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1. Introduction

It is well known that the study of Ulam stability began in 1940, with a problem posed
by Ulam concerning the stability of homomorphisms [1]. In 1941, Hyers [2] gave a partial
answer in the case of the additive Cauchy equation in Banach spaces.

After that, Obloza [3] and Alsina and Ger [4] began the study of the Hyers–Ulam
stability of differential equations. The field continued to develop rapidly. Linear differential
equations were studied in [5–7], integral equations in [8], delay differential equations in [9],
linear difference equations in [10,11], other equations in [12], and systems of differential
equations in [13]. A summary of these results can be found in [14].

The Hyers–Ulam stability of linear differential equations was studied using the
Laplace transform by H. Rezaei, S. M. Jung, and Th. M. Rassias [15], and by Q. H. Alqifiary
and S. M. Jung [16]. This method was also used in [17–19].

The study of the stability of partial differential equations began in 2003, with the
paper [20] of A. Prastaro and Th.M. Rassias. The Ulam–Hyers stability of partial differential
equations was also studied in [21–26].

In [27], M. N. Qarawani used the Laplace transform to establish the Hyers–Ulam–Rassias–
Gavruta stability of initial-boundary value problem for heat equations on a finite rod:

∂u
∂t

= a2 ∂2u
∂x2 , t > 0, 0 < x < l.

In [28], D.O. Deborah and A. Moyosola studied nonlinear, nonhomogeneous partial
differential equations using the Laplace differential transform method:

d2w(x, t)
dt2 + an(x)Rw(x, t) + bn(x)Sw(x, t) = f (x, t), t > 0, x > 0, n ∈ N,

where an(x), bn(x) are variable coefficients, n ∈ N, R is the linear operator, S is the nonlin-
ear operator, and f (x, t) is the source function.

In [29], E. Bicer used the Sumudu transform to study the equation:

yt − kyxx = 0, k a positive real constant, (x, t) ∈ D, D = (x0, x]× (0, ∞).
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In [30], the Poisson partial differential equation

uxx(x, y) + uyy(x, y) = g(x, y)

is studied via the double Laplace transform method (DLTM).
In the following sections, we will study the semi-Hyers–Ulam–Rassias stability and

the generalized semi-Hyers–Ulam–Rassias stability of some partial differential equations
using Laplace transform. One of them is the convection partial differential equation:

∂y
∂t

+ a
∂y
∂x

= 0, a > 0, x > 0, t > 0, y(0, t) = c, y(x, 0) = 0. (1)

A physical interpretation [31] of these equations is a river of solid goo, since we do
not want anything to diffuse. The function y = y(x, t) is the concentration of some toxic
substance. The variable x denotes the position where x = 0 is the location of a factory
spewing the toxic substance into the river. The toxic substance flows into the river so that at
x = 0, the concentration is always C. We also study the semi-Hyers–Ulam–Rassias stability
of the following equation:

∂y
∂t

+
∂y
∂x
− x = 0, x > 0, t > 0, y(0, t) = 0, y(x, 0) = 0. (2)

Our results regarding Equation (1) complete those obtained by S.-M. Jung and K.-S.
Lee in [22]. In [22], the following equation:

a
∂y(x, t)

∂x
+ b

∂y(x, t)
∂t

+ cy(x, t) + d = 0, a, b ∈ R, b 6= 0, c, d ∈ C, with <(c) 6= 0, (3)

where <(c) denotes the real part of c, was studied. In our paper, we consider the case c = 0
in Equation (3). Moreover, we also study the generalized stability. The method used in [22]
was the method of changing variables.

2. Preliminaries

We first recall some notions and results regarding the Laplace transform.
Let f : (0, ∞) → R be a piecewise differentiable and of exponential order, that is

∃M > 0 and α0 ≥ 0 such that

| f (t)| ≤ M · eα0t, ∀t > 0.

We denote by L[ f ] the Laplace transform of the function f , defined by

L[ f ](s) = F(s) =
∫ ∞

0
f (t)e−stdt.

Let

u(t) =
{

0, if t ≤ 0
1, if t > 0

be the unit step function of Heaviside. We write f (0) instead of the lateral limit f (0+). The
following properties are used in the paper:

L[tn](s) =
n!

sn+1 , s > 0, n ∈ N,

L−1
[

1
sn

]
(t) =

tn−1

(n− 1)!
u(t),

L[ f ′](s) = sL[ f ](s)− f (0),

L[ f (t− a)u(t− a)](s) = e−asF(s), a > 0,
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hence,
L−1[e−asF(s)](t) = f (t− a)u(t− a).

