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Abstract: Symmetry preserving difference schemes approximating equations of Hamiltonian systems
are presented in this paper. For holonomic systems in the Hamiltonian framework, the symmetrical
operators are obtained by solving the determining equations of Lie symmetry with the Maple
procedure. The difference type of symmetry preserving invariants are constructed based on the three
points of the lattice and the characteristic equations. The difference scheme is constructed by using
these discrete invariants. An example is presented to illustrate the applications of the results. The
solutions of the invariant numerical schemes are compared to the noninvariant ones, the standard
and the exact solutions.
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1. Introduction

All variables are measured in a certain time interval, and all simulations can be imple-
mented in meshes. Difference equations serve as primary and fundamental mathematical
models in physics and mechanics. Symmetries concern the basic principles of physics and
provide a most valuable heuristic guide in the search for dynamical laws. Continuous
symmetries should be incorporated in the discretization of continuous systems, but they
are usually lost in discrete descriptions [1,2].

Lie group theory is an efficient tool for solutions of differential equations [3]. It is also
more convenient for the discretization of both ordinary differential equations (ODEs) [4–6]
and partial differential equations (PDEs) [7–9]. For a given finite-difference equation
(system), one can have the operators of the group admitted by the equation. Different
types of difference equations which admit the different symmetry transformation operators
can be obtained [10,11], and this theory is applied to search for discrete symmetries for
dynamical systems [12,13]. Generally speaking, it needs to solve some linear partial
finite-difference equations. But the problem of exact integration of partial finite-difference
equations is always intractable, even when the equations are linear. Therefore, in order to
construct the symmetry preserving difference schemes, the inverse problem needs to be
solved, i.e., the difference equations and meshes are be constructed when the symmetries
(transformation groups) are known. It is also a simpler way of having the symmetry
preserving discretization of the differential equations.

It is better to keep the geometry structure during the discrete process. Payen, Matignon
and Haine [14] addressed the discretization of the boundary controlled 3D Maxwell’s equa-
tions as a port-Hamiltonian system, and the proposed scheme preserves the Dirac structure
at the discrete level. The symmetry structure is the geometry structure of the systems. It is
meaningful to maintain the symmetry of the system in the discrete process. Verstappen and
Veldman [15] studied the symmetry-preserving discretization of turbulent flow. Bourlioux,
Rebelo and Winternitz [16] discretized the nonlinear ODEs under the group SL(2, R) using
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the symmetry preserving discretization method. The results showed that solution methods
incorporating the Lie point symmetries provide better results than standard methods. The
symmetry preserving schemes not only serve as fundamental mathematical models but
also preserve main geometric properties of the dynamical systems [17,18]. Dorodnitsyn
et al. proposed approaches on the applications of Lie group theory to difference equations
and discrete mechanical systems [19]. This approach is to start with a differential equation
and to introduce a symmetry adapted mesh and difference equation in such a way that all
the symmetries of the original differential equation are preserved [20]. Levi’s [21], Winter-
nitz’s [22], and Rebelo’s [23] contributions are the typical representatives for this approach.

There have been some papers on constructing the invariant discretizations of dynami-
cal systems based on the inverse problem method above, such as the one-dimensional gas
systems [24], the shallow water equations in Lagrangian [25], the holonomic dynamical
systems [23], etc. The symmetry preserving discretization of ODE and PDE are studied
deeply [9,10,19–23]. The theory has been applied to dynamical systems recently. The
references [7,12,18,24–26] studied symmetry preserving schemes in a Lagrangian frame-
work. In the Lagragian framework, the symmetry-preserving structure is studied in the
space M = Q × R or M = TQ × R. The transformation group ψ : M→ M . The Lie
transformation generators are τα, ξ

