤ Λ

min{µ,δ} . Thus, it
follows that

d
dt

(∫ ∞

0
p(t, b)db

)
=
∫ ∞

0

[
− ∂

∂b
p(t, b)− γ(b)p(t, b)

]
db

≤p(t, 0)−
∫ ∞

0
γ(b)p(t, b)db

≤
∫ ∞

0
ξ(a)i(t, a)da− γ

∫ ∞

0
p(t, b)db

≤ Λξ

min{µ, δ} − γ
∫ ∞

0
p(t, b)db.

This implies that
∫ ∞

0 p(t, b)db ≤ Λξ
min{µ,δ}γ .

Hence, U (t)Ξ ⊂ Ξ and this implies that Ξ is a positively invariant set and attracts all
positive solutions of (1).
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From Theorem 2, we obtain the following result.

Proposition 1. If X0 ∈ χ+ and ‖X0‖χ ≤ B with some sufficiently large constant B, then for
t ∈ R+, we have the following propositions

(i) 0 ≤ S(t),
∫ ∞

0 i(t, a)da,
∫ ∞

0 p(t, b)db ≤ B;
(ii) i(t, 0) ≤ (k̄ f ′(0) + q̄g′(0))B2, p(t, 0) ≤ ξ̄B.

Proof. From the boundedness of system (1), we can find a constant B such that proposition
(i) holds. Due to Assumption 1 (III), we further have

i(t, 0) =S(t) f (J(t)) + S(t)g(Q(t))

≤ f ′(0)S(t)J(t) + g′(0)S(t)Q(t)

≤ f ′(0)S(t)k̄
∫ ∞

0
i(t, a)da + g′(0)S(t)q̄

∫ ∞

0
p(t, b)db

≤( f ′(0)k̄ + g′(0)q̄)B2

and

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da ≤ ξ̄

∫ ∞

0
i(t, a)da ≤ ξ̄B.

This completes the proof.

2.3. Asymptotical Smoothness and Global Attractor

From Equations (2) and (3), using the method presented in [8] to integrate the second
and the third equations in (1) along the characteristic lines t− a = const., we have

i(t, a) =

 i(t− a, 0)v1(a), 0 ≤ a ≤ t,

i(0, a− t)
v1(a)

v1(a− t)
, 0 ≤ t ≤ a,

(4)

and

p(t, b) =

 p(t− b, 0)v2(b), 0 ≤ b ≤ t,

p(0, b− t)
v2(b)

v2(b− t)
, 0 ≤ t ≤ b,

(5)

where
v1(a) = e−

∫ a
0 δ(τ)dτ and v2(b) = e−

∫ b
0 γ(τ)dτ (6)

denote the fraction at which an infected cell and virus survive up to age a and b.
In order to explore the existence of an attractor, we first analyze the asymptotical

smoothness of semiflow U (t). For this, we present the following proposition.

Proposition 2. The functions J(t), Q(t) and P(t) are Lipschitz-continuous.

Proof. Here we give the proof of J(t) being Lipschitz-continuous. From Assumption 1,
there exists a positive constant Mk such that |k(a + l)− k(a)| ≤ Mkl. Then, combining
Proposition 1, it holds that

|J(t + l)− J(t)|

≤
∫ l

0
k(a)i(t + l − a, 0)v1(a)da +

∣∣∣∣∫ ∞

l
k(a)i(t + l, a)da−

∫ ∞

0
k(a)i(t, a)da

∣∣∣∣
≤k̄(k̄ f ′(0) + q̄g′(0))B2l +

∣∣∣∣∫ ∞

l
k(a)i(t + l, a)da−

∫ ∞

0
k(a)i(t, a)da

∣∣∣∣.
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Let o = a− l; we have

|J(t + l)− J(t)|

≤k̄(k̄ f ′(0) + q̄g′(0))B2l +
∣∣∣∣∫ ∞

0
k(o + l)i(t + l, o + l)do−

∫ ∞

0
k(a)i(t, a)da

∣∣∣∣
=k̄(k̄ f ′(0) + q̄g′(0))B2l +

∣∣∣∣∫ ∞

0

(
k(a + l)

v1(a + l)
v1(a)

− k(a)
)

i(t, a)da
∣∣∣∣

=k̄(k̄ f ′(0) + q̄g′(0))B2l +
∣∣∣∣∫ ∞

0
k(a + l)

(
e−
∫ a+l

a δ(τ)dτ − 1
)

i(t, a)da
∣∣∣∣

+

∣∣∣∣∫ ∞

0
(k(a + l)− k(a))i(t, a)da

∣∣∣∣
≤k̄(k̄ f ′(0) + q̄g′(0))B2l + k̄δ̄lB + MklB := MJ .

Hence, J(t) is Lipschitz-continuous with the coefficient MJ . Through similar veri-
fication, the functions Q(t) and P(t) are Lipschitz-continuous with coefficients MQ and
MP.

For the asymptotical smoothness of the semiflow, the following lemma [27] is necessary.