We now consider the function y : (0, ∞) × (0, ∞) → R, y = y(x, t), a piecewise
differentiable and of exponential order with respect to t. The Laplace transform of y with
respect to t is as follows:

L[y(x, t)] =
∫ ∞

0
y(x, t)e−stdt,

where x is treated as a constant. We also denote the following:

L[y(x, t)] = Y(x, s) = Y(x) = Y.

We treat Y as a function of x, leaving s as a parameter. We then have the following:

L
[

∂y
∂t

]
= sY(x, s)− y(x, 0),

L
[

∂2y
∂t2

]
= s2Y(x, s)− sy(x, 0)− ∂y

∂t
(x, 0).

Since we transform with respect to t, we can move ∂
∂x to the front of the integral; hence,

we have:

L
[

∂y
∂x

]
=

dY
dx

= Y′(x).

Similarly,

L
[

∂2y
∂x2

]
=
∫ ∞

0

∂2y
∂x2 e−stdt =

d
dx2

∫ ∞

0
y(x, t)e−stdt =

dY
dx2 = Y′′(x).

For the Laplace transform properties and applications, see [31,32].

3. Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation

Let ε > 0. We also consider the following inequality:∣∣∣∣∂y
∂t

+ a
∂y
∂x

∣∣∣∣ ≤ ε, (4)

or the equivalent

− ε ≤ ∂y
∂t

+ a
∂y
∂x
≤ ε. (5)

Analogous to [33], we give the following definition:

Definition 1. The Equation (1) is called semi-Hyers–Ulam–Rassias stable if there exists a function
ϕ : (0, ∞)× (0, ∞) → (0, ∞), such that for each solution y of the inequality (4), there exists a
solution y0 for the Equation (1) with

|y(x, t)− y0(x, t)| ≤ ϕ(x, t), ∀x > 0, t > 0.

Theorem 1. If a function y : (0, ∞)× (0, ∞)→ R satisfies the inequality (4), then there exists a
solution y0 : (0, ∞)× (0, ∞)→ R for (1), such that

|y(x, t)− y0(x, t)| ≤
{

εt, t < x
a

ε x
a , t ≥ x

a
, (6)

that is, the Equation (1) is considered semi-Ulam–Hyers–Rassias stable.
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Proof. We apply the Laplace transform with respect to t in (5); thus, we have the following:

− ε

s
≤ sY(x)− y(x, 0) + aY′(x) ≤ ε

s
.

Since y(x, 0) = 0, dividing by a we get the following:

− ε

as
≤ Y′(x) +

s
a

Y(x) ≤ ε

as
.

We now multiply by e
s
a x and we obtain this equation:

− ε

as
e

s
a x ≤ e

s
a xY′(x) +

s
a

e
s
a xY(x) ≤ ε

as
e

s
a x,

hence,

− ε

as
e

s
a x ≤ d

dx

(
e

s
a xY(x)

)
≤ ε

as
e

s
a x.

Integrating from 0 to x we get the following:

− ε

as
e

s
a x

s
a

∣∣∣x
0
< e

s
a xY(x)

∣∣∣x
0
≤ ε

as
e

s
a x
∣∣∣x
0
,

that is,

−ε

(
e

s
a x

s2 −
1
s2

)
≤ e

s
a xY(x)−Y(0) ≤ ε

(
e

s
a x

s2 −
1
s2

)
.

But Y(0) = L[y(0, t)] = L[c] = c
s , so we obtain:

−ε

(
e

s
a x

s2 −
1
s2

)
≤ e

s
a xY(x)− c

s
≤ ε

(
e

s
a x

s2 −
1
s2

)
.

We now multiply by e−
s
a x and we obtain the equation below:

−ε

(
1
s2 −

e−
s
a x

s2

)
≤ Y(x)− c

e−
s
a x

s
≤ ε

(
1
s2 −

e−
s
a x

s2

)
.

We apply the inverse Laplace transform and we obtain the following:

−ε
[
t−
(

t− x
a

)
u
(

t− x
a

)]
≤ y(x, t)− c · u

(
t− x

a

)
≤ ε
[
t−
(

t− x
a

)
u
(

t− x
a

)]
,

that is, ∣∣∣y(x, t)− c · u
(

t− x
a

)∣∣∣ ≤ ε
[
t−
(

t− x
a

)
u
(

t− x
a

)]
.

We then put

y0(x, t) = c · u
(

t− x
a

)
=

{
0, t < x

a
c, t ≥ x

a
.

