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1. Introduction

It is well known that the study of Ulam stability began in 1940, with a problem posed
by Ulam concerning the stability of homomorphisms [1]. In 1941, Hyers [2] gave a partial
answer in the case of the additive Cauchy equation in Banach spaces.

After that, Obloza [3] and Alsina and Ger [4] began the study of the Hyers—Ulam
stability of differential equations. The field continued to develop rapidly. Linear differential
equations were studied in [5-7], integral equations in [8], delay differential equations in [9],
linear difference equations in [10,11], other equations in [12], and systems of differential
equations in [13]. A summary of these results can be found in [14].

The Hyers—-Ulam stability of linear differential equations was studied using the
Laplace transform by H. Rezaei, S. M. Jung, and Th. M. Rassias [15], and by Q. H. Algifiary
and S. M. Jung [16]. This method was also used in [17-19].

The study of the stability of partial differential equations began in 2003, with the
paper [20] of A. Prastaro and Th.M. Rassias. The Ulam-Hyers stability of partial differential
equations was also studied in [21-26].

In [27], M. N. Qarawani used the Laplace transform to establish the Hyers—Ulam-Rassias—
Gavruta stability of initial-boundary value problem for heat equations on a finite rod:

ou _ ,0%u

g_aﬁ,t>o,0<x<l.

In [28], D.O. Deborah and A. Moyosola studied nonlinear, nonhomogeneous partial

differential equations using the Laplace differential transform method:
2

t

% + a,(x)Rw(x, t) + by (x)Sw(x, t) = f(x,t),t >0,x >0,n €N,

where a,(x), b, (x) are variable coefficients, n € N, R is the linear operator, S is the nonlin-
ear operator, and f(x, t) is the source function.
In [29], E. Bicer used the Sumudu transform to study the equation:

Yt — kyxx = 0,k a positive real constant, (x,¢) € D, D = (xg, x] x (0, 00).
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In [30], the Poisson partial differential equation

uxx (%, ) + uyy(x,y) = g(x,y)

is studied via the double Laplace transform method (DLTM).

In the following sections, we will study the semi-Hyers-Ulam—Rassias stability and
the generalized semi-Hyers—-Ulam—Rassias stability of some partial differential equations
using Laplace transform. One of them is the convection partial differential equation:

a—y—Hza—y:O,a>0,x>0,t>0,y(0,t):c, y(x,0) =0. 1)
ot ox

A physical interpretation [31] of these equations is a river of solid goo, since we do
not want anything to diffuse. The function y = y(x, t) is the concentration of some toxic
substance. The variable x denotes the position where x = 0 is the location of a factory
spewing the toxic substance into the river. The toxic substance flows into the river so that at
x = 0, the concentration is always C. We also study the semi-Hyers-Ulam-Rassias stability
of the following equation:

dy  dy _ _ —
§+£fx_o,x>o,t>0,y(0,t)—O,y(x,O)—0~ @)

Our results regarding Equation (1) complete those obtained by S.-M. Jung and K.-S.
Lee in [22]. In [22], the following equation:

aayg’;’ J bay(a’;'t) boy(x,)+d =0, abeR, b£0, cd€C withR(c) £0, (3)

where R(c) denotes the real part of ¢, was studied. In our paper, we consider the case ¢ = 0
in Equation (3). Moreover, we also study the generalized stability. The method used in [22]
was the method of changing variables.

2. Preliminaries

We first recall some notions and results regarding the Laplace transform.
Let f : (0,00) — R be a piecewise differentiable and of exponential order, that is
dM > 0 and ¢ > 0 such that

If(H)] < M-e™', Vt>o0.

We denote by L[f] the Laplace transform of the function f, defined by

L[f)(s) = F(s) = /0 " F(B)e .
Let

0, if £<0
”(t)_{l, if >0

be the unit step function of Heaviside. We write f(0) instead of the lateral limit f(0"). The
following properties are used in the paper:

o
"~
=
—~

195}
~—
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hence,

L7 F($))() = £t~ a)u(t - a).

We now consider the function y : (0,00) x (0,00) — R,y = y(x,t), a piecewise

differentiable and of exponential order with respect to t. The Laplace transform of y with
respect to f is as follows:

Lly(x )] = [y e,

where x is treated as a constant. We also denote the following:
Lly(x,t)]=Y(x,s) =Y(x)=Y.

We treat Y as a function of x, leaving s as a parameter. We then have the following:

L [gﬂ =sY(x,s) —y(x,0),
2
L Bg] = s2Y(x,s) — sy(x,0) — g—z(x,O).

Since we transform with respect to ¢, we can move % to the front of the integral; hence,
we have:

ay| dy _,
E[ax] = Y'(x).
Similarly,

BZy B Ooazy st -~ d [e} . _ dy o
£|:ax2:| —Jo ﬁe dt_@/O y(x,t)e dt—@_l/ (x).