µ
α , η

µ
α : M→ R . In this paper, the symmetry-preserving

structure is in the dual space M = T∗Q×R of the tangent space. The conditions of pre-
serving the symmetries of the Hamiltonian systems are studied, and the corresponding
numerical simulation are proposed. The goal of this article is to extend the method of
invariant discretization of differential equations to the holonomic Hamiltonian systems.
This new method can preserve fundamental symmetric properties and improve the features
of numerical algorithms in a Hamiltonian framework. The main goal of this paper is to
find a way to discretize the constrained systems in the Hamiltonian framework. Generally
speaking, the constrained dynamical systems are universal in engineering but relatively
difficult in terms of getting a solution. Suppose the systems are subject to holonomic
constraint. Although it is simpler, the results could make some preliminary analysis in the
numerical simulation of complex systems.

The paper is structured as follows. In Section 2, the Lie symmetry of Hamiltonian
systems with holonomic constraints are recalled, based on the infinitesimal generators and
the prolongations. In Section 3, the Lie point symmetry group in Section 2 is prolonged
to the three points of lattice, and the invariant difference scheme is obtained by solving
the discrete characteristic equations. The symmetry preserving discretization of the Hamil-
tonian systems with holonomic constraints are constructed by the difference invariants.
Section 4 is devoted to an example to illustrate the theoretical results, and the Hamiltonian
system’s behaviors are simulated using the invariant discretization. Some conclusions are
drawn in Section 5. Throughout the paper Einstein’s summation is used.

2. Lie Symmetry of Hamiltonian Systems with Holonomic Constraints
2.1. The Equations of the Constrained Hamiltonian System

Let X = Rm be the space representing the independent variables, and U = Rn

represent the dependent variables. Consider a mechanical system whose configuration is
determined by n generalised coordinates qs(s = 1, . . . , n). Let the motion of the system be
subjected to the g holonomic constraints Qs = Qs

(
t, qs,

.
qs
)
, the differential equations of

motion of the system can be written in the form

d
dt

∂L
∂

.
qs
− ∂L

∂qs
= Qs, (1)

where L = L(t, qs,
.
qs) is the Lagrangian, Qs are the non-potential generalised forces.

Introduce the generalized momentum and Hamilton function

ps =
∂L
∂

.
qs

, H = ps
.
qs − L, (2)
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and the canonical form of equations of the Hamiltonian systems with holonomic constraints
are

F1 =
.
qs − ∂ps H = 0, F2 =

.
ps + ∂qs H −Qs = 0, (3)

involving one independent variables t and 2n dependent variables ps = (p1, . . . , pn)
and qs = (q1, . . . , qn) where ∂qs = ∂/∂qs, ∂ps = ∂/∂ps, H is the Hamiltonian, Qs are the
nonpotential generalized forces as functions of t, qs and ps. Expanding Equation (3), we
can solve

.
qs and

.
ps as

.
qs = gs(t, ps, qs),

.
ps = hs(t, ps, qs). (4)

2.2. Infnitesimal Generators and the Prolongations

A symmetry group of the system will be a local group of transformation Gr in Z acting
on the open subset M ⊂ X×U. For the holonomic Hamiltonian systems with X = R and
U = R2n, we denote a local one parameter continuous transformation group G1 concerning
t, qs and ps to a continuous parameter ε ∈ R2n can be taken from

t∗ = φ(t, ps, qs, ε), q∗s (t
∗) = ϕ(t, ps, qs, ε), p∗s (t

∗) = ψ(t, ps, qs, ε). (5)

Accordingly, the transformations in the group G1 acting on the variables can be written
as

t∗ = t + ε

(
∂φ

∂ε
|ε→0

)
+ O(ε2), q∗s = qs + ε

(
∂ϕ

∂ε
|ε→0

)
+ O(ε2), p∗s = ps + ε

(
∂ψ

∂ε
|ε→0

)
+ O(ε2), (6)

since ε→0 forms the identity of the group. The infinitesimals are defined by the new
functions:

τ(t, ps, qs) =
∂φ

∂ε
|ε→0, ξs(t, ps, qs) =

∂ϕ

∂ε
|ε→0, ηs (t, ps, qs) =

∂ψ

∂ε
|ε→0.