This is the solution of (1) and the equation below:

|y(x, t)− y0(x, t)| ≤
{

εt, t < x
a

ε x
a , t ≥ x

a
.
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4. Generalized Semi-Hyers–Ulam–Rassias Stability of the Convection Partial
Differential Equation

Let φ : (0, ∞) × R → (0, ∞), and L[φ(x, t)] = Φ(x, s). We consider the following
inequality: ∣∣∣∣∂y

∂t
+ a

∂y
∂x

∣∣∣∣ ≤ φ(x, t), (7)

or the equivalent

− φ(x, t) ≤ ∂y
∂t

+ a
∂y
∂x
≤ φ(x, t), ∀x > 0, t > 0. (8)

Definition 2. The Equation (1) is called generalized semi-Hyers–Ulam–Rassias stable if there
exists a function ϕ : (0, ∞)× (0, ∞)→ (0, ∞), such that for each solution y of the inequality (7),
there exists a solution y0 for the Equation (1) with

|y(x, t)− y0(x, t)| ≤ ϕ(x, t), ∀x > 0, t > 0.

Theorem 2. Assume that∫ x

0
e

s
a xΦ(x, s)dx ≤ Φ(x, s), ∀x > 0, s > 0. (9)

If a function y : (0, ∞) × (0, ∞) → R satisfies the inequality (7), then there exists a solution
y0 : (0, ∞)× (0, ∞)→ R for (1), such that

|y(x, t)− y0(x, t)| ≤ 1
a

φ
(

x, t− x
a

)
, ∀x > 0, t > 0,

that is, the Equation (1) is considered generalized semi-Hyers–Ulam–Rassias stable.

Proof. We apply the Laplace transform with respect to t in (8), so we have the following:

−Φ(x, s) ≤ sY(x)− y(x, 0) + aY′(x) ≤ Φ(x, s).

Since y(x, 0) = 0, dividing by a we get the equation below:

−1
a

Φ(x, s) ≤ Y′(x) +
s
a

Y(x) ≤ 1
a

Φ(x, s).

We now multiply by e
s
a x and we obtain the following:

− e
s
a x

a
Φ(x, s) ≤ e

s
a xY′(x) +

s
a

e
s
a xY(x) ≤ e

s
a x

a
Φ(x, s),

hence,

− e
s
a x

a
Φ(x, s) ≤ d

dx

(
e

s
a xY(x)

)
≤ e

s
a x

a
Φ(x, s).

Integrating from 0 to x we get the following equation:

−1
a

∫ x

0
e

s
a xΦ(x, s)dx ≤ e

s
a xY(x)

∣∣∣x
0
≤
∫ x

0

1
a

e
s
a xΦ(x, s)dx.

Using (9), we have

−1
a

Φ(x, s) ≤ e
s
a xY(x)−Y(0) ≤ 1

a
Φ(x, s).
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But Y(0) = L[y(0, t)] = L[c] = c
s , so we obtain

−1
a

Φ(x, s) ≤ e
s
a xY(x)− c

s
≤ 1

a
Φ(x, s).

We now multiply by e−
s
a x and we obtain the following equation:

−1
a

e−
s
a xΦ(x, s) ≤ Y(x)− c

e−
s
a x

s
≤ 1

a
e−

s
a xΦ(x, s).

We apply the inverse Laplace transform and we obtain:

−1
a

φ
(

x, t− x
a

)
≤ y(x, t)− c · u

(
t− x

a

)
≤ 1

a
φ
(

x, t− x
a

)
,

that is, ∣∣∣y(x, t)− c · u
(

t− x
a

)∣∣∣ ≤ 1
a

φ
(

x, t− x
a

)
.

We then put the following:

y0(x, t) = c · u
(

t− x
a

)
=

{
0, t < x

a
c, t ≥ x

a
.

This is the solution of Equation (1) and the equation below:

|y(x, t)− cy0(x, t)| ≤ 1
a

φ
(

x, t− x
a

)
.

5. Semi-Hyers–Ulam–Rassias Stability of Equation (2)

Let ε > 0. We also consider the following inequality:∣∣∣∣∂y
∂t

+
∂y
∂x
− x
∣∣∣∣ ≤ ε, (10)

or the equivalent

− ε ≤ ∂y
∂t

+
∂y
∂x
− x ≤ ε. (11)

Definition 3. The Equation (2) is called semi-Hyers–Ulam–Rassias stable if there exists a function
ϕ : (0, ∞)× (0, ∞) → (0, ∞), such that for each solution y of the inequality (10), there exists a
solution y0 for the Equation (2) with the following:

|y(x, t)− y0(x, t)| ≤ ϕ(x, t), ∀x > 0, t > 0.