Lemma 1. The semiflow U : R+ × χ+ → χ+ is asymptotically smooth if there are maps Ψ,
Θ : R+ × χ+ → χ+ such that U (t, x) = Ψ(t, x) + Θ(t, x) and the following holds for any
bounded closed set B ⊂ χ+, which is forward invariant under U : (i) lim

t→∞
diamΘ(t,B) = 0; (ii)

There exists tB ≥ 0 such that Ψ(t,B) has compact closure for each t ≥ tB.

For condition (ii) of Lemma 1, we introduce the following lemma [27].

Lemma 2. A set B ∈ L1
+(0, ∞) has a compact closure if the following conditions hold: (i)

sup
f∈B

∫ ∞
0 f (`)d` < ∞; (ii) lim

r→∞

∫ ∞
r f (`)d` → 0 uniformly in f ∈ B; (iii) lim

h→0+

∫ ∞
0 | f (`+ h)−

f (`)|d`→ 0 uniformly in f ∈ B; (iv) lim
h→0+

∫ h
0 f (`)d`→ 0 uniformly in f ∈ B.

Based on Lemmas 1 and 2, we investigate the asymptotical smoothness.

Theorem 3. The semiflow U generated by (1) is asymptotically smooth.

Proof. Define the maps Ψ and Θ such that U = Ψ + Θ, with{
Ψ(t, x0) = (S(t), ǐ(t, ·), p̌(t, ·)),

Θ(t, x0) = (0, ϕ̌i(t, ·), ϕ̌p(t, ·)),

where

ǐ(t, a) =

{
i(t− a, 0)v1(a), 0 ≤ a ≤ t,
0, 0 ≤ t ≤ a,

p̌(t, b) =

{
p(t− b, 0)v2(b), 0 ≤ b ≤ t,
0, 0 ≤ t ≤ b,

ϕ̌i(t, a) =

 0, 0 ≤ a ≤ t,

i(0, a− t)
v1(a)

v1(a− t)
, 0 ≤ t ≤ a,

ϕ̌p(t, b) =

 0, 0 ≤ b ≤ t,

p(0, b− t)
v2(b)

v2(b− t)
, 0 ≤ t ≤ b.



Mathematics 2021, 9, 2993 7 of 20

Firstly, we show that map Θ satisfies condition (i) of Lemma 1. For X0 ∈ Γ satisfying
‖X0‖χ ≤ r, letting a− t = ε1 and b− t = ε2, we have

‖Θ(t, X0)‖χ

=
∫ ∞

t

∣∣∣∣i(0, a− t)
v1(a)

v1(a− t)

∣∣∣∣da +
∫ ∞

t

∣∣∣∣p(0, b− t)
v2(b)

v2(b− t)

∣∣∣∣db

=
∫ ∞

0

∣∣∣∣i(0, ε1)e
−
∫ ε1+t

ε1
δ(τ)dτ

∣∣∣∣dε +
∫ ∞

0

∣∣∣∣p(0, ε2)e
−
∫ ε2+t

ε2
γ(τ)dτ

∣∣∣∣dε

≤e−δt
∫ ∞

0
|i(0, ε1)|dε + e−γt

∫ ∞

0
|p(0, ε2)|dε

≤e−min{δ,γ}tr, t ∈ R+.

This shows that ‖Θ(t, X0)‖χ → 0 as t → ∞, which indicates that ‖Θ(t, X0)‖χ ap-
proaches 0 with uniform exponential speed. Thus, the proof of Lemma 1 (i) is completed.

Then, we verify that Lemma 2 holds. Using Proposition 1, we can verify that conditions
(i), (ii) and (iv) of Lemma 2 hold since

0 ≤ ǐ(t, a) ≤ S(t− a)[ f ′(0)J(t− a) + g′(0)Q(t− a)]v1(a) ≤ [ f ′(0)k̄ + g′(0)q̄]B2e−δ̄a.

Finally, we focus on condition (iii) of Lemma 2. For sufficiently small h ∈ (0, t), we
have ∫ ∞

0
|ǐ(a + h, t)− ǐ(a, t)|da ≤ ζ1 + ζ2 + ζ3, (7)

where

ζ1 =
∫ t−h

0
|S(t− a− h) f (J(t− a− h))v1(a + h)− S(t− a) f (J(t− a))v1(a)|da,

ζ2 =
∫ t−h

0
|S(t− a− h)g(Q(t− a− h))v1(a + h)− S(t− a)g(Q(t− a))v1(a)|da,

ζ3 = f ′(0)
∫ t

t−h
|S(t− a)J(t− a)v1(a)|da + g′(0)

∫ t

t−h
|S(t− a)Q(t− a)v1(a)|da

≤( f ′(0)k̄ + g′(0)q̄)B2h := ζ3M.