For the Laplace transform properties and applications, see [31,32].

3. Semi-Hyers-Ulam—Rassias Stability of the Convection Partial Differential Equation
Let ¢ > 0. We also consider the following inequality:

dy  dy
Z sl <
T +”ax’ =&

4)
or the equivalent
d 9
—e< Xy <o
TR T ©
Analogous to [33], we give the following definition:

Definition 1. The Equation (1) is called semi-Hyers—Ulam—Rassias stable if there exists a function
¢ : (0,00) x (0,00) — (0, 00), such that for each solution y of the inequality (4), there exists a
solution y for the Equation (1) with

ly(x,t) —yo(x, 1) < @(x,t), ¥x>0,t>0.

Theorem 1. Ifa function y : (0,00) x (0,00) — R satisfies the inequality (4), then there exists a
solution yg : (0,00) x (0,00) — R for (1), such that

et, t <
vt —wlx o< { 745

that is, the Equation (1) is considered semi-Ulam—Hyers—Rassias stable.

Q=DIR

(6)
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Proof. We apply the Laplace transform with respect to ¢ in (5); thus, we have the following:

—Z <sY(x) —y(x,0) +aY'(x) < S

Since y(x,0) = 0, dividing by a we get the following:

& S &
<y 2y (x) < —.
as (X) + a (X) —as

We now multiply by ea* and we obtain this equation:

£ < eixY’(x) + Zeng(x) < aise%x,

hence,

as — dx

that is,

S S
ea* 1 s c ea® 1
—e —= | <e*Y(x)—-<e -= .
<52 52>_ (%) 5 = <52 sz>

We now multiply by e~ 2" and we obtain the equation below:

1 e~ a* e a¥ 1 e a¥
-l 5—— | <Y(x)—c <el5——|-
<52 s2 > <Y(x) s = <52 52 )

We apply the inverse Laplace transform and we obtain the following:

) ET T I B 1 W )
T e )z (a6

e -co(--{

This is the solution of (1) and the equation below:

We then put

[[RQR

et, t <
vt —wlx o< { 245

QxR
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4. Generalized Semi-Hyers-Ulam-Rassias Stability of the Convection Partial
Differential Equation

Let ¢ : (0,00) x R — (0,00), and L[p(x,t)] = P(x,s). We consider the following
inequality:

ay oy
ot “ax‘ (P(x't)' @)
or the equivalent
—¢(x t)<—ay+a—ay<4)(x t), Vx>0,t>0 8)
! ot dx Y ! ’

Definition 2. The Equation (1) is called generalized semi-Hyers—Ulam—Rassias stable if there
exists a function ¢ : (0,00) x (0,00) — (0, c0), such that for each solution y of the inequality (7),
there exists a solution y for the Equation (1) with

ly(x,t) —yo(x, 1) < @(x,t), ¥x>0,t>0.
Theorem 2. Assume that

x S
/ ed*®(x,s)dx < d(x,s), Vx>0,5> 0. )
0

If a function y : (0,00) x (0,00) — R satisfies the inequality (7), then there exists a solution
Yo : (0,00) x (0,00) — R for (1), such that

1 X
— < = - —
ly(x,t) — yo(x, 1) < a4><x,t a), Vx> 0,t >0,
that is, the Equation (1) is considered generalized semi-Hyers—Ulam—Rassias stable.

Proof. We apply the Laplace transform with respect to ¢ in (8), so we have the following:
—®(x,s) <sY(x) —y(x,0) +aY'(x) < P(x,s).
Since y(x,0) = 0, dividing by a we get the equation below:

1

1 , S
—adD(x,s) <Y'(x)+ EY(X) < afb(x,s).

We now multiply by es* and we obtain the following:

s

ea
a

E%x s S s *
—Td)(x,s) <ed*Y'(x)+ Eeﬁ"Y(x) <

D(x,s),

hence, .
ea* d /s ea*

< —(ea” < — )
p D(x,s) < I (e Y(x)) < - d(x,s)

Integrating from 0 to x we get the following equation:

X

x S S
—1/ ea*®(x,s)dx < ea*Y(x)

