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Abstract: Multimodal identification, which exploits biometric information from more than one
biometric modality, is more secure and reliable than unimodal identification. Face recognition and
fingerprint recognition have received a lot of attention in recent years for their unique advantages.
However, how to integrate these two modalities and develop an effective multimodal identification
system are still challenging problems. Hetero-associative memory (HAM) models store some patterns
that can be reliably retrieved from other patterns in a robust way. Therefore, in this paper, face and
fingerprint biometric features are integrated by the use of a hetero-associative memory method for
multimodal identification. The proposed multimodal identification system can integrate face and
fingerprint biometric features at feature level when the system converges to the state of asymptotic
stability. In experiment 1, the predicted fingerprint by inputting an authorized user’s face is compared
with the real fingerprint, and the matching rate of each group is higher than the given threshold. In
experiment 2 and experiment 3, the predicted fingerprint by inputting the face of an unauthorized
user and the stealing authorized user’s face is compared with its real fingerprint input, respectively,
and the matching rate of each group is lower than the given threshold. The experimental results
prove the feasibility of the proposed multimodal identification system.

Keywords: stability; multimodal identification; fingerprint recognition; face recognition

1. Introduction

With the rapid development of science and technology, people pay more attention
to security identification than ever before, and new theories and technologies continually
emerge for identity authentication. Traditional identification methods include key, pass-
word, code, identification card, and so on. One of the weaknesses of these methods is that
unauthorized persons can fabricate or steal protected data and make use of the rights of
authorized users to engage in illegal activities. Though these traditional identification tech-
nologies, which usually face various threats in real world, are still playing an indispensable
role on various occasions with a low request of security for their convenience and low
cost, increasingly more consumers and enterprises choose to use biometric identification
in numerous fields. Biometric identification technologies such as face recognition [1–4],
fingerprint recognition [5–7], and gait recognition [8–10] are more secure and convenient
than traditional technologies.

Biometric identification refers to the automated recognition of individuals based
on their biological or behavioral characteristics [11]. It is closely combined with high-
tech means such as optics, acoustics, biosensors, and biostatistics. Biometrics finds its
applications in the following areas: access control to facilities and computers, criminal
identification, border security, access to nuclear power plants, identity authentication in
network environment, airport security, issue of passports or driver licenses, and forensic
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and medical databases [12]. Biometric identification can facilitate a well-rounded solution
for system identification and maintain a reliable and secure system. Biometric technology
has started to become a booming field and an important application direction of a cross
subject between computer science and biology. Unimodal biometric systems, such as fin-
gerprint identification system and face identification, have been studied in many previous
articles [6,13–20].

Through the studies of recent years, it is evident that multimodal biometric identifica-
tion technologies that use many kinds of biometric characteristics to identify individuals are
more secure and accurate than unimodal ones. They take advantage of multiple biometric
traits to improve the performance in many aspects including accuracy, noise resistance,
universality, and spoof attacks, and reduce performance degradation in huge database
applications [21]. Multi-biometric feature fusion is a crucial step in multimodal biometric
systems. The strength of the feature fusion technique lies in its ability to derive highly
discriminative information from original multiple feature sets and to eliminate redundant
information that results from the correlation between distinct feature sets, thus gaining the
most effective feature set with low dimensionality for the final decision [22]. On the process
of multimodal identification research, several new algorithms and applications have been
studied in recent years. For example, the authors of [11] presented a multimodal biometric
approach based on the fusion of the finger vein and electrocardiogram (ECG) signals. The
application of canonical correlation analysis (CCA) in multimodal biometric field attracted
many researchers [23,24], who employed CCA to fuse gait and face cues for human gender
recognition. Multimodal biometric identification system based on finger geometry, knuckle
print, and palm print was proposed in [21]. Face–iris multimodal biometric system using a
multi-resolution Log–Gabor filter with spectral regression kernel discriminant analysis was
studied in [25]. The authors of [26] proposed an efficient multimodal face and fingerprint
biometrics authentication system on space-limited tokens, e.g., smart cards, driver license,
and RFID cards. The authors of [27] proposed a novel multimodal biometric identification
system for face–iris recognition, based on binary particle swarm optimization and solving
the problem of mutually exclusive redundant features in combined features. Dialog Com-
munication Systems (DCS AG) developed BioID in [28], a multimodal identification system
that uses three different features—face, voice, and lip movement—to identify people.
In [29], a frequency-based approach results in a homogeneous biometric vector, integrating
iris and fingerprint data. The authors of [30] proposed a deep multimodal fusion network
to fuse multiple modalities (face, iris, and fingerprint) for person identification. They
demonstrate an increase in multimodal person identification performance by utilizing the
proposed multi-level feature abstract representations in our multimodal fusion, rather than
using only the features from the last layer of each modality-specific CNN. However, the
system in [30] based on CNNs cannot be used for small samples.