Note that

ζ1 =
∫ t−h

0
|S(t− a− h) f (J(t− a− h))(v1(a + h)−v1(a))da

+
∫ t−h

0
S(t− a− h)| f (J(t− a− h))− f (J(t− a))|v1(a)da

+
∫ t−h

0
|S(t− a− h)− S(t− a)| f (J(t− a))v1(a)da

≤ f ′(0)k̄B2
∫ t−h

0
|v1(a + h)−v1(a)|da

+ f ′(0)
∫ t−h

0
S(t− a− u)|J(t− a− h)− J(t− a)|v1(a)da

+ f ′(0)
∫ t−h

0
J(t− a)|S(t− a− h)− S(t− a)|v1(a)da.

(8)

Let MS = Λ + µB + (k̄ f ′(0) + q̄g′(0))B2 be the Lipschitz coefficient of S(t). Then, the
following holds:

ζ1 ≤ f ′(0)k̄B2h + f ′(0)BMJh2 + f ′(0)k̄BMsh2 := ζ1M. (9)
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Similarly, we have

ζ2 ≤ g′(0)q̄B2h + g′(0)BMQh2 + g′(0)q̄BMsh2 := ζ2M. (10)

Combining equations (9) and (10) with (7), we obtain∫ ∞

0
|ǐ(a + h, t)− ǐ(a, t)|da ≤ ζ1M + ζ2M + ζ3M.

ζiM, i = 1, 2, 3, does not rely on the initial condition X0. Thus, Lemma 2 holds. Hence,
ǐ(t, a) remains in a pre-compact subset in L1

+(0, ∞), and so does p̌(t, b). We thus accomplish
the proof.

Based on the above preparations, the following results hold due to Theorem 3.4.6 of
Hale [28].

Theorem 4. The semi-flow U (t) has a global attractor A in χ+, which attracts all bound subsets
of χ+.

3. Existence and Local Stability of Equilibria
3.1. Equilibria and Basic Reproductive Number

System (1) possesses two equilibria at most in Θ. Besides the infection-free equi-
librium E0 = (S0, 0, 0) with S0 = Λ/µ, there possibly exists an infection equilibrium
E∗ = (S∗, i∗(a), p∗(b)) in Θ, satisfying the following equations

Λ = µS∗ + S∗ f (J∗) + S∗g(Q∗),

∂i∗(a)
∂a

= −δ(a)i∗(a),

∂p∗(b)
∂b

= −γ(b)p∗(b),

i∗(0) = S∗ f (J∗) + S∗g(Q∗),

p∗(0) =
∫ ∞

0
ξ(a)i∗(a)da,

(11)

where J∗ =
∫ ∞

0 k(a)i∗(a)da and Q∗ =
∫ ∞

0 q(b)p∗(b)db.
From the second and third equations of system (11), we have

i∗(a) = i∗(0)v1(a), p∗(b) = p∗(0)v2(b).

Let

Π1 =
∫ ∞

0
k(a)v1(a)da, Π2 =

∫ ∞

0
q(b)v2(b)db and Π3 =

∫ ∞

0
ξ(a)v1(a)da. (12)

We can further obtain

J∗ =
∫ ∞

0
k(a)i∗(0)v1(a)da =

∫ ∞

0
k(a)[S∗ f (J∗) + S∗g(Q∗)]v1(a)da

= [S∗ f (J∗) + S∗g(Q∗)]Π1

(13)

and

Q∗ =
∫ ∞

0
q(b)p∗(0)v2(b)db =

∫ ∞

0
ξ(a)i∗(a)da

∫ ∞

0
q(b)v2(b)db

=Π2

∫ ∞

0
ξ(a)i∗(0)v1(a)da = Π2Π3(S∗ f (J∗) + S∗g(Q∗)) =

Π2Π3

Π1
J∗.

(14)
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Thus, combining equations S∗ = Λ/(µ + f (J∗) + g(Q∗)), (13) and (14), we have

J∗ =
ΛΠ1[ f (J∗) + g(Q∗)]
µ + f (J∗) + g(Q∗)

=
ΛΠ1[ f (J∗) + g(Π2Π3

Π1
J∗)]

µ + f (J∗) + g(Π2Π3
Π1

J∗)
.

Let h(J) = µJ + [J − ΛΠ1][ f (J) + g(Π2Π3
Π1

J)]. Then, we yield h(0) = 0, h(ΛΠ1) =
µΛΠ1 and

h′(0) = {µ + [ f (J) + g(
Π2Π3

Π1
J)] + [J −ΛΠ1][ f ′(J) +

Π2Π3

Π1
g′(

Π2Π3

Π1
J)]}|J=0

= µ[1− ΛΠ1

µ
( f ′(0) +

Π2Π3

Π1
g′(0))].

Define the basic reproduction number of system (1) as

<0 =
ΛΠ1

µ
( f ′(0) +

Π2Π3

Π1
g′(0)). (15)

When R0 > 1, h′(0) < 0 and there exists at least one E∗. Then, we obtain

h′(J∗) = µ + [ f (J∗) + g(
Π2Π3

Π1
J∗)] + [J∗ −ΛΠ1][ f ′(J∗) +

Π2Π3

Π1
g′(

Π2Π3

Π1
J∗)]

and

h′′(J∗) = 2[ f ′(J∗) +
Π2Π3

Π1
g′(

Π2Π3

Π1
J∗)] + [J∗ −ΛΠ1][ f ′′(J∗) +

Π2Π3

Π1
g′′(

Π2Π3

Π1
J∗)] > 0.

Thus, there exists one unique positive equilibrium E∗. This yields the following theorem.

Theorem 5. System (1) always exists a disease-free steady state E0 = (S0, 0, 0). Furthermore,
another endemic steady state E∗ = (T∗, i∗(a), V∗) exists if <0 > 1.