1 s
§/ —ea*P(x,s)dx.
a o 0 a

0

Using (9), we have

—_

—%(D(x,s) < e%xy(x) -Y(0) < ECD(x,s).
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But Y(0) = L[y(0,t)] = L[c] = £, so we obtain
1 s c 1
——P <ed'Y(x)— - < - .
“(x,5) < eV (x) - £ < - (x,)
We now multiply by e~ a* and we obtain the following equation:
1 s —ax 1 _s
—=e " P(x,5) < Y(x) — cf < —em ¥ P(x,s).
a s a
We apply the inverse Laplace transform and we obtain:
1 x x 1 x
—p(et=7) sven—eu(e-2) < o(vi- 7).
that is,
x 1 x
—c- )| < =2 —Z).
'y(x,t) ¢ u(t a)‘ - a(P(x't a)
We then put the following;:
(x,1) —c-u(t—§> RN
YolX,t) = a/ | et>2
This is the solution of Equation (1) and the equation below:
ly(x, ) — cyo(x t‘)|<1 (x t—f)
y 4 yO ’ = a4) 7 a .
O
5. Semi-Hyers-Ulam-Rassias Stability of Equation (2)
Let ¢ > 0. We also consider the following inequality:
Yy 9y
Zi <
‘at —l—ax x’ <eg, (10)
or the equivalent
Y 9y
—e< =4+ = —x<e 11
TR (an

Definition 3. The Equation (2) is called semi-Hyers—Ulam—Rassias stable if there exists a function
@ : (0,00) x (0,00) — (0,00), such that for each solution y of the inequality (10), there exists a
solution y for the Equation (2) with the following:

ly(x,t) —yo(x,t)] < @(x,t), Vx>0,t>0.

Theorem 3. If a function y : (0,00) x (0,00) — R satisfies the inequality (10), then there exists
a solution yq : (0,00) x (0,00) — R for (2), such that

et, t<x
ex, t > x

(5, ) — ol t)] < { ,

that is, the Equation (2) is considered semi-Hyers—Ulam—Rassias stable.

Proof. We apply the Laplace transform with respect to t in (11), so we have the equation below:

—z <sY(x) —y(x,0) +Y'(x) —x

<

0| =
» | m
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Since y(x,0) = 0, we get the following;:

_fc Y'(x) +sY(x) —x

<
s

@ | =
“» | m

We now multiply by ¢** and we obtain the following equation:

e , eSX €
—=e"F <MY (x) +5e7Y (x) —x— < =€t
s s s
hence
l sesx < d (eSXY(x)) xesx < gesx
s T dx s — s

Integrating from 0 to x, we get the following;:

X

x 1 g es |x
< est(x)‘ - 7/ xe*¥dx < -—| .
0 0 5.J0 S

Integrating by parts, we get the equation below:

X (xs —1)e* 1
xeFdx = 52— + 5,
./o s2 + s2

e eSX

s S

hence,

et 1 1[(xs—1)e* 1 e 1
—£<Sz—sz)§est(x)—Y(0)—[sz+SZ} Ss( - >

s 2 s2

But Y(0) = L[y(0,t)] = 0, so we obtain the following:

et 1 1[(xs—1)e* 1 e’ 1
(5ot A5 2)

s2  s?

We now multiply by e~** and we obtain the following:

1 e 1[xs—1 e™5* 1 e
“(e-F) -5 =G w)

52

hence,

1 e x 1 e 1 e
—8(52_ 52>§Y(x)_52+53_s3§£< )

2 s2
We apply the inverse Laplace transform and we obtain the following equation:
1, 1 2
—e[t — (t—x)u(t—x)] <y(x,t)—xt+ Et - E(t —x)u(t—x) <eft—(t—x)u(t —x)].

We then put the following:

1

_ 1o, 1 2 a2 r<x
yo(x,t)—xt—it +§(t—x) u(t—x)—{ 12 £ > x

This is the solution of (2) and the equation below:

et, t < x
wixt - o< { 5 45%
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6. Conclusions

In this paper, we studied the semi-Hyers-Ulam-Rassias stability of Equations (1)
and (2) and the generalized semi-Hyers—-Ulam—Rassias stability of Equation (1) using the
Laplace transform. To the best of our knowledge, the Hyers-Ulam-Rassias stability of
Equations (1) and (2) has not been discussed in the literature with the use of the Laplace
transform method. Our results complete those of Jung and Lee [22]. In [22], the Equation (3)
was studied for R(c) # 0. We considered the case ¢ = 0 in Equation (3). We can apply
our results to the convection equation in the sense that for every solution y of (4), which
is called an approximate solution, there exists an exact solution yg of (1), such that the
relation (6) is satisfied. From a different perspective, the approximate solution can be
viewed in relation to the perturbation theory, as any approximate solution of (4) is an
exact solution of the perturbed equation % + ag—% = h(x,t), |h(x,t)| <e a>0 x>0,
t>0, y(0,t) =¢c, y(x,0) =0.

We intend to study other partial differential equations as well as other integro-differential
equations using this method. We have already applied this method to [34], where we inves-
tigated the semi-Hyers—Ulam—Rassias stability of a Volterra integro-differential equation of
order I with a convolution-type kernel.
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