Then, Equation (5) becomes

t∗ = t + ετ(t, ps, qs), q∗s = qs + εξs(t, ps, qs), p∗s = ps + εηs(t, ps, qs). (7)

The first prolongation of the infinitesimal generators should also be known for the
Hamiltonian systems with holonomic constraints. By obtaining

.
q∗s and

.
p∗s :

.
q∗s = dq∗s

dt∗ = q∗s +εDt(ξs)
1+Dt(τ)

=
.
qs −

.
qsεDt(τ) + εDt(ξs)− ε2Dt(ξs)Dt(τ),

.
q∗s = dq∗s

dt∗ = q∗s +εDt(ξs)
1+Dt(τ)

=
.
qs −

.
qsεDt(τ) + εDt(ξs)− ε2Dt(ξs)Dt(τ),

where Dt is the total derivative operator for time. Ignoring the high-order terms, we have

q∗s =
.
qs + ε(Dt(ξs)−

.
qsDt(τ)), p∗s =

.
ps + ε(Dt(ηs)−

.
psDt(τ))

One can determine the tangent vector field γ = {τ, ξs, ηs}T, of the group at the point
(t, qs, ps), where τ, ξs and ηs are unknown and demand to be determined to achieve the
symmetry transformation. The Lie algebra L of the symmetry group G1 is realized by
vector fields of the form

X(0)
s = τ∂t + ξs∂qs + ηs∂ps , (8)

and the first prolongation is

X(1)
s = X(0)

s + (Dt(ξs)−
.
qsDt(τ))∂ .

qs
+ (Dt(ηs)−

.
psDt(τ))∂ps , (9)

where ∂t = ∂/∂t.
In the same way, the vector fields and the prolongation of systems (1) in Lagrangian

framework are
X(0)

s = τ∂t + ξs∂qs , (10)
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X(1)
s = X(0)

s + (Dt(ξs)−
.
qsDt(τ))∂ .

qs
, (11)

X(2)
s = X(1)

s + (Dt(ξs)−
.
qsDt(τ))∂ .

qs
+ (

..
ξs − 2

..
qs

.
ξ0 +

.
qs

..
ξ0)∂ ..

qs
. (12)

2.3. Lie Symmetries for Hamiltonian Systems

The algorithm for finding the symmetry algebra and the symmetry group for a given
Equation (3) goes back to S. Lie and is given in many books on the subject [3]. For the
equations of Hamiltonian systems, the symmetry algebra L and the symmetry group G1
are given as follows.

Definition 1. If G1 is a local group of transformations acting on M, and

X(1)
s (Fσ)

∣∣Fσ=0 = 0, σ = 1, 2 , (13)

for every infinitesimal generator of G1, then G1 is a Lie symmetry group of the systems.

Considering Equation (4), the determining equations of the Lie symmetries for Equa-
tion (3) under the transformation (8) have the form

Dt(ξs)− gsDt(τ) = X(0)
s (gs), Dt(ηs)− hsDt(τ) = X(0)

s (hs), (14)

where gs = ∂ps H and hs = −∂qs H + Qs. This produces 2n partial differential equations to
determine the functions τ, ξs and ηs. These equations provide an effective computational
procedure for finding the most general symmetry group of the systems. In this procedure,
the coefficients τ, ξs and ηs of the infinitesimal transformation generator X(0)

s of one-
parameter symmetry group of the systems be unknown functions of t, qs and ps. The
determining Equations (14) will thus involve t, qs and ps, as well as τ, ξs, ηs and their partial
derivatives with respect to t, qs and ps. We can equate the coefficients of the remaining
derivative of qs and ps to zero after eliminating any dependencies among the derivative of
the qs’s and ps’s caused by the system itself. This will result in solving a large number for
the coefficient functions τ, ξs and ηs for the infinitesimal generator. In most instances, these
determining equations can be solved by elementary method, and the general solution will
determine the most general infinitesimal symmetry of the system.