3.2. Local Stability of Equilibria

The global asymptotical stability of equilibria is conducive to forecasting the trends
of epidemics [29–35]. For this, we first focus on the local stability by exploring the corre-
sponding characteristic equations.

Theorem 6. The infection-free equilibrium is locally asymptotically stable when R0 < 1. The
infection equilibrium is locally asymptotically stable when R0 > 1.

Proof. The characteristic equation for the linearized part of system (1) with boundary
conditions (2) on (S0, 0, 0) is

(λ + µ)(−1 + S0 f ′(0)π1(λ) + S0g′(0)π2(λ)π3(λ)) = 0, (16)

where

π1(λ) =
∫ ∞

0
k(a)e−λav1(a)da,

π2(λ) =
∫ ∞

0
q(b)e−λbv2(b)db,

π3(λ) =
∫ ∞

0
ξ(a)e−λav1(a)da.
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Then, if R0 < 1, all roots of the characteristic equation (16) have negative parts. If not,
that is, if there exists a λ0 such that Reλ0 ≥ 0, then

− 1 + S0 f ′(0)π1(λ) + S0g′(0)π2(λ)π3(λ)

≤ΛΠ1

µ
[ f ′(0) +

Π2Π3

Π1
g′(0)]− 1 = R0 − 1 < 0.

This is a contradiction with equation (16). Thus, the infection-free equilibrium is
locally asymptotically stable when R0 < 1.

Similarly, for R0 > 1, combining the linearization of the system on (S∗, i∗(a), p∗(b)),
the corresponding characteristic equation of the linearization for system (1) is

(λ + µ + f (J∗) + g(Q∗))/(λ + µ) = S∗ f ′(J∗)π1(λ) + S∗g′(Q∗)π2(λ)π3(λ). (17)

Now we assume that system (17) has one characteristic root with a positive real root.
Since J∗ = i∗(0)Π1, Q∗ = p∗(0)Π2, Π3 =

∫ ∞
0 ξ(a) i∗(a)

i∗(0)da and p∗(0) =
∫ ∞

0 ξ(a)i∗(a)da,
we have

|S∗ f ′(J∗)π1(λ) + S∗g′(Q∗)π2(λ)π3(λ)| ≤
∣∣∣∣S∗ f (J∗)

J∗
Π1(λ) + S∗

g(Q∗)
Q∗

Π2(λ)Π3(λ)

∣∣∣∣
≤
∣∣∣∣S∗ f (J∗)

i∗(0)
+

S∗g(Q∗)
p∗(0)

Π3

∣∣∣∣
= 1.

This is a contradiction with Equation (17). Thus, E∗ is locally asymptotically stable
when R0 > 1.

4. Global Stability of Equilibria

For the proof of the global attractiveness of equilibria, we apply the Lyapunov func-
tional method. For the invariance principle, we have investigated the relative compactness
of the orbits. For the well-posedness of Lyapunov functionals, the uniform persistence of
system should also be discussed.

4.1. Uniform Persistence

In this section, we aim to investigate the uniform persistence of system (1). Define

M = {(S, (0, i), (0, p)) ∈ Ξ : S(t) +
∫ ∞

0
i(t, a)da +

∫ ∞

0
p(t, b)db > 0}

and ∂M = Ξ\M.

Lemma 3. The subsets M and ∂M are both positively invariant under the semiflow {U (t)}t≥0
generated by system (1) on χ0+, that is,

U (t)M ⊂ M,U (t)∂M ⊂ ∂M.

Moreover, for each ξ ∈ ∂M,U (t)ξ → E0 as t→ +∞.
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Proof. Let G(t) =
∫ ∞

0 i(t, a)da +
∫ ∞

0 p(t, b)db. For any ς = (S(t), (0, i(t, a)), (0, p(t, b))) ∈
M, we have

dG(t)
dt

=
∫ ∞

0

(
−δ(a)i(t, a)− ∂i(t, a)

∂a

)
da +

∫ ∞

0

(
−γ(b)p(t, b)− ∂p(t, b)

∂b

)
db

=−
∫ ∞

0
δ(a)i(t, a)da + i(t, 0)−

∫ ∞

0
γ(b)p(t, b)db + p(t, 0)

≥− δ
∫ ∞

0
i(t, a)da− γ

∫ ∞

0
p(t, b)db

=−max{δ, γ}G(t).

For any ς = (S(t), (0, i(t, a)), (0, p(t, b))) ∈ M, we have G(0) > 0. Thus, G(T) ≥
G(0)e−max{δ,γ} > 0 and then we have U (t)M ⊂ M. Thus, M is positively invariant.

In the following, we try to prove that U (t)∂M ⊂ ∂M. For any
ς = (S0(t), (0, i0(t, a)), (0, p0(t, b))) ∈ ∂M, we have

0 ≤
∫ ∞

0
i(t, a)da =

∫ t

0
i(t− a, 0)v1(a)da +

∫ ∞

t
i(0, a− t)

v1(a)
v1(a− t)

da ≤ 0

and

0 ≤
∫ ∞

0
p(t, b)db =

∫ t

0
p(t− b, 0)v2(b)db +

∫ ∞

t
p(0, b− t)

v2(b)
v2(b− t)

db ≤ 0.