Associative memory networks are single layer nets that can store and recall patterns
based on data content rather than data address [31]. Associative memory (AM) systems can
be divided into hetero-associative memory (HAM) systems and auto-associative memory
(AAM) systems. When the input pattern and the output pattern are the same pattern, the
system can be called an AAM system. The HAM model, which stores coupling information
based on input–output patterns, can recall a stored output pattern by receiving a different
input pattern. In [32], to protect the face features database fundamentally, a new face
recognition method by AAM based on RNNs is proposed without establishing a face
feature database, in which the face features are transformed into the parameters of the
AAM model. We notice that the HAM models can construct the association between
the input and output patterns in a robust way, and this association can be regarded as
feature fusion of two different kinds of patterns. Thus, HAM models should be able to fuse
multiple biometric features in a robust way. Furthermore, the multimodal identification
system can be built by HAM models.

Considering the advantages of multimodal identification and the fusion capability
of HAM models, in this paper, the HAM model, which can store fusion features of face–
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fingerprint patterns and recall a predictable fingerprint pattern by receiving a face pattern,
is constructed. The model is based on a cellular neural network, which belongs to a class
of recurrent neural networks (RNNs). The stability of the HAM model is a prerequisite
for its successful application in a multimodal identification system. Thus, the asymptotic
stability of the HAM model is also analyzed and discussed. In this paper, we also propose
a multimodal identification system based on fingerprint and face images by the HAM
method. Our three contributions in this paper are highlighted as follows.

• A multimodal identification system based on face and fingerprint images is designed,
and this system effectively utilizes the advantages of two representative biometric
features and ensures the system more security in the process of identification.

• The variable gradient method is used to construct the Lyapunov function, which
proves the asymptotic stability of the HAM model. The HAM model based on RNNs
must converge to the asymptotic equilibrium point. Otherwise, multimodal identifi-
cation cannot be carried out in practical scenarios. Analyses and discussions of the
stability are given.

• This is the first attempt to integrate face and fingerprint biometric features using
the HAM method. In the HAM model, fingerprint and face biometric features are
fused in a robust way. All the biometric features are fused to form a set of model
coupling parameters.

The remainder of this paper is organized as follows. In Sections 2 and 3, we give
the details of our proposed multimodal identification system and research background,
respectively. In Section 4, the stability of the HAM model is analyzed in detail and the
main results for feature fusion are given. Some numerical simulations are presented to
illustrate the effectiveness and security of the proposed system in Section 5. Finally, some
conclusions are drawn in Section 6.

2. Framework of the Identification System

We design a multimodal identification system based on face and fingerprint images
that makes full use of the advantages of two different biometric modalities. We put forward
two stages, which are named the fusion stage and identification stage in this identification
system. The framework of the proposed system is shown in Figure 1.

Figure 1. The framework of the multimodal identification system.
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At the fusion stage, the main work is to establish the HAM model, which stores
information of feature fusion using the HAM method. The HAM model, which is used
for feature fusion, is based on an improved HAM method, and the established model
can store the coupling information of the face and fingerprint patterns of the authorized
users. The first step is to acquire face images and fingerprint images of the authorized
users using some feature extractor device. The raw images are preprocessed, including the
processes of gray level transformation, image binarization, and segmentation. The regions
of interest (ROIs) of face images and fingerprint images after preprocessing are used to
fuse both face and fingerprint biometric features using the HAM method. The parameters
that come from the feature fusion institute crucial model coefficients of the HAM model.
Then, the established HAM model can recall the fingerprint pattern of one authorized user
by receiving the face pattern of the user when the model converges to the asymptotically
stable equilibrium point. If the established model could not converge to the asymptotically
stable equilibrium point, the fusion parameters, namely model coefficients, would not be
given. The HAM model stores two kinds of biometric features of all authorized users as
one group of model coefficients, and those biometrical features cannot be decrypted easily
in the reversible method.