We can also use an existing software program designed to automate the major steps of
this algorithm in order to calculate the symmetry group of the system more efficiently, such
as Mathematica [27], Maple [28], etc. In this paper, the symmetry operators are obtained in
Maple. In general, the Low-order differential equations can be solved by the determine()
provided by liesymm, an embedded software package in Maple system [29]. The solution
of symmetric equations of higher order nonlinear partial differential equations can be
obtained by means of some standard software packages like PDEtools [30], SADE [31],
GeM [32], etc.

3. The Lie Symmetry-Preserving Difference Scheme for Hamiltonian Systems with
Holonomic Constraints
3.1. Invariance of Difference Equations of Hamiltonian Systems

Consider the space Z of sequences (t, qs, ps), and denote by D the first order linear
discrete operator

D =
∂

∂t
+

.
qs

∂

∂qs
+

.
ps

∂

∂ps
+ . . .

Fixing arbitrary parameter value h > 0, we form a pair of the operators of discrete
transformation to the right and left

S
+h

= ehD =
hm

m!
Dm, S

−h
= e−hD =

(−h)m

m!
Dm,
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where D is a derivation in Z. The operators S
+h

and S
−h

commute with each other and satisfy

S
+h

S
−h

= S
−h

S
+h

= 1.

Consider Hamiltonian difference equations at some lattice points (t, qs and ps). Gener-
ally, the lattice is irregular.

Using S
+h

and S
−h

we define a pair of right and left discrete (finite-difference) differenti-

ation operators by setting

D
+h

=
S
+h
− 1

h
≡ hm−1

m!
Dm, D

−h
=

1− S
−h

h
≡ (−h)m−1

m!
Dm,

where D
±h

denote total difference derivatives in the time directions with steps h. The

operators S
+h

, S
−h

, D
+h

and D
−h

commute in any combination, while D
−h

= D
+h

S
−h

, D
+h

= D
−h

S
+h

.

The shift operators S
±h

and the discrete differentiation operators D
±h

introduce new variables

(the difference derivatives and the lattice) while discretizing the space Z.
Let Z

h
be the space of sequences of mesh variables (t, qi, pi, qi,t, pi,t, h+, h−) and let

A
h

the space of analytic functions of finitely many coordinates zi of a vector Z
h

. We introduce

the one-dimensional difference mesh t+ = t + h+ and h+ ∈ ω
h

. Then each finite-difference

equations on the mesh ω
h

can be written as

Fd
1 = qi,t − ∂p+i

H = 0, Fd
2 = pi,t + ∂qi H −Qi = 0, i = 1, . . . n, (15)

where Fd
σ ∈ A

h
, qi,t = D

+h
(qi) =

(
q+i − qi

)
/h+, pi,t = D

+h
(pi) =

(
p+i − pi

)
/h+. This equation

is writ ten on finitely many points of the difference mesh ω
h

. We assume that the mesh is

determined by the equation
Ωβ(z) = 0, β = 1, . . . , m, (16)

where Ω ∈ A
h

. The function Ω is uniquely determined by the discretization of the space of

independent variables. In the continuous limit one equation, the Equation (16) reduces to
an identity (like 0 = 0).

The vector fields are the same as in the continuous case, however they must be
prolonged to all points of the lattice, involved in the system (15) and (16). We have G1 be a
one-parameter group in Z with operator

prX(1)
i = τ∂t + ξi∂qi + ηi∂pi + ξt

i ∂qi,t + ηt
i ∂pi,t + (τ+ − τ)∂h+ + (τ − τ−)∂h− , (17)

where ξt
i = D

+h
(ξi)− qi,t D

+h
(τ) and ηt

i = D
+h
(ηi)− pi,t D

+h
(τ).