Thus,
∫ ∞

0 i(t, a)da = 0 and
∫ ∞

0 p(t, b)db = 0.

Then we obtain the following theorem by means of [36].

Theorem 7. If R0 > 1, then the semiflow {U (t)}t≥0 is uniformly persistent with respect to the
pair (∂M, M), that is, there exists ε > 0, such that lim inf

t→∞
d(U (t)ξ, ∂M) ≥ ε, ∀ξ ∈ M.

Proof. We need to verify that Ws(E0)
⋂

M = ∅, where

Ws(E0) = {ξ ∈ Ω : lim
t→∞
U (t)ξ = E0}.

Suppose there exists ξ0 ∈Ws(E0)
⋂

M. Then, there exists a t1, such that∫ ∞

0
i(t1, a)da +

∫ ∞

0
p(t1, b)db > 0.

Since M is an invariant set, we have∫ ∞

0
i(t, a)da +

∫ ∞

0
p(t, b)db > 0, ∀t > t1.

Since ξ0 ∈Ws(E0), we have lim
t→∞

S(t) = S0. Thus, for ε0 > 0, there exists t2, such that

S(t) > S0 − ε0, ∀t ≥ t2.

Let H(t) =
∫ ∞

0 σ(a)i(t, a)da +
∫ ∞

0 $(b)p(t, b)db, where

σ(a) =
∫ ∞

a
[S0 f ′(0)k(u) + $(0)ξ(u)]e−

∫ u
a δ(τ)dτdu,

$(b) =
∫ ∞

b
S0g′(0)q(v)e−

∫ v
b γ(τ)dτdv.
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Then we have

H′(t) =
∫ ∞

0
σ(a)

∂i(t, a)
∂t

da +
∫ ∞

0
$(b)

∂p(t, b)
∂b

db

=σ(0)i(t, 0) +
∫ ∞

0
i(t, a)[σ′(a)− σ(a)δ(a)]da

+ $(0)p(t, 0) +
∫ ∞

0
p(t, b)[$′(b)− $(b)γ(b)]db

=σ(0)i(t, 0)−
∫ ∞

0
i(t, a)[S0 f ′(0)k(a)− $(0)ξ(a)]da

+ $(0)p(t, 0)−
∫ ∞

0
p(t, b)S0g′(0)q(b)db.

Since p(t, 0) =
∫ ∞

0 i(t, a)ξ(a)da, i(t, 0) = S f (J) + Sg(Q) and

σ(0) = S0 f ′(0)Π1 + $(0)Π3 =
Λ
µ

Π1[ f ′(0) +
Π2Π3

Π1
g′(0)] = <0,

we further have for a sufficiently large t,

H′(t) =σ(0)i(t, 0)− S0 f ′(0)
∫ ∞

0
i(t, a)k(a)da− S0g′(0)

∫ ∞

0
p(t, b)q(b)db

=σ(0)[S f (J) + Sg(Q)]− S0 f ′(0)J − S0g′(0)Q

=[σ(0)S f (J)− S0 f ′(0)J] + [σ(0)Sg(Q)− S0g′(0)Q]

≥[σ(0)(S0 − ε0) f (J)− S0 f ′(0)J] + [σ(0)(S0 − ε0)g(Q)− S0g′(0)Q]

=S0[σ(0)(1−
ε0

S0
) f (J)− f ′(0)J] + S0[σ(0)(1−

ε0

S0
)g(Q)− g′(0)Q]

≥0.

This indicates that H(t) is a non-decreasing function for a sufficiently large t. Hence,
for a sufficiently large t, H(t) > 0, which prevents the orbits from converging to E0 as
t→ +∞. This contradicts ξ0 ∈Ws(E0).

4.2. Global Stability of the Infection-Free Equilibrium

This subsection explores the global stability of the infection-free equilibrium E0.

Theorem 8. E0 is globally asymptotically stable when <0 < 1.

Proof. Define the Liapunov function L(t) = L1(t) + L2(t) + L3(t), with

L1(t) = S(t)− S0 − S0 ln(
S(t)
S0

), L2(t) =
∫ ∞

0
σ(a)i(t, a)da, L3(t) =

∫ ∞

0
$(b)p(t, b)db.

Then, calculating the derivatives of Li(t), i = 1, 2, 3, along the trajectories of
system (1) gives

dL1

dt
=− µ

S(t)
(S(t)− S0)

2 − i(t, 0) + S0 f (J(t)) + S0g(Q(t))

≤− µ

S(t)
(S(t)− S0)

2 − i(t, 0)

+ S0 f ′(0)
∫ ∞

0
k(a)i(t, a)da + S0g′(0)

∫ ∞

0
q(b)p(t, b)db,

(18)
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and

dL2

dt
=
∫ ∞

0
σ(a)(−δ(a)i(t, a)− ∂i(t, a)

∂a
)da

= −
∫ ∞

0
σ(a)δ(a)i(t, a)da−

∫ ∞

0
σ(a)di(t, a)

= σ(0)i(t, 0) +
∫ ∞

0
i(t, a)(σ′(a)− σ(a)δ(a))da,

(19)

and similarly

dL3

dt
= $(0)p(t, 0) +

∫ ∞

0
p(t, b)($′(b)− $(b)γ(b))db. (20)

