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Abstract: In this paper, we establish a new Hardy–Hilbert-type inequality involving parameters
composed of a pair of weight coefficients with their sum. Our result is a unified generalization of some
Hardy–Hilbert-type inequalities presented in earlier papers. Based on the obtained inequality, the
equivalent conditions of the best possible constant factor related to several parameters are discussed,
and the equivalent forms and the operator expressions are also considered. As applications, we
illustrate how the inequality obtained can generate some new Hardy–Hilbert-type inequalities.

Keywords: weight coefficients; Hardy–Hilbert-type inequality; Euler–Maclaurin summation formula;
equivalent conditions; operator expressions

1. Introduction

The classical Hardy–Hilbert’s inequality asserted the following:
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π
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(

∞
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ap
m)

1
p

(
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1
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, (1)

where p > 1, 1
p +

1
q = 1, am, bn ≥ 0, 0 < ∑∞

m=1 ap
m < ∞ and 0 < ∑∞

n=1 bq
n < ∞, and π

sin(π/p)
is the best possible constant factor (cf. [1], Theorem 315).

A sharpened version of inequality (1) was included in [1] by Theorem 323, as follows.
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The integral version of Hilbert’s inequality reads as follows (cf. [1], Theorem 316).

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dxdy < π(
∫ ∞

0
f 2(x)dx

∫ ∞

0
g2(y)dy)

1
2
. (3)

In 1998, by introducing an independent parameter λ > 0, Yang [2,3] provided an
extension of Hilbert’s integral inequality with the best possible constant factor B(λ2 , λ

2 )
as follows.∫ ∞

0

∫ ∞

0

f (x)g(y)

(x + y)λ
dxdy < B(

λ

2
,
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2
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∫ ∞

0
x1−λ f 2(x)dx

∫ ∞

0
y1−λg2(y)dy]

1
2
. (4)

For λ = 1, inequality (4) reduces to the Hilbert’s integral inequality (3).
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Inspired by the idea of establishing inequality (4), in 2001, with the help of the
Euler–Maclaurin summation formula, Yang [4] proved a generalization of Hardy–Hilbert’s
inequality (1), i.e., for λ ∈ (0, 4]; the following inequality holds.
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In 2002, Yang and Debnath [5] generalized inequality (5) to the following inequality:
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∞
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where λ ∈ (0, 2], A, B > 0.
In 2006, Krnić and Pečarić [6] provided an extension of inequalities (1) and (4) by

introducing parameters λi ∈ (0, 2] (i = 1, 2), λ1 + λ2 = λ ∈ (0, 4], as follows:
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∞
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∞

∑
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1
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where the constant factor B(λ1, λ2) is the best possible, and the following:

B(u, v) =
∫ ∞

0

tu−1

(1 + t)u+v dt(u, v > 0)

is the classical Beta function. Obviously, for λ = 1, λ1 = 1
q , λ2 = 1

p , inequality (7) reduces to

the Hardy–Hilbert’s inequality (1); for p = q = 2, λ1 = λ2 = λ
2 ,(7) reduces to (6).

Recently, Huang, Wu and Yang [7] provided a half-discrete Hardy–Hilbert-type in-
equality, as follows:
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∞
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q +
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(8)

where p > 1, 1
p + 1

q = 1, η ∈ [0, 1
4 ], s ∈ (0, 4], s1 ∈ (0, s), s2 ∈ (0, 3

2 ] ∩ (0, s).

ks(si) := B(si, s− si) (i = 1, 2).

Inequalities (1)–(3) play an important role in analysis and applications (cf. [8–18]).
In 2016, by means of the techniques of real analysis, Hong et al. [19] considered some

equivalent statements of the extensions of (1) with the best possible constant factor related
to a few parameters.

Motivated by the above-mentioned inequalities (2), (7) and (8), in this paper, we estab-
lish a new inequality that contains parameters composed of a pair of weight coefficients
η1 and η2 with their sum η (η ∈ [0, 1

2 ]). The obtained inequality is a unified generalization
of inequalities (2) and (7), as well as a more accurate version of inequalities (2) and (7).
The main technical approaches include the construction of weight coefficients and the
use of Hermite–Hadamard’s inequality and the Euler–Maclaurin summation formula for
estimation. Based on the obtained inequality, the equivalent conditions of the best possible
constant factor related to several parameters are discussed. As applications, we deal with
some equivalent forms, the operator expressions and some special cases for the inequalities
obtained in the main result.