Definition 2. For the difference Equation (15) to admit the group with operator (17) on the mesh
(16), if the infinitesimal generators τ, ξi and ηi satisfy the determining equations

prX(1)
i (Fd

σ (z))
∣∣∣Fd

σ (z)=0,Ωβ(z)=0
= 0, (18)

prX(1)
i (Ωβ(z))

∣∣∣Fd
σ (z)=0,Ωβ(z)=0

= 0, (19)

then the symmetry is the Lie symmetry of discrete Hamiltonian systems with holonomic constraint.

The mesh spacing transformations are h+ and h−. By using the uniform mesh h+ = h−

and applying the infinitesimal transformation (7), we obtain prX(1)
i (h+) = prX(1)

i (h−), the
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coordinate τ of the operator(17) satisfy τ+ − τ = τ − τ− or D
+h

D
+h
(τ) = 0. Thus, we have

the following proposition.

Proposition 1. For the meshω
h

to remain uniform under the action of the transformation group G1

of the Hamiltonian systems, it is necessary and sufficient that the following condition be satisfied at
each point:

D
+h

D
−h
(τ(z)) = 0. (20)

The meshes satisfying (20) are said to be invariantly uniform for the systems.

3.2. The Lie Symmetry-Preserving Difference Scheme for Hamiltonian Systems

Suppose the Hamiltonian Equation (3) admit a known transformation group G1
without loss of generality, after the complete set of r functionally independent invariants
(IC

1 (z), . . . , IC
r (z)) of order k is constructed, system(3) can be rewritten in the invariant

representation Ψa(IC
1 (z), . . . , IC

r (z)) = 0.
For the systems of the difference Equation (15) and the difference mesh (16) which

admits the same group G1 and provide a first order approximation to the original systems
(3). We wish to construct the difference scheme that not only approximates Equation (3), but
has the same Lie point symmetry group G1. This is achieved by constructing the scheme
out of difference invariants of the group G1, or out of invariant manifolds. These are found
using the vector fields (8) and (9) corresponding to the invariance algebra of Equation (3).
We can proceed as follows:

(i) The Lie symmetry groups of the original Equation (3) of Hamiltonian systems are
obtained. Then the corresponding vectors fields are prolonged to three point on a line and
the corresponding values qi = qi (t), q_i = qi (t_), q+I = qi (t+), p_i = pi (t_), p_i = pi (t+).

(ii) The set of difference invariants can be found by solving the following standard
linear problem of group analysis:

prX(1)
i (I) = 0, (21)

the local invariant I of G1 is the solution of Equation (21). The method of characteristics
gives us a set of independent elementary invariants of the corresponding Lie group action.
The invariance conditions (18) and (19) yield r + nm functionally independent difference
invariants (ID

1 (z), . . . , ID
r+nm(z)) because there are two sets (right and left) of first difference

derivatives in the difference space.
(iii) The invariant mesh from the general equation for invariant mesh generation is

ωβ(ID
1 (z), . . . , ID

r+mn(z)) = 0, (22)

where the ωβ are arbitrary smooth functions. The choice can be made from different
standpoints. Any other invariant, i.e., any other solution of(16), will be necessarily be a
function of ID

1 (z), . . . , ID
r+mn(z).

(IV) Form a set of r invariants with the desired approximation property; i.e., for each
invariant ID

α represen table in Z̃ by the Taylor group, the relation is

ID
α (z) = IC

α (z) + O(h2), α = 1, . . . , γ, (23)

which holds on the mesh chosen above. In practice, as a rule, it suffices to have less τ of
such invariants. The Equation (15) can be written in the invariant representation

ΨD
γ (ID

1 (z), . . . , ID
r (z)) = 0. (24)

From the above statement, we have the following proposition:
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Proposition 2. For the Hamiltonian system (3), if the vector field of the Equations (22) and (24)
satisfy: (i) Equation (22) reduce to zero, and Equation (24) reduce to Equation (3) when h→ 0 ;

(ii) prX
(

ωβ(ID
1 (z), . . . , ID

r+mn(z))
ΨD

γ (ID
1 (z), . . . , ID

r (z))

)
= 0. Then the Equations (22) and (24) are symmetry

preserving discretization of the Hamiltonian system.