In the identification stage, the HAM model established in the fusion stage is used
to test the legitimacy of the visitors. Firstly, the face image and fingerprint image of one
visitor are acquired using proper feature extractor devices in the identification stage. The
visitor’s face pattern after preprocessing is sent to the HAM model established in the fusion
stage. Then, there will be an output pattern when the established HAM model converges
to the asymptotically stable equilibrium point. By comparing the model’s output pattern
with the visitor’s real fingerprint pattern after preprocessing, the recognition pass rate of
the visitor can be obtained. If the numerical value of the recognition rate of the visitor
exceeds a given threshold, the identification is successful and the visitor has the rights of
authorized users. Instead, the visitor is an illegal user.

3. Research Background

In this section, we briefly introduce the HAM model, which is based on a class of
recurrent neural networks, as well as the background knowledge of the system stability
and variable gradient method.

3.1. HAM Model

Consider a class of recurrent neural network composed of N rows and M columns
with time-varying delays as

.
si(t) = −pisi(t) +

n

∑
j=1

qij f (sj(t)) +
n

∑
j=1

rijuj(t− τij(t)) + vi, i = (1, 2, . . . , n) (1)

in which n corresponds to the number of neurons in the neural network and n = N ×M
si(t) ∈ R is the state of the ith neuron at time t; pi > 0 represents the rate with which the
ith unit will reset its potential to the resting state in isolation when disconnected from the
network and external inputs; qij and rij are connection weights; f (sj(t)) = (|sj(t) + 1|−
|sj(t)− 1|)/2 is an activation function; uj is the neuron input; τij is the transmission delay,
which is the time delay between the ith neuron and the jth neuron in the network; vi is an
offset value of the ith neuron; and i = 1, 2, . . . , n.

For one neuron, we can obtain the equation of dynamics as (1). Nevertheless, when
considering the whole neural network, (1) can be expressed as

.
s = −Ps + Q f (s) + Rβ + V (2)

in which s = (s1, s2, . . . , sn)
T ∈ Rn is a neuron network state vector; P = diag(p1, p2, . . . , pn)

∈ Rn
+ is a positive parameter diagonal matrix; f (s) is n dimensions vector whose value

changes between −1 and +1; and βn×1 is the network input vector whose value is −1 or
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+1, especially, when the neural network comes to the state of global asymptotic stability,
let α = f (s∗) ∈

{
α = (α1, α2, . . . , αn)

T
∣∣∣αi = +1 or− 1, i = 1, . . . , n}. V = (v1, v2, . . . , vn)

T

denotes an offset value vector. Q, R, and V are the model parameters. Qn×n and Rn×n are
denoted as the connection weights matrix of the neuron network as follows

Q =


q11 q12 . . . q1n
q21 q22 . . . q2n

...
...

...
...

qn1 qn2 . . . qnn


n×n

R =


r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
...

...
rn1 rn2 . . . rnn


n×n

3.2. System Stability

Consider the general nonlinear system

.
y = g(t, y) (3)

in which y = (y1, y2, . . . , yn) ∈ Ω ⊆ Rn is a state vector; t ∈ I = [t0, T] is a time variable,
t0 < T < ∞. Then, g(t, y) = [g1(t, y1, . . . , yn), g2(t, y1, . . . , yn), . . . , gn(t, y1, . . . , yn)]

T and
g(t, y) ∈ C(I ×Ω, Rn). Supposing that y = ϕ(t) is a special solution of system (3). Let
y = x + ϕ(t), then

.
x =

.
y − .