The rest of the paper is organized as follows: In Section 2, we provide some necessary
notations, formulas and lemmas. In Sections 3 and 4, we state our main results, while some



Mathematics 2021, 9, 2950 3 of 15

new inequalities with their equivalent forms and the operator expressions are provided.
In Section 5, we end the paper with some concluding remarks and future directions of
this study.

2. Preliminaries

Let us first state the following specified conditions (C1) that we will use in what
follows. We suppose that the following is the case.

(C1) p > 1, q > 1,
1
p
+

1
q
= 1, N = {1, 2, . . . }, ηi ∈ [0,

1
4
] (i = 1, 2),η1 + η2 = η ∈ [0,

1
2
]

λ ∈ (0, 3], λi ∈ (0, 3
2 ] ∩ (0, λ), kλ(λi) := B(λi, λ− λi)(i = 1, 2). We also assume

am, bn ≥ 0 such that the following is the case.

0 <
∞

∑
m=1

(m− η1)
p[1−( λ−λ2

p +
λ1
q )]−1ap

m < ∞, and 0 <
∞

∑
n=1

(n− η2)
q[1−( λ−λ1

q +
λ2
p )]−1bq

n < ∞.

Hereinafter, the Euler–Maclaurin summation formula will be very helpful for us to
deal with the estimations of integrals, which is stated as follows (cf. [4,5]).

Let f : [1, ∞) 7→ R be non-negative continuously differentiable function such that
∑∞

k=1 f (k) < ∞ and
∫ ∞

1 f (t)dt < ∞; then, the following equality holds:

∞

∑
k=1

f (k) =
∫ ∞

1
f (t)dt +

1
2

f (1) +
∫ ∞

1
ρ(t) f ′(t)dt,

where ρ(t) = t − [t] − 1
2 . Furthermore, if f ∈ C4[1, ∞), f (r)(∞) = 0, r = 0, 1, 2, 3, 4,

f (2r)(x) > 0 and f (2r−1)(x) < 0, r = 1, 2, then the following inequality holds.

− 1
12

f (1) <
∫ ∞

1
ρ(t) f (t)dt < − 1

12
f (1) +

1
720

f ′′ (1) < 0. (9)

Lemma 1. Define the following weight coefficient.

v(λ2, m) := (m− η1)
λ−λ2

∞

∑
n=1

(n− η2)
λ2−1

(m + n− η)λ
(m ∈ N).

For λ1 ∈ (0, λ), λ2 ∈ (0, 3
2 ] ∩ (0, λ), we have the following inequalities:

0 < kλ(λ2)(1−O(
1

(m− η1)
λ2

)) < v(λ2, m) < kλ(λ2)(m ∈ N), (10)

where O( 1
(m−η1)

λ2
) is indicated as follows.

O(
1

(m− η1)
λ2

) :=
1

kλ(λ2)

∫ 1−η2
m−η1

0

uλ2−1

(1 + u)λ
du (> 0) (m ∈ N).

Proof. For fixed m ∈ N, we set the following real function.

g(m, t) :=
(t− η2)

λ2−1

(m− η + t)λ
(t > η2).

In the following, we prove inequality (10) by considering two cases.
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Case (i). If λ2 ∈ (0, 1) ∩ (0, λ), then by (−1)ig(i)(m, t) > 0(t > η2; i = 0, 1, 2), and an
application of the Hermite–Hadamard’s inequality, we find, by setting u = t−η2

m−η1
, that the

following is the case.

v(λ2, m) = (m− η1)
λ−λ2

∞
∑

n=1
g(m, n) < (m− η1)λ− λ2

∫ ∞
1
2

g(m, t)dt

= (m− η1)λ− λ2
∫ ∞

1
2

tλ2−1

(m−η1+t−η2)
λ dt =

∫ ∞
1
2−η2
m−η1

uλ2−1

(1+u)λ
du

≤
∫ ∞

0
uλ2−1

(1+u)λ
du = B(λ2, λ− λ2) = kλ(λ2).