Proof. For Equations (22) and (24), if they can reduce to the continuous Equation (3) when
h→ 0 , they are the approximation of the continuous systems. Equations (22) and (24) are
Lie symmetry if they satisfy Equation (40). They have the same Lie group as the continuous
system. Equations (22) and (24) can preserve the symmetry of the Hamiltonian system. �

Since the functions ΨD
γ = 0 are assumed to be locally analytic in their arguments, it

follows from(21) that the difference equations ΨD
γ = 0 model the corresponding differential

equations. The system of difference Equations (22) and (24) constructed admits the complete
group G1, and they are the symmetry-preserving discretization of the Hamiltonian systems
with holonomic constraints.

4. Examples

Example 1. Consider a nonlinear holonomic system with Lagrangian L = q2/2 with the nonpotential
generalized forces Q = exp q. The Euler-Lagrangian function is

..
q = exp q. (25)

Applying the formula Equation (12) in Equation (25), we obtain

prX(2)
i (

..
q− exp q)

∣∣∣ ..q−exp q=0 = 0 . (26)

By separation of the coefficient of the above system (26), the determining equations of the
holonomic system are

∂2τ

∂q2 = 0, (27)

− 2
∂2τ

∂t∂q
+

∂2ξ

∂q2 = 0, (28)

− 3
∂τ

∂q
exp q + 2

∂2ξ

∂t∂q
− ∂2ξ

∂t2 = 0, (29)

− ξ exp q + 2
∂ξ

∂q
exp q− 2

∂τ

∂t
exp q +

∂2τ

∂t2 = 0. (30)

Then the general solutions of the Equations (27)–(30) are

τ = −C1

2
t + C2, ξ = C1. (31)

The symmetrical generators are given as

X1 = ∂t, X2 = t∂t− 2∂q. (32)

The second prolongation of (32) is

X(1)
1 = ∂t, X(1)

2 = t∂t − 2∂q +
.
q∂ .

q. (33)

The equations of holonomic system (25) in Hamiltonian framework is

.
q = p,

.
p = exp q, (34)
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which admits the symmetry group associated with the Lie algebra spanned by the operators

X1 = ∂t, (35)

X2 = t∂t − 2∂q − p∂p. (36)

The symmetries of the holonomic system in the Lagrangian framework can be calculated in
Maple.

We have at least a three-point difference stencil, on which we should construct (to be define) a
first-order approximation to the original Equation (34). Let us represent the operators (35) and (36)
by extending to the space (t, q, p, qt, pt, h+, h-) as follows (the corresponding coordinates in X1 are
zero):

prX1 = ∂t, (37)

prX2 = t∂t − 2∂q − p∂p − qt∂qt
− 2pt∂pt + (t+ − t)∂h+ + (t− t−)∂h− . (38)

It was shown that a transformation defined by (7) conserves uniformity of a mesh in time if
and only if D

+h
D
−h
(τ) = 0, so the mesh is uniform. In the following, the independent invariants

which can be obtained by solving the standard linear problem of group analysis (38):

ID
1 = t2 exp q, ID

2 = p2 exp(−q), ID
3 =

p2

pt
, ID

4 = pt(h+)2, ID
5 =

h+

h−
. (39)

We should write out two invariant difference equations as the form

ω(ID
α ) = 0, ΨD

γ (ID
α ) = 0, α = 1, . . . , 5. (40)