ϕ(t) = g(t, y) − g[t, ϕ(t)] = g[t, x + ϕ(t)] − g[t, ϕ(t)]. Let
.
x = f (t, x), then the system (3) can be rewritten as

.
x = f (t, x) (4)

Definition 1. If x0 satisfies f (t, x0) ≡ 0, 0 ≤ t0 ≤ t , then x0 is the equilibrium point of
system (4).
Definition 2. x0 is the equilibrium point of system (4). If, for any given ε > 0 and t0 > 0 , there
exists σ(ε, t0) > 0 , when x1 ∈ Rn satisfies ‖ x1 − x0 ‖≤ σ such that ‖ ϕ(t, t0, x1)− x0 ‖≤ ε.
Then, the equilibrium point x0 of Equation (4) is said to be stable in the sense of Lyapunov
stability theory. Furthermore, if lim

x→∞
‖ ϕ(t, t0, x1)− x0 ‖= 0 , then the equilibrium point x0 is

asymptotically stable.

3.3. Variable Gradient Method

The most challenging problem for which to use Lyapunov’s second method (direct
method) is to find a positive definite function V that yields

.
V < 0. The variable gradient

method, which was proposed by Scultz, is one of the famous techniques for constructing
a Lyapunov function to prove the stability of nonlinear systems [33]. The idea of this
method is to construct the gradient of the Lyapunov function to analyze the sign property
of Lyapunov function.

For the nonlinear system (4), if there exists the Lyapunov function V(x) : D → R, D
⊆ Rn, V(x) is an explicit function of x, and the equilibrium point of the system is the origin,
i.e., x∗ = 0, the single value gradient gradV of V(x) can be defined as

gradV(x) ,
dV(x)

dx
=


∂V/∂x1
∂V/∂x2

...
∂V/∂xn

 =


∇V1
∇V2

...
∇Vn

 ==


a11x1 + a12x2 + a13x3 + · · ·+ a1nxn
a21x1 + a22x2 + a23x3 + · · ·+ a2nxn

...
an1x1 + an2x2 + an3x3 + · · ·+ annxn

 (5)

It follows from (5) that

.
V(x) =

n

∑
i=1

(
∂V
∂xi
· .

xi) = (gradV(x))T [
.
x1, . . . ,

.
xn]

T
= (gradV(x))T .

x (6)
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It can be seen from (6) that V(x) can be obtained by the line integral of gradV, namely,

V(x) =
∫ x

0
(gradV)Tdx =

∫ x

0

n

∑
i=1

xi∇Vidxi (7)

If n-dimensional curl of gradV is equal to zero, namely, rot(gradV) = 0, then V can
be regarded as a conservative field, and the line integral shown in the above formula (7)
is independent of the path. The necessary and sufficient condition for rot(gradV) = 0 is
∂∇Vi/∂xj = ∂∇Vj/∂xi, ∀i, j = 1, 2 . . . , n. Therefore, for convenience, Formula (7) can be
rewritten as

V(x) =
∫ x1

0
∇V1

∣∣∣∣(x1,0,...,0)dx1 +
∫ x2

0
∇V2

∣∣∣∣(x1,x2,0,...,0)dx2 + · · ·+
∫ xn

0
∇Vn

∣∣∣∣(x1,x2,x3,...,xn)dxn (8)

By selecting appropriate coefficients such that
.

V(x) is negative definite and rot(gradV)
is equal to zero. If V(x) is positive definite, then the second method of Lyapunov is proved,
and the system is asymptotically stable at the equilibrium point.

4. Main Results

In this section, under the research background, the asymptotic stability of the HAM
model with multiple time-varying delays using variable gradient method and the algorithm
of feature fusion by the HAM method are presented successively.

4.1. Stability of the HAM Model

Theorem 1. There is a stable equilibrium point in system (2), which makes the HAM model
asymptotically stable.

Proof of Theorem 1. As f is bounded, it can be proved that system (2) has at least one
equilibrium point using Schauder fixed point theorem. Assuming that s∗ = (s∗1 , s∗2 , . . . , s∗n)

T

is an equilibrium point in the neural network.
Let xi(t) = si(t)− s∗i and f (xi(t)) = f (si(t))− f (s∗i ) = f (xi(t) + s∗i )− f (s∗i ), then (1)

can be rewritten as
.
xi(t) = −pixi(t) +

n

∑
j=1

qij f (xj(t)) +
n

∑
j=1

rijuj(t− τij(t)) + ci

ci =
n

∑
j=1

qij f (s∗j )− pis∗i + vi, i = (1, 2, . . . , n)
(9)