In view of the decreasingness property of the series and by letting u = t−η2
m−η1

, we
obtain the following:

v(λ2, m) = (m− η1)
λ−λ2

∞
∑

n=1
g(m, n) > (m− η1)

λ−λ2
∫ ∞

1 g(m, t)dt

=
∫ ∞

1−η2
m−η1

uλ2−1

(1+u)λ
du = B(λ2, λ− λ2)−

∫ 1−η2
m−η1

0
uλ2−1

(1+u)λ
du

= kλ(λ2)(1−O( 1
(m−η1)

λ2
)) > 0,

where O( 1
(m−η1)

λ2
) = 1

kλ(λ2)

∫ 1−η2
m−η1

0
uλ2−1

(1+u)λ
du > 0, satisfying the following case.

0 <
∫ 1−η2

m−η1

0

uλ2−1

(1 + u)λ
du <

∫ 1−η2
m−η1

0
uλ2−1du =

1
λ2

(
1− η2

m− η1
)
λ2

(m ∈ N).

Hence, we obtain inequality (10).
Case (ii). If λ2 ∈ [1, 3

2 ] ∩ (0, λ), then by means of the Euler–Maclaurin summation
formula, we have the following:

∞
∑

n=1
g(m, n) =

∫ ∞
1 g(m, t)dt + 1

2 g(m, 1) +
∫ ∞

1 ρ(t)g′(m, t)dt

=
∫ ∞

η2
g(m, t)dt− h(m),

where ρ(t) := t − [t] − 1
2 is a Bernoulli function of first order, and h(m) is indicated

as follows.

h(m) :=
∫ 1

η2

g(m, t)dt−1
2

g(m, 1)−
∫ ∞

1
ρ(t)g′(m, t)dt.

Note that − 1
2 g(m, 1) = −(1−η2)

λ2−1

2(m−η+1)λ
. Integrating by parts, the following is the case.

∫ 1
η2

g(m, t)dt =
∫ 1

η2

(t−η2)
λ2−1

(m−η+t)λ
dt = 1

λ2

∫ 1
η2

d(t−η)2λ2

(m−η+t)λ

= 1
λ2

(t−η2)
λ2

(m−η+t)λ
|1η2

+ λ
λ2

∫ 1
η2

(t−η2)
λ2

(m−η+t)λ+1 dt

= 1
λ2

(1−η2)
λ2

(m−η+1)λ
+ λ

λ2(λ2+1)

∫ 1
η2

d(t−η2)
λ2+1

(m−η+t)λ+1

> 1
λ2

(1−η2)
λ2

(m−η+1)λ
+ λ

λ2(λ2+1)

[
(t−η2)

λ2+1

(m−η+t)λ+1

]1

η2

+ λ(λ+1)
λ2(λ2+1)(m−η+1)λ+2

∫ 1
η2
(t− η2)

λ2+1dt

= 1
λ2

(1−η2)
λ2

(m−η+1)λ
+ λ

λ2(λ2+1)
(1−η2)

λ2+1

(m−η+1)λ+1 +
λ(λ+1)(1−η2)

λ2+2

λ2(λ2+1)(λ2+2)(m−η+1)λ+2 .
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Moreover, we have the following:

−g′(m, t) = − (λ2−1)(t−η2)
λ2−2

(m−η+t)λ
+ λ(t−η2)

λ2−1

(m−η+t)λ+1

= (1−λ2)(t−η2)
λ2−2

(m−η+t)λ
+ λ(t−η2)

λ2−2

(m−η+t)λ
− λ(m−η1)(t−η2)

λ2−2

(m−η+t)λ+1

= (λ+1−λ2)(t−η2)
λ2−2

(m−η+t)λ
− λ(m−η1)(t−η2)

λ2−2

(m−η+t)λ+1 ,

and for λ2 ∈ [1, 3
2 ] ∩ (0, λ), we obtain the following.

(−1)i di

dti [
(t− η2)

λ2−2

(m− η + t)λ
] > 0, (−1)i di

dti [
(t− η2)

λ2−2

(m− η + t)λ+1 ] > 0 (t > η2; i = 0, 1, 2, 3, 4).

Using the Euler–Maclaurin summation formulas for estimation provides the following:

− 1
12

g(1) <
∫ ∞

1
ρ(t)g(t)dt < − 1

12
g(1) +

1
720

g′′ (1) < 0,

where (−1)ig(i)(t) > 0, g(i)(∞) = 0 (i = 0, 1, 2, 3, 4) (t > 0), and then by setting a := 1− η2
(∈ [ 4

5 , 1]), we obtain the following.