Since σ′(a) = −[S0 f ′(0)k(a) + $(0)ξ(a)] + δ(a)σ(a) and $′(b) = −S0g′(0)q(b) +
γ(b)$(b), we further have

dL
dt

=
dL1

dt
+

dL2

dt
+

dL3

dt

≤− µ

S(t)
(S(t)− S0)

2 − i(t, 0) + σ(0)i(t, 0)

+
∫ ∞

0
i(t, a)[S0 f ′(0)k(a) + σ′(a)− σ(a)δ(a) + $(0)ξ(a)]da

+
∫ ∞

0
p(t, b)[S0g′(0)q(b) + $′(b)− $(b)γ(b)]db

=− µ

S(t)
(S(t)− S0)

2 + i(t, 0)[σ(0)− 1].

(21)

Thus, when <0 = σ(0) < 1, dL
dt ≤ 0. The largest invariant set of { dL

dt = 0} is singleton
{E0}. Hence, due to the invariance principle [37], E0 is globally asymptotically stable when
<0 < 1.

4.3. Global Stability of the Infection Equilibrium

In this subsection, we focus on the global stability of the infection equilibrium E∗. To
this end, we introduce a function h defined by

h(z) = z− 1− ln z, z ∈ R+.

In order to ensure that h
(

i(t,a)
i∗(a)

)
and h

(
p(t,b)
p∗(b)

)
are well-defined, we have shown that

i(t, a)/i∗(a) and p(t, b)/p∗(b) are bounded below and above through the above uniform
persistence analysis. In the following, we prove the following result.

Theorem 9. The infection equilibrium E∗ is globally asymptotically stable when <0 > 1.

Proof. Define a Lyapunov function V(t) = V1(t) + V2(t) + V3(t), where

V1(t) = S∗h(
S
S∗

)i∗(0), V2(t) =
∫ ∞

0
Γ(a)i∗(a)h(

i
i∗
)di, V3(t) =

1
Π3

∫ ∞

0
Υ(b)p∗(b)h(

p
p∗

)dp,

with

Γ(a) =
1

Π1

∫ ∞

a
S∗ f (J∗)k(u)e−

∫ u
a δ(τ)dτdu +

1
Π3

∫ ∞

a
Υ(0)ξ(u)e−

∫ u
a δ(τ)dτdu,

Υ(b) =
1

Π2

∫ ∞

b
S∗g(Q∗)q(v)e−

∫ v
b γ(τ)dτdv.
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Here, we make some preparations. Firstly, since i∗a (a) = −i∗(a)δ(a), we have

i∗(a)
d
da

[
i(t, a)
i∗(a)

− 1− ln
i(t, a)
i∗(a)

] = (1− i∗(a)
i(t, a)

)
ia(t, a)i∗(a)− i(t, a)i∗a (a)

i∗(a)

= (1− i∗(a)
i(t, a)

)[ia(t, a) + i(t, a)δ(a)].

Thus,

(1− i∗(a)
i(t, a)

)ia(t, a) = i∗(a)
d
da

[h(
i(t, a)
i∗(a)

)]− δ(a)[i(t, a)− i∗(a)]. (22)

Similarly, we have

(1− p∗(b)
p(t, b)

)pb(t, b) = p∗(b)
d
db

[h(
p(t, b)
p∗(b)

)]− γ(a)[p(t, b)− p∗(b)]. (23)

Then, calculating the derivative of V1 along system (1) gives

dV1

dt
=[−µ

S
(S− S∗)2 + S∗ f (J∗) + S∗g(Q∗)− S f (J)− Sg(Q)

− S∗

S
S∗ f (J∗)− S∗

S
S∗g(Q∗) + S∗ f (J) + S∗g(Q)]i∗(0).

(24)

Because of equation (22), we obtain

dV2

dt
=−

∫ ∞

0
Γ(a)(1− i∗(a)

i(t, a)
)[

∂i(t, a)
∂a

+ δ(a)i(t, a)]da

=
∫ ∞

0
−Γ(a)i∗(a)

d
da

[h(
i(t, a)
i∗(a)

)]da,

=− Γ(a)i∗(a)h(
i(t, a)
i∗(a)

)|∞0 +
∫ ∞

0
h(

i(t, a)
i∗(a)

)[Γ′(a)i∗(a) + Γ(a)i∗a (a)]da

=− Γ(∞)i∗(∞)h(
i(t, ∞)

i∗(∞)
) + Γ(0)i∗(0)h(

i(t, 0)
i∗(0)

)

+
∫ ∞

0
h(

i(t, a)
i∗(a)

)[Γ′(a)i∗(a) + Γ(a)i∗a (a)]da.

Due to the fact that Γ′(a) = − 1
Π1

S∗ f (J∗)k(a)− 1
Π3

Υ(0)ξ(a) + δ(a)Γ(a) and i∗a (a) =

−i∗(a)δ(a), we have

dV2

dt
≤Γ(0)i∗(0)h(

i(t, 0)
i∗(0)

)−
∫ ∞

0
i∗(a)h(

i(t, a)
i∗(a)

)[
1

Π1
S∗ f (J∗)k(a) +

1
Π3

S∗g(Q∗)ξ(a)]da.