For the HAM model (9), if there exist the Lyapunov function V(x), and the model’s
equilibrium point is x∗ = (x∗1 , x∗2 , . . . , x∗n)

T = 0, the single value gradient of (9) can be
defined as Equation (5). From Equation (6),

.
V(x) = (gradV(x))T .

x
= (a11x1 + a12x2 + . . . + a1nxn)

.
x1 + . . . + (an1x1 + an2x2 + . . . + annxn)

.
xn

(10)

It is convenient to select coefficients aij = 0, (i 6= j) and akk > 0, i, j, k = 1, 2,. . . , n from
(9), and one can easily obtain

.
V(x) = a11x1

.
x1 + . . . + annxn

.
xn =

n

∑
k=1

akkxk
.
xk

=
n

∑
k=1

(
akkxk(t)

(
−pkxk(t) +

n

∑
j=1

qkj f (xj(t)) +
n

∑
j=1

rkjuj(t− τkj(t)) + ck

)) (11)
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When
.
sk = 0, from Equation (1), s∗k =

(
n

∑
j=1

qkj f (sj(t)) +
n

∑
j=1

rkjuj(t− τkj(t)) + vk

)
/pk.

If xk(t) > 0, i.e., sk(t)− s∗k > 0, then pksk(t) >
n

∑
j=1

qkj f (sj(t)) +
n

∑
j=1

rkjuj(t− τkj(t))+vk. By

replacing sk(t) with xk(t), the inequality −pkxk(t) +
n

∑
j=1

qkj f (xj(t)) +
n

∑
j=1

rkj uj(t− τkj(t)) +

ck < 0 can be obtained. Analogously, if xk(t) < 0, it can be proved that −pkxk(t) +
n

∑
j=1

qkj f (xj(t)) +
n

∑
j=1

rkjuj(t− τkj(t)) + ck > 0. Therefore, both cases can lead to
.

V(x) < 0,

namely
.

V(x) is negative definite. Furthermore, it is clear that ∂∇Vi/∂xj = ∂∇Vj/∂xi = 0,
∀i, j = 1, 2 . . . , n. Therefore, from Equation (8), the Lyapunov function can be obtained as

V(x) =
∫ x1

0 ∇V
∣∣∣(x1,0,...,0) dx1 +

∫ x2
0 ∇V

∣∣∣(x1,x2,0,...,0) dx2 + · · ·+
∫ xn

0 ∇V
∣∣∣(x1,x2,...,xn) dxn

=
∫ x1

0 a11x1dx1 +
∫ x2

0 (a21x1 + a22x2)dx2 + . . . +
∫ xn

0 (an1x1 + . . . + annxn)dxn

=
∫ x1

0 a11x1dx1 +
∫ x2

0 a22x2dx2 + . . . +
∫ xn

0 annxndxn

(12)

which is always positive definite. Then, we proved the HAM model is asymptotically
stable at the equilibrium point using the variable gradient method. �

Remark 1. The HAM method is used to fuse each authorized user’s face and fingerprint bio-
metric features. The face and fingerprint patterns of each authorized user are the input vector
βn×1 = [β1, β2, . . . , βn]

T and output vector αn×1 = [α1, α2, . . . , αn]
T of the neural network

model, respectively. When the established HAM model converges to the asymptotically stable
equilibrium point, the output vector can be obtained by receiving an input vector, i.e., the fingerprint
pattern can be recalled by the face pattern of the authorized user.

4.2. HAM Model

The HAM method is used to fuse each authorized user’s face and fingerprint biometric
features. The authorized user’s face and fingerprint patterns are the network model’s input
vector βn×1 and output vector αn×1, respectively.

Letting f (sj(t)) = α̂j,
∣∣∣α̂j

∣∣∣≤ 1, β j = uj(t− τij(t)), β ∈
{
(β1, β2, . . . , βn)

T
∣∣∣β j = +1 or

−1, i = 1, . . . , n}, Equation (1) can be rewritten as

.
si(t) = −pisi(t) +

n

∑
j=1

qijα̂j +
n

∑
j=1

rijβ j + vi (13)

Lemma 1 ([34]). In Equation (13), si(0) = 0, i = 1, 2, . . . , n ,

(i) If
n

∑
j=1

qijα̂j +
n

∑
j=1

rijβ j + vi > pi , then (13) can converge to an asymptotically stable

equilibrium point whose value is greater than +1.