(λ+ 1− λ2)
∫ ∞

1
ρ(t)

(t− η2)
λ2−2

(m− η + t)λ
dt > − (λ+ 1− λ2)aλ2−2

12(m− η + 1)λ
,

−(m− η1)λ
∫ ∞

1 ρ(t) (t−η2)
λ2−2

(m−η+t)λ+1 dt > (m−η1)λaλ2−2

12(m−η+1)λ+1 −
(m−η1)λ

720

[
(t−η2)

λ2−2

(m−η+t)λ+1 ]
′′

t=1

> (m−η+1)λ−aλ
12(m−η+1)λ+1 aλ2−2

− (m−η+1)λ
720

[
(λ+1)(λ+2)
(m−η+1)λ+3 aλ2−2 + 2(λ+1)(2−λ2)

(m−η+1)λ+2 aλ2−3 + (2−λ2)(3−λ2)

(m−η+1)λ+1 aλ2−4
]

= λaλ2−2

12(m−η+1)λ
− λaλ2−1

12(m−η+1)λ+1

− λ
720

[
(λ+1)(λ+2)
(m−η+1)λ+2 aλ2−2 + 2(λ+1)(2−λ2)

(m−η+1)λ+1 aλ2−3 + (2−λ2)(3−λ2)

(m−η+1)λ
aλ2−4

]
.

Furthermore, we obtain the following:

h(m) >
aλ2 − 4

(m− η + 1)λ
h1 +

λaλ2−3

(m− η + 1)λ+1 h2 +
λ(λ+ 1)aλ2−2

(m− η + 1)λ+2 h3,

where hi (i = 1, 2, 3) are indicated as follows.

h1 := a4

λ2
− a3

2 −
(1−λ2)a2

12 − λ(2−λ2)(3−λ2)
720 ,

h2 := a4

λ2(λ2+1) −
a2

12 −
(λ+1)(2−λ2)

360 , and

h3 := a4

λ2(λ2+1)(λ2+2) −
λ+2
720 .

For λ ∈ (0, 3], λ2 ∈ [1, 3
2 ] ∩ (0, λ), a ∈ [ 3

4 , 1], we find the following.

h1 >
a2

12λ2
[λ2

2 − (6a + 1)λ2 + 12a2]− 1
120

.
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In view of d
da [λ

2
2 − (6a + 1)λ2 + 12a2] = 6(4a− λ2) > 0, and the following:

d
dλ2

[λ2
2 − (6a + 1)λ2 + 12a2] = 2λ2 − (6a + 1)

≤ 2 · 3
2 − (6 · 3

4 + 1) = 3− 11
2 < 0,

we obtain the following case.

h1 ≥ (3/4)2

12(3/2) [(
3
2 )

2 − (6 · 3
4 + 1) 3

2 + 12( 3
4 )

2
]− 1

120=
3

128 −
1

120 > 0,

h2 > a2( 4a2

15 −
1

12 )−
1

90 ≥ ( 3
4 )

2
[ 4

15 (
3
4 )

2 − 1
12 ]−

1
90 = 3

80 −
1

90 > 0,

h3 ≥ 8a4

105 −
5

720 = 8(3/4)4

105 − 1
144 = 27

1120 −
1

144 > 0,

Therefore, we deduce that h(m) > 0.
On the other hand, we also have the following case:

∞
∑

n=1
g(m, n) =

∫ ∞
1 g(m, t)dt + 1

2 g(m, 1) +
∫ ∞

1 ρ(t)g′(m, t)dt

=
∫ ∞

1 g(m, t)dt + H(m),

where H(m) is indicated as follows.

H(m) :=
1
2

g(m, 1) +
∫ ∞

1
ρ(t)g′(m, t)dt.

We have obtained 1
2 g(m, 1) = aλ2−1

2(m−η+1)λ
and the following.

g′(m, t) = − (λ+ 1− λ2)(t− η2)
λ2−2

(m− η + t)λ
+

λ(m− η1)(t− η2)
λ2−2

(m− η + t)λ+1 .

For λ2 ∈ (0, 3
2 ] ∩ (0, λ), 0 < λ ≤ 3, by utilizing the Euler–Maclaurin summation

formula for estimation again, one obtains the following.