Since

Γ(0)i∗(0) =
1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)da +

1
Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)da,

we further have

dV2

dt
≤ 1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)[h(

i(t, 0)
i∗(0)

)− h(
i(t, a)
i∗(a)

)]da

+
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)[h(

i(t, 0)
i∗(0)

)− h(
i(t, a)
i∗(a)

)]da.
(25)

Similarly, we have
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dV3

dt
≤ 1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[h(

p(t, 0)
p∗(0)

)− h(
p(t, b)
p∗(b)

)]db. (26)

We introduce

A0 :=
1

Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)[1− i∗(0)S f (J)

i(t, 0)S∗ f (J∗)
]da

+
1

Π3

∫ ∞

0
S∗g(Q∗)ξ(a)i∗(a)[1− i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
]da.

Then we can verify that A0 = 0. Combining equations (24), (25) and (26), we can
transfer dV

dt as follows:

dV
dt

=
dV
dt

+A0 ≤A1 +A2 +A3 +A4 +A5,

where

A1 :=[−µ

S
(S− S∗)2 − S f (J)− Sg(Q)]i∗(0)

+
1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)

i(t, 0)
i∗(0)

da +
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)

i(t, 0)
i∗(0)

da,

A2 :=− 1
Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)

i(t, a)
i∗(a)

da +
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)

p(t, 0)
p∗(0)

db,

A3 :=[S∗ f (J∗)− S∗

S
S∗ f (J∗) + S∗ f (J)]i∗(0)

+
1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)[− i(t, a)

i∗(a)
− ln

i(t, 0)
i∗(0)

+ ln
i(t, a)
i∗(a)

+ 1− i∗(0)S f (J)
i(t, 0)S∗ f (J∗)

]da,

A4 :=[S∗g(Q∗)− S∗

S
S∗g(Q∗)]i∗(0)

+
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a) ln

i(t, a)
i∗(a)

da− 1
Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b) ln

p(t, 0)
p∗(0)

db,

A5 :=S∗g(Q)i∗(0) +
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[− p(t, b)

p∗(b)
+ ln

p(t, b)
p∗(b)

]db

+
1

Π3

∫ ∞

0
S∗g(Q∗)ξ(a)i∗(a)[1− i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
− ln

i(t, 0)
i∗(0)

]da.

Since S f (J) + Sg(Q) = i(t, a) and i∗(a) = v1(a)i∗(0), we have

A1 =− µ

S
(S− S∗)2i∗(0)− i(t, 0)i∗(0)

+
1

Π1
S∗ f (J∗)i(t, 0)

∫ ∞

0
v1(a)k(a)da +

1
Π3

S∗g(Q∗)i(t, 0)
∫ ∞

0
v1(a)ξ(a)da

=− µ

S
(S− S∗)2i∗(0) ≤ 0.

(27)

Due to
∫ ∞

0 ξ(a)i(t, a)da = p(t, 0) and
∫ ∞

0 v2(b)q(b)db = Π2, we obtain

A2 = − 1
Π3

S∗g(Q∗)
∫ ∞

0
ξ(a)i(t, a)da +

1
Π2Π3

S∗g(Q∗)p(t, 0)
∫ ∞

0
v2(b)q(b)db = 0. (28)

Since i∗(0) = 1
Π1

∫ ∞
0 k(a)v1(a)i∗(0)da = 1

Π1

∫ ∞
0 k(a)i∗(a)da = J∗

Π1
, we obtain

A3 =
1

Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)[−h(

S∗

S
)− h(

i∗(0)S f (J)
i(t, 0)S∗ f (J∗)

)− h(
i(t, a)
i∗(a)

) + h(
f (J)
f (J∗)

)],
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and

1
Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)h(

i(t, a)
i∗(a)

)da = S∗ f (J∗)
∫ ∞

0

k(a)i∗(a)∫ ∞
0 k(a)v1(a)da

h(
i(t, a)
i∗(a)

)da

=S∗ f (J∗)i∗(0)
∫ ∞

0

k(a)i∗(a)
J∗

h(
i(t, a)
i∗(a)

)da ≥ S∗ f (J∗)i∗(0)h(
J(t)
J∗

).

Then, we have

A3 ≤
1

Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)[−h(

S∗

S
)− h(

i∗(0)S f (J)
i(t, 0)S∗ f (J∗)

)]da

+ S∗ f (J∗)i∗(0)[h(
f (J)
f (J∗)

)− h(
J
J∗
)] ≤ 0.

(29)

Due to p∗(0) =
∫ ∞

0 ξ(a)i∗(a)da, Π2 =
∫ ∞

0 v2(b)q(b)db and

∫ ∞

0
i∗(a)ξ(a)[1− i(t, a)p∗(0)

i∗(a)p(t, 0)
]da =

∫ ∞

0
i∗(a)ξ(a)da− p∗(0)

1
p(t, 0)

∫ ∞

0
ξ(a)i(t, a)da = 0,

we have

A4 =
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)[−h(ln

S∗

S
)− h(ln

i(t, a)p∗(0)
i∗(a)p(t, 0)

) + ln
S
S∗

]da

≤ 1
Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a) ln

S
S∗

da.