(ii) If
n

∑
j=1

qijαj +
n

∑
j=1

rijβ j + vi < −pi , then (13) can converge to an asymptotically stable

equilibrium point whose value is less than −1.

Theorem 2. HAM model (2) converges to a stable equilibrium point s∗ and |s∗|> 1 , if there exists
a constant λ such that λ ≥ max

1≤i≤n
{pi} and Qα + Rβ + V = λα.

Proof of Theorem 2. In (2), s∗ = [s∗1 , s∗2 , . . . , s∗n]
T . Define the equilibrium of the HAM

model s∗ = [s∗1 , s∗2 , . . . , s∗n]
T . α = f (s∗) ∈

{
α = (α1, α2, . . . , αn)

T
∣∣∣αi = +1 or− 1

}
is an

equilibrium point in the neural network.
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For the first case, consider αi = +1, then λαi > pi. When Qα + Rβ + V = λα,

according to Lemma 1 (i),
n

∑
j=1

qijαj +
n

∑
j=1

rijβ j + vi > pi. For the second case, consider

αi = −1, then λαi < −pi. When Qα + Rβ + V = λα, according to Lemma 1 (ii),
n

∑
j=1

qijαj +

n

∑
j=1

rijβ j + vi < −pi. Therefore, the HAM model (2) converges to a stable equilibrium

point s∗, where |s∗|> 1 . �

Given S = α and U = β, in which α and β are the feature vectors extracted from the
fingerprint and face images of one authorized user after preprocessing, respectively.

It is obvious that, when α and β meet the condition in Theorem 2, the coupling
relationship of the face and fingerprint patterns of one authorized user is established, and
the fusion features are transformed into HAM model parameters. The HAM model, which
stores fusion features of face and fingerprint patterns of the user, can recall a predictable
fingerprint pattern Ŝ by receiving a stored face pattern U. The HAM model network is of
size N×M. Let the neighborhood radius be 1, then there are eighteen unknown connection
weights and one unknown bias value vi for one neuron. Denote the nineteen unknown
parameters of the ith neuron as Φi = [qi_1, qi_2, . . . , qi_8, qi_9, ri_1, ri_2, . . . , ri_8,ri_9, vi]

T .

Remark 2. In the fusion stage, the established HAM model can store fusion features of all authorized
users. Therefore, all model parameters Φi(i = 1, 2, . . . , n) to be obtained should be determined by
the face and fingerprint patterns of all authorized users.

For m authorized users, Qα + Rβ + V = λα can be transformed as

∆iΦi = α̃iλ (i = 1, 2, . . . , n) (14)

in which ∆i =



α
(1)
i1 α
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i2 · · · α

(1)
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i1 β

(1)
i2 · · · β

(1)
i9 1
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i2 · · · α
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i9 β

(2)
i1 β
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...
... · · ·

...
...

...
...

...
α
(m−1)
i1 α

(m−1)
i2 · · · α

(m−1)
i9 β

(m−1)
i1 β

(m−1)
i2 · · · β

(m−1)
i9 1

α
(m)
i1 α

(m)
i2 · · · α

(m)
i9 β

(m)
i1 β

(m)
i2 · · · β

(m)
i9 1


and α̃i = [α1

i , α2
i , . . . , αm

i ]
T is the fingerprint pattern’s feature vector of m authorized users

on the i-th neuron of the network model.
Then, all unknown model parameters by Equation (14) can be solved. Namely, two kinds

of biometric features of all authorized users turn into parameters of the established HAM. After
obtaining all the parameters based on face and fingerprint patterns of all authorized users, the HAM
model, which can recall fingerprint pattern by receiving the face pattern of the authorized user, is
established.

Some notations are defined in Appendix A. The feature fusion algorithm of the HAM
model based on face and fingerprint images using the HAM method in the fusion stage is
given in Algorithm 1.

Remark 3. When the established HAM model, which stores biometric fusion features of all
authorized users, receives a face pattern vector of an unauthorized user, there will exist a forecasting
fingerprint pattern output of the visitor. In [32], the input pattern and forecasting output pattern
are the same biometric pattern. It uses the AAM network structure, which fuses the face input
and the same face output, but it cannot achieve the fusion of different biological models. In this
paper, two different biometric patterns are studied. This is the first attempt to integrate two different
biometric features using the HAM method.