−(λ+ 1− λ2)
∫ ∞

1 ρ(t) (t−η2)
λ2−2

(m−η+t)λ
dt > 0,

(m− η1)λ
∫ ∞

1 ρ(t) (t−η2)
λ2−2

(m−η+t)λ+1 dt > −(m−η1)λ

12(m−η+1)λ+1 aλ2−2 = −(m−η+1)λ+aλ
12(m−η+1)λ+1 aλ2−2

= −λ
12(m−η+1)λ

aλ2−2 + λ

12(m−η+1)λ+1 aλ2−1 > −λ
12(m−η+1)λ

aλ2−2.

The following is, thus, obtained.

H(m) > aλ2−1

2(m−η+1)λ
− λaλ2−2

12(m−η+1)λ
= ( a

2 −
λ
12 )

aλ2−2

(m−η+1)λ

≥ ( 1
2 ·

3
4 −

3
12 )

aλ2−2

(m−η+1)λ
= ( 3

8 −
3

12 )
aλ2−2

(m−η+1)λ
> 0,

Hence, we obtain the following inequalities.

∫ ∞

1
g(m, t)dt <

∞

∑
n=1

g(m, n) <
∫ ∞

η2

g(m, t)dt

In view of the results obtained in Case (i), we obtain inequality (10). Lemma 1 is proved. �
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Lemma 2. Under the assumptions described in (C1), we have the following more accurate Hardy–
Hilbert’s inequality.

I =
∞
∑

n=1

∞
∑

m=1

ambn
(m+n−η)λ

< B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)

×
{

∞
∑

m=1
(m− η1)

p[1−( λ−λ2
p +

λ1
q )]−1ap

m

}
1
p

{
∞
∑

n=1
(n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1bq

n

}
1
q

(11)

Proof. By using the same method as the proof for inequalitie (10), for λ1 ∈ (0, 3
2 ] ∩ (0, λ),

λ2 ∈ (0, λ), n ∈ N, we can derive the following inequalities.

B(λ1, λ− λ1)[1−O( 1
(n−η2)

λ1
)]

< ω(λ1, n) := (n− η2)
λ−λ1

∞
∑

m=1

(n−η2)
λ1−1

(m+n−η)λ
< B(λ1, λ− λ1).

(12)

By using the Hölder inequality (cf. [20]):

∞

∑
n=1

∞

∑
m=1

K(m, n)AmBn ≤ (
∞

∑
m=1

∞

∑
n=1

K(m, n)Ap
m)

1
p

(
∞

∑
n=1

∞

∑
m=1

K(m, n)Bq
n)

1
q

, (13)

where K(m, n), Am, Bn ≥ 0, the following is the case.

I =
∞
∑

n=1

∞
∑

m=1

1
(m+n−η)λ

[
(n−η2)

(λ2−1)/p

(m−η1)
(λ1−1)/q am

][
(m−η1)

(λ1−1)/q

(n−η2)
(λ2−1)/p bn

]
≤
{

∞
∑

m=1

∞
∑

n=1

1
(m+n−η)λ

(n−η2)
λ2−1

(m−η1)
(λ1−1)(p−1) ap

m

} 1
p
{

∞
∑

n=1

∞
∑

m=1

1
(m+n−η)λ

(m−η1)
λ1−1

(n−η2)
(λ2−1)(q−1) bq

n

} 1
q

=

{
∞
∑

m=1
v(λ2, m)(m− η1)

p[1−( λ−λ2
p +

λ1
q )]−1ap

m

} 1
p
{

∞
∑

n=1
ω(λ1, n)(n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1bq

n

} 1
q
.

Then, by using inequalities (10) and (12) with p > 1, q > 1, we deduce inequality (11).
The proof of Lemma 2 is complete. �

Remark 1. As consequences of inequality (11), we have the following results.

(i) From inequality (11), for λ1 + λ2 = λ ∈ (0, 3], 0 < λi ≤ 3
2 (i = 1, 2), we obtain

the following:

0 <
∞

∑
m=1

(m− η1)
p(1−λ1)−1ap

m < ∞, 0 <
∞

∑
n=1

(n− η2)
q(1−λ2)−1bq

n < ∞,

and the following inequality.