Thus, combining A4 and A5 yields

A4 +A5 ≤
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)

g(Q)

g(Q∗)
da

+
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)[1− i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
+ ln

S
S∗
− ln

i(t, 0)
i∗(0)

]da

+
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[ln

p(t, b)
p∗(b)

− p(t, b)
p∗(b)

]db.

Then, due to 1
Π2

∫ ∞
0 p∗(b)q(b)db = 1

Π2

∫ ∞
0 p∗(0)v2(b)q(b)db =

∫ ∞
0 i∗(a)ξ(a)da and

h(
p(t, b)
p∗(b)

) =
∫ ∞

0

q(b)p∗(b)
Π2 p∗(0)

h(
p(t, b)
p∗(b)

)db ≥ h

(∫ ∞
0 q(b)p(t, b)db∫ ∞
0 q(b)p∗(b)db

)
= h(

Q
Q∗

),

we further obtain

A4 +A5 ≤
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)×

[−h(
i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
) + h(

g(Q)

g(Q∗)
)− h(

p(t, b)
p∗(b)

)]db

=
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[−h(

i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
)]db

+
1

Π3
S∗g(Q∗)p∗(0)[h(

g(Q)

g(Q∗)
)− h(

p(t, b)
p∗(b)

)]db

≤0.

(30)
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From Equations (27)–(30), we have dV
dt ≤ 0 and the largest invariant subset of set{

dV
dt = 0

}
is {E∗}. Due to the invariance principle [37], we conclude that E∗ is globally

asymptotically stable if it exists.

5. Numerical Simulations

In this section, as a special case for the age-infection model (1), we consider the
following model:



dS(t)
dt

= Λ− µS(t)−
S(t)

∫ ∞
0 k(a)i(t, a)da∫ ∞

0 k(a)i(t, a)da + A
− S(t)

∫ ∞

0
q(b)p(t, b)db,

∂i(t, a)
∂t

+
∂i(t, a)

∂a
= −δ(a)i(t, a),

∂p(t, b)
∂t

+
∂p(t, b)

∂b
= −γ(b)p(t, b),

(31)

with the initial condition (3) and the following boundary conditions

i(t, 0) =
S(t)

∫ ∞
0 k(a)i(t, a)da∫ ∞

0 k(a)i(t, a)da + A
+ S(t)

∫ ∞

0
q(b)p(t, b)db, t > 0,

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da, t > 0.

Following (15), the basic reproduction number of system (31) is

<1 =
Λ

Aµ
Π1 +

Λ
µ

Π2Π3.

From Theorems 8 and 9, we obtain the following corollary:

Corollary 1. When <1 < 1, model (31) generates unique infection-free equilibrium E0
1, which is

globally asymptotically stable. When <1 > 1, model (31) has E0
1 and a globally asymptotically

stable infection equilibrium E∗1 .

To verify the result, we perform numerical simulations. Following [6,7] and references
therein, with some assumptions, we adopt the following coefficients, for 0 ≤ a, b ≤ 10,

Λ = 1000, µ = 10−5, A = 105, ξ(a) = 1 + sin
(a− 5)π

10
,

δ(a) = 0.2
(

1 + sin
(a− 5)π

10

)
, γ(b) = 0.3

(
1 + sin

(b− 5)π
10

)
,

k(a) = k
(

1 + sin
(a− 5)π

10

)
, q(b) = q

(
1 + sin

(b− 5)π
10

)
.

Let k = 10−5and observe the dynamical behavior of the model when q varies. Let
q = 10−4 decrease to q = 10−10 . The globally asymptotically stable E∗1 changes to be
unstable and the epidemic is inhibited effectively, which can be seen in Figures 1 and 2.
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Figure 1. The long-term dynamical behavior of i(t, a) and p(t, b) as q = 10−4.
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Figure 2. The long-term dynamical behavior of i(t, a) and p(t, b) for a = b = 5 as q = 10−10.

6. Conclusions and Discussion

In this paper, an age-structured model of cholera infection was explored. By con-
sidering general infection functions, the discussion provided in this paper serves as a
generalization and supplement to the work presented in F. Brauer et al. [12]. We applied
the Lyapunov functional method to show that the global stability of equilibria are deter-
mined by the basic reproduction number <0. The infection-free equilibrium is globally
asymptotically stable if <0 is less than one, whereas a globally asymptotically stable infec-
tion equilibrium emerges if <0 is greater than one. This shows that both the direct contact
with infected individuals and indirect pathogen infection have vital effects on cholera
epidemics. It is significant to implement effective treatment for infected individuals and to
clean pathogens from contaminated water in a timely fashion. More specifically, for the
critical case when <0 equals one, further bifurcation studies are needed.

In our model, vaccinated individuals and vaccination age have not been incorporated,
which play vital effects on the spread of cholera. Furthermore, the immigration of infected
individuals plays a significant role in the outbreak and infection of cholera. For the
actual control and elimination of cholera, it is necessary to take into account the effects
of vaccination and immigration [5,38]. Thus, our future work will consider these factors
and focus on their effects on cholera transmission. In addition to qualitative analyses,
tremendous amounts of works on numerical methods have been proposed and developed
to deal with various epidemic models [39–41], which provide us with more aspects and
methods to analyze in relation to this model.
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