Mathematics 2021, 9, 2976 9 of 14

Furthermore, the convolutional neural network needs a lot of data for training, which is
difficult to train for small samples, so we do not use the convolutional neural network for small
sample data in this paper.

Algorithm 1 Feature fusion algorithm

Require: λ ≥ max
1≤i≤n

{pi} fingerprint feature vector α(k), face feature vector β(k), k = 1, 2, . . . , m.

Ensure: Model parameters Φi, i = 1, 2, . . . , n.
for k = 1→ m do
for ξ = 1→ N do

E(k)
ξ ← α(k), F(k)

ξ ← β(k)

end for
E(k) ← E(k)

ξ , F(k) ← F(k)
ξ

end for
for i = 1→ n do
∆i ← E(1), E(2), . . . , E(m), F(1), F(2), . . . , F(m)

end for
for i = 1→ n do
for k = 1→ m do

α̃i ← α(k)

end for
end for
for i = 1→ n do

Φi = ∆−1
i α̃iλ

end for

5. Experiments and Discussion

In this section, we will show the experimental results of the multimodal identification
system we proposed in Section 2. Firstly, we prove the effectiveness of the multimodal
identification system using Experiment 1. The accuracy of the experiment meets the
requirement of identification recognition that we defined. Secondly, we test unauthorized
users and prove the security of the multimodal identification system using Experiment 2.

To protect private information, the experiments are based on two different public
databases. The face images come from ORL Faces Database and the fingerprint images come
from CASIA-FingerprintV5 Database. The fingerprint images of CASIA-FingerprintV5
were captured by a URU4000 fingerprint sensor in one session.

In order to compare the result of the fingerprint pattern S̃ of the visitor and the
predictable fingerprint pattern Ŝ, a matcher is designed. The pass rate (PR) of the matcher
is defined as

PR =
NF

M× N
× 100%

in which NF stands for the number of feature points that satisfy the value of the fingerprint
pattern of the visitor and the predicted fingerprint output is equal in corresponding pixel
coordinate. When the value of PR is bigger than the given threshold of 90%, the face
pattern and the fingerprint patterns of the visitor are regarded as legal. Namely, the
real fingerprint pattern of the visitor can match the predicted fingerprint output in the
multimodal identification system.

5.1. Experiment 1

We assume that the face image and fingerprint image in each group come from the
same person. Seven groups of images of authorized users from two databases mentioned
above are shown in Figure 2. The first step in the biometric identification system is to
extract region of interests (ROIs). In our experiments, all face image ROIs and fingerprint
image ROIs used in our experiments after preprocessing are 35 × 25 pixels in size.
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Figure 2. Seven groups of biometric images of authorized users.

The seven groups of face patterns and fingerprint patterns are used to solve the model
parameters Φi(i = 1, 2, . . . , 875). Let pi = 1(i = 1, 2, . . . , 875) and λ = 2. The fingerprint
feature vectors (α(1), α(2), . . . , α(7)) and the face feature vectors (β(1), β(2), . . . , β(7)) can be
obtained from the seven groups of face patterns and fingerprint patterns of all authorized
users. E(1)

1 , E(1)
2 , . . . , E(1)

35 , E(2)
1 , E(2)

2 , . . . , E(2)
35 , . . . , E(7)

1 , E(7)
2 , . . . , E(7)

35 and F(1)
1 , F(1)

2 , . . . , F(1)
35 ,

F(2)
1 , F(2)

2 , . . . , F(2)
35 , . . . , F(7)

1 , F(7)
2 , . . . , F(7)

35 were obtained by face feature vectors and finger-
print feature vectors, respectively. According to the feature fusion algorithm, the matrix
∆1, . . . , ∆875 was obtained. Furthermore, α̂1, α̂2, . . . , α̂875 was obtained through the matrix
transform method. Finally, Φi(i = 1, 2, . . . , 875) was calculated using the matrix operation.

According to the proposed HAM method in Section 4, when the unestablished HAM
model comes to the asymptotic stable equilibrium point, the internal coupling relationship
between face and fingerprint patterns will be built by solving the model parameters.