Theorem 3. If a function y : (0, ∞)× (0, ∞)→ R satisfies the inequality (10), then there exists
a solution y0 : (0, ∞)× (0, ∞)→ R for (2), such that

|y(x, t)− y0(x, t)| ≤
{

εt, t < x
εx, t ≥ x

,

that is, the Equation (2) is considered semi-Hyers–Ulam–Rassias stable.

Proof. We apply the Laplace transform with respect to t in (11), so we have the equation below:

− ε

s
≤ sY(x)− y(x, 0) + Y′(x)− x

1
s
≤ ε

s
.
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Since y(x, 0) = 0, we get the following:

− ε

s
≤ Y′(x) + sY(x)− x

1
s
≤ ε

s
.

We now multiply by esx and we obtain the following equation:

− ε

s
esx ≤ esxY′(x) + sesxY(x)− x

esx

s
≤ ε

s
esx.

hence,

− ε

s
esx ≤ d

dx
(esxY(x))− x

esx

s
≤ ε

s
esx.

Integrating from 0 to x, we get the following:

− ε

s
esx

s

∣∣∣x
0
≤ esxY(x)

∣∣∣x
0
− 1

s

∫ x

0
xesxdx ≤ ε

s
esx

s

∣∣∣x
0
.

Integrating by parts, we get the equation below:∫ x

0
xesxdx =

(xs− 1)esx

s2 +
1
s2 ,

hence,

−ε

(
esx

s2 −
1
s2

)
≤ esxY(x)−Y(0)− 1

s

[
(xs− 1)esx

s2 +
1
s2

]
≤ ε

(
esx

s2 −
1
s2

)
.

But Y(0) = L[y(0, t)] = 0, so we obtain the following:

−ε

(
esx

s2 −
1
s2

)
≤ esxY(x)− 1

s

[
(xs− 1)esx

s2 +
1
s2

]
≤ ε

(
esx

s2 −
1
s2

)
.

We now multiply by e−sx and we obtain the following:

−ε

(
1
s2 −

e−sx

s2

)
≤ Y(x)− 1

s

[
xs− 1

s2 +
e−sx

s2

]
≤ ε

(
1
s2 −

e−sx

s2

)
,

hence,

−ε

(
1
s2 −

e−sx

s2

)
≤ Y(x)− x

s2 +
1
s3 −

e−sx

s3 ≤ ε

(
1
s2 −

e−sx

s2

)
.

We apply the inverse Laplace transform and we obtain the following equation:

−ε[t− (t− x)u(t− x)] ≤ y(x, t)− xt +
1
2

t2 − 1
2
(t− x)2u(t− x) ≤ ε[t− (t− x)u(t− x)].

We then put the following:

y0(x, t) = xt− 1
2

t2 +
1
2
(t− x)2u(t− x) =

{
xt− 1

2 t2, t < x
1
2 x2, t ≥ x

.

This is the solution of (2) and the equation below:

|y(x, t)− y0(x, t)| ≤
{

εt, t < x
εx, t ≥ x

.
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6. Conclusions

In this paper, we studied the semi-Hyers–Ulam–Rassias stability of Equations (1)
and (2) and the generalized semi-Hyers–Ulam–Rassias stability of Equation (1) using the
Laplace transform. To the best of our knowledge, the Hyers-Ulam-Rassias stability of
Equations (1) and (2) has not been discussed in the literature with the use of the Laplace
transform method. Our results complete those of Jung and Lee [22]. In [22], the Equation (3)
was studied for <(c) 6= 0. We considered the case c = 0 in Equation (3). We can apply
our results to the convection equation in the sense that for every solution y of (4), which
is called an approximate solution, there exists an exact solution y0 of (1), such that the
relation (6) is satisfied. From a different perspective, the approximate solution can be
viewed in relation to the perturbation theory, as any approximate solution of (4) is an
exact solution of the perturbed equation ∂y

∂t + a ∂y
∂x = h(x, t), |h(x, t)| ≤ ε, a > 0, x > 0,

t > 0, y(0, t) = c, y(x, 0) = 0.
We intend to study other partial differential equations as well as other integro-differential

equations using this method. We have already applied this method to [34], where we inves-
tigated the semi-Hyers–Ulam–Rassias stability of a Volterra integro-differential equation of
order I with a convolution-type kernel.
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