The simplest version ID
5 = h+/h− = 1 of difference equation

ω(ID
α ) = ID

5 − 1 = 0, (41)

are taken. This mesh has the obvious integral h+ = h- = ε, ε = const; 0 < ε� 1, where the constant ε
characterize the mesh spacing smallness. Using Taylor series expansions, we can obtain the relation
h+ = h- + O(h2) for the spacing of the invariant mesh (41). On such a uniform mesh, the equation
ω(ID

α ) = 0 for invariant mesh generation provides infinitely many possibilities. We choose

ΨD
1 (ID

α ) =
ID
2

ID
3
− 1 = 0, (42)

ΨD
2 (ID

α ) =
ID
2

ID
3
−

ID
3 ID

4
ID
2
− 1 = 0, (43)

ΨD
3 (ID

α ) = ID
2 − 1 = 0. (44)

Thus, for the difference equation approximating the differential equation of the systems we can
take

pt − exp q = 0, (45)

pt − exp q− (h+)2 exp 2q = 0, (46)

p2 − exp q = 0. (47)

The constructed invariant model is not unique. In the continuous limit, operators (37) and
(38) reduces to (35) and (36) respectively, so the discrete invariants will reduce to the continuous
differential equations of the Hamiltonian system when h→ 0 . Equations (45) and (46) can reduce
to (34), but (47) can not although it can be written in invariant form. So Equation (47) is not the
discretization of the systems. Equations (45) and (46) give two approximations to the differential
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invariant
.
ps/exp q model O(h2). But, even on approximation to (34), some difference ones are still

not the symmetry-preserved discretization. For example, the equation

p = qt, pt = exp q− (h+)2 exp q2, (48)

has approximation to Equation (34) as well but can not be written in invariant form. Equation (48)
can not be constructed in the form of ID

1 (z), . . . , ID
5 (z), it can not be written as Equation (24).

It is not the symmetry preserving scheme from Proposition 2. Equation (48) is not the symmetry-
preserving discretization of the systems. Of course, the equation for invariant mesh generation
provides many possibilities. In this case, we choose two symmetry preserving schemes according to
Equations (45) and (46)

p = qt, pt = exp q. (49)

p = qt, pt = exp q + (h+)2 exp 2q, (50)

The constructed invariant models (49) and (50) admit X1 and X2. It is obvious that Equation (48)
admits X1 but does not admit X2, it approximates(34) but does not admit the same group as the
original equation. So Equations (49) and (50) are both the symmetry-preserving discretization
of the systems, but Equation (48) is not.

The solution obtained with the three schemes (48), (49) and (50) is displayed in Figure 1 for
the coarse resolution h = 0.01. The initial conditions are taken from the exact solution: q0 = 0.1;
p0 = 0.105; h = 0.01. The solution is also computed by the Matlab standard and adaptive Runge-
Kutta scheme ODE45 in Figure 1. They are compared with the exact solution of the Hamiltonian
system. From Figure 1, the symmetry preserving schemes (49) and (50) provide approximations
of the differential Equation (34). The accuracy and stability of symmetry preserving schemes is
better than the standard scheme. In Figure 2, the solution is shown with the invariant scheme
for three resolutions h = 0.1, h = 0.01, h = 0.001, the graphics show that smaller steps provide a
better approximation. Table 1 compares the values at several points using the standard scheme, the
symmetry preserving schemes (sym. pres. I and II) and the analytical solutions (exact). The total
elapsed time for standard schemes and the symmetry preserving ones is listed on in Table 2. These
two tables have shown that the accuracy of the symmetry preserving schemes is better than that of
standard schemes at no significant additional cost.

Figure 1. Solutions for the symmetry preserving schemes (49) (sym. pres. I) and (50) (sym. pres. II),
the noninvariant (48), the standard RK45 and the exact solution of Hamiltonian system.
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Figure 2. Solutions for the symmetry preserving schemes (49) for h = 0.1; h = 0.01; h = 0.001, and the
exact solution of Hamiltonian system.