The established multimodal identification system fused face and fingerprint biometrics
in the fusion stage. The matcher pass rate can be obtained by comparing S̃ and Ŝ when the
system input is one of the face patterns of the authorized users. We testified the matcher
pass rate as shown in Table 1, whose results prove the effectiveness of the multimodal
identification system.

Table 1. The recognition pass rate of the multimodal identification system for authorized users.

Group ID PR (%) Pass Threshold (%) Matcher Result (Y/N)

Group 1 96.00 90.00 Y
Group 2 93.37 90.00 Y
Group 3 96.11 90.00 Y
Group 4 93.03 90.00 Y
Group 5 94.51 90.00 Y
Group 6 92.46 90.00 Y
Group 7 96.34 90.00 Y

5.2. Experiment 2

The results of the experiment above test the feasibility and efficiency of the algorithm.
Provided that an unauthorized user has access to the identification system, the matcher
pass rate must be low enough for the system to reject illegal users. In this experiment, we
choose seven groups of unauthorized users whose fingerprints and faces are different from
the groups in Experiment 1. The flow diagram of identification is shown in Figure 3.
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Figure 3. Seven groups of biometric images of authorized users (The flow diagram).

In this experiment, we found that the pass rate of unauthorized users is much lower
than the identification matcher threshold. Hence, those users who attempted to spoof
this identification system were identified as illegal users. We obtained seven groups of
unauthorized users’ identification results, shown in Table 2.

Table 2. The matcher pass rate of the multimodal identification system for unauthorized users.

Group ID PR (%) Pass Threshold (%) Matcher Result (Y/N)

Group 8 66.86 90.00 N
Group 9 69.03 90.00 N
Group 10 68.00 90.00 N
Group 11 67.43 90.00 N
Group 12 70.86 90.00 N
Group 13 72.11 90.00 N
Group 14 68.11 90.00 N

Consider the case wherein attacker who has the forged fingerprint or the forged face
of one authorized user through illegal means beforehand wants to cheat the system. As
the illegal attacker completely hacked one kind of biometrical information, it is easy to
cheat single-mode identification system if there is no extra validation. However, in the
multimodal identification system, the attacker cannot spoof this identification system easily.
Group 15 to Group 21 are the attackers who have face information of the authorized users
(Group 1 to Group 7), respectively. Further, Group 22 to Group 28 are the attackers who
have fingerprint information of the authorized users (Group 1 to Group 7), respectively.
The identification results are shown in Table 3. The results of the experiment proved the
security of our proposed system.

The experiment results prove the feasibility of the proposed multimodal identification
system based on the HAM method. It can guarantee that the authorized users have access,
while the unauthorized users and attackers have no access. The proposed identification
method by fusing two different biometric modalities based on the HAM method applies
not only to the situation of fusing the face and fingerprint feature, but also to other different
biometric modalities.
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Table 3. The matcher pass rate of the multimodal identification system for unauthorized users.

Group ID PR (%) Pass Threshold (%) Matcher Result (Y/N)

Group 15 73.94 90.00 N
Group 16 80.69 90.00 N
Group 17 78.17 90.00 N
Group 18 75.66 90.00 N
Group 19 73.14 90.00 N
Group 20 73.49 90.00 N
Group 21 72.23 90.00 N
Group 22 76.57 90.00 N
Group 23 72.57 90.00 N
Group 24 71.09 90.00 N
Group 25 73.49 90.00 N
Group 26 74.63 90.00 N
Group 27 76.11 90.00 N
Group 28 71.77 90.00 N

6. Conclusions

To solve the multimodal identification problem based on face and fingerprint images,
in this paper, we proposed a new feature fusion method for multimodal identification
based on the HAM model, which can well fuse face features and fingerprint features
of the authorized users. In the process of constructing the multimodal identification
system, the stability of the established network model is discussed. We prove that the
HAM model can reach the asymptotically stable state when the HAM model fuses face
and fingerprint biometrics. The proposed multimodal identification system can integrate
face and fingerprint biometric features at feature level when the system converges to the
state of asymptotic stability. In Section 5, we test the effectiveness and security of the
proposed multimodal identification system based on face and fingerprint images using
two experiments.
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Appendix A
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