Table 1. Values of the solution at points 1.2, 1.4 and 1.6 for mesh size h = 0.01.

Scheme t = 1.2 t = 1.4 t = 1.6

Exact solution 1.199773 1.698965 2.428005
Sym.pres. I 1.199750 1.698918 2.427891
Sym.pres. II 1.200082 1.699542 2.429250

Standard 1.208324 1.711019 2.446514

Table 2. Elapsed time comparison of the algorithms.

Scheme Standard Sym.pres. I Sym.pres. II

Elapsed time 0.192247 0.165179 0.159947

Example 2. Consider a particle in the one-dimensional Coulomb field. The Lagrangian is L = q2/2.
It is subjected to repulsive forces Q = 1/q2 which is the holonomic constraint. The differential
equation of motion of the system is

..
q =

1
q2 (51)

In Hamiltonian framework, the Equation (51) can be written as

.
q = p,

.
p = q(−2), (52)

Using Maple procedure, the Lie symmetry vector field for Equation (52) are

X1 = ∂t, (53)

X2 = 3t∂t + 2q∂q. (54)

The operators (53) and (54) can be extended to the space (t, q, p, qt, pt, h+, h-) as follows

prX1 = ∂t, (55)

prX2 = 3t∂t + 2q∂q − p∂p − 4pt∂pt + (t+ − t)∂h+ + (t− t−)∂h− . (56)
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From Proposition 1 and the generators in vector fields (55) and (56), we have D
+h

D
−h
(τ) = 0,

the mesh defined by (7) is uniform.
Applying the method of characteristics to Equation (56), the independent invariants can be

obtained

I1 =
3t
2q

, I2 =
p
pt

, I3 =
h+

h−
, I4 = ptq, I5 =

q
h

. (57)

We write out two invariant difference equations as the form

ω(ID
α ) = I3 − 1 = 0, (58)

ΨD
γ (ID

α ) =
I4(

hI5
)3 − I3 = 0. (59)

The simplest version (58) of difference equation is just the map scheme. The Equation (59) can
be expressed as

pt − q(−2) = 0, (60)

which satisfy Proposition 1, it is symmetry-preserving discretization of the systems. There are
different types of discretization for the system (52), such as

pt = q(−2) + h2q. (61)

Although it has approximation to (52), it can not satisfy (18) expressed asprX2

(
pt − q(−2) − h2q

)
= 0. So expression (61) is not the symmetry-preserving scheme.

The system (51) is a conservative mechanical system. The energy is constant. The energy with
the schemes (60) and (61) is displayed in Figure 3 for the step h = 0.01. The initial conditions are
q0 = 10 and p0 = 10. The results show that the symmetry preserving schemes can keep the energy
constant. But the noninvariant scheme can not simulate the energy correctly.

Figure 3. Energy for the symmetry preserving schemes (60) and the noninvariant (61) of Hamiltonian
system.

5. Conclusions

The basic motivation for this research program is applying the method of symmetry
preserving discretization to the holonomic Hamiltonian systems. The essential feature (sym-
metry) of the Hamiltonian systems is incorporated in the symmetry preserving difference
mathematical model. The main theoretical results are the following:

In the Hamiltonian framework, the Lie symmetry generators can be obtained from the
determining Equation (14). The generators generate the Lie group and form the vector field.
The discrete invariants can be obtained using the prolonged Lie symmetry vector field.
The difference schemes (equations and meshes) are constructed out of the invariants of the
corresponding Lie groups. The numerical examples show that the invariant schemes can
simulate the dynamical behaviors accurately. Although the noninvariant schemes can give
the original equations under continuous limit, they can not reflect the solution correctly.
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It is significant to preserve the geometrical structure when the continuous systems
are discretized. The invariant schemes can preserve the symmetry structure of the holo-
nomic Hamiltonian systems. It proposes a preliminary analysis of the structure-preserving
discretization of the constrained systems in the Hamiltonian framework.
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