∞
∑

n=1

∞
∑

m=1

ambn
(m+n−η)λ

< B(λ1, λ2)

{
∞
∑

m=1
(m− η1)

p(1−λ1)−1ap
m

} 1
p
{

∞
∑

n=1
(n− η2)

q(1−λ2)−1bq
n

} 1
q

(14)

(ii) For λ = 1, λ1 = 1
q , λ2 = 1

p , η = 1, inequality (14) reduces to inequality (2);
Furthermore, for η = η1 = η2 = 0, inequality (14) reduces to inequality (7). Hence,

inequalities (11) and (14) are the generalizations of inequalities (2) and (7), respectively.
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(iii) It is easy to observe that, for λ > 0 and λ−λ2
p + λ1

q < 1
q , λ−λ1

q + λ2
p < 1

p , one
obtains the following:

∞
∑

n=1

∞
∑

m=1

ambn
(m+n)λ

<
∞
∑

n=1

∞
∑

m=1

ambn
(m+n−η)λ

< B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)

×
{

∞
∑

m=1
(m− η1)

p[1−( λ−λ2
p +

λ1
q )]−1ap

m

} 1
p
{

∞
∑

n=1
(n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1bq

n

} 1
q

< B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)

×
{

∞
∑

m=1
mp[1−( λ−λ2

p +
λ1
q )]−1ap

m

} 1
p
{

∞
∑

n=1
nq[1−( λ−λ1

q +
λ2
p )]−1bq

n

} 1
q

which implies that inequalities (11) and (14) are more accurate versions by comparison
with inequalities (2) and (7), respectively.

Lemma 3. Ifλ1 + λ2 = λ ∈ (0, 3], 0 < λi ≤ 3
2 (i = 1, 2), then the constant factor B(λ1, λ2) in

(14) is the best possible.

Proof. For any 0 < ε < pλ1, we set the following case.

ãm := (m− η1)
λ1− ε

p−1, b̃n := (n− η2)
λ2− ε

q−1
(m, n ∈ N)

If there exists a constant M ≤ B(λ1, λ2) such that (14) is valid when we replace
B(λ1, λ2) by M, then by specifically performing a substitution of am = ãm and bn = b̃n in
(14), we have the following.

Ĩ :=
∞
∑

n=1

∞
∑

m=1

ãm b̃n
(m+n−η)λ

< M[
∞
∑

m=1
(m− η1)

p(1−λ1)−1 ãp
m]

1
p
[

∞
∑

n=1
(n− η2)

q(1−λ2)−1b̃q
n]

1
q

(15)

By inequality (15) and the decreasingness property of series, we obtain the following case.

Ĩ < M
{

∞
∑

m=1
(m− η1)

p(1−λ1)−1(m− η1)
pλ1−ε−p

} 1
p
[

∞
∑

n=1
(n− η2)

q(1−λ2)−1(n− η2)
qλ2−ε−q

] 1
q

= M
[
(1− η1)

−ε−1 +
∞
∑

m=2
(m− η1)

−ε−1
] 1

p
[
(1− η2)

−ε−1 +
∞
∑

n=2
(n− η2)

−ε−1
] 1

q

< M
[
(1− η1)

−ε−1 +
∫ ∞

1 (x− η1)
−ε−1dx

] 1
p
[
(1− η2)

−ε−1 +
∫ ∞

1 (y− η2)
−ε−1dy

] 1
q

= M
ε

[
ε(1− η1)

−ε−1 + (1− η1)
−ε
] 1

p
[
ε(1− η2)

−ε−1 + (1− η2)
−ε
] 1

q .

By using inequality (12) and setting the following:

λ̂1 = λ1 −
ε

p
∈ (0,

3
2
) ∩ (0, λ)(0 < λ̂2 = λ2 +

ε

p
< λ),

we find the following case.

Ĩ =
∞
∑

n=1

[
(n− η2)

(λ2+
ε
p )

∞
∑

m=1

1
(m+n−η)λ

(m− η1)
(λ1− ε

p )−1
](n− η2)

−ε−1

=
∞
∑

n=1
ω
(
λ̂1, n

)
(n− η2)

−ε−1 > B
(
λ̂1, λ̂2

) ∞
∑

n=1

[
1−O

(
1

(n−η2)
λ1

)]
(n− η2)

−ε−1

= B
(
λ̂1, λ̂2

)[ ∞
∑

n=1
(n− η2)

−ε−1 −
∞
∑

n=1
O
(

1
(n−η2)

λ1+ε+1

)]
> B

(
λ̂1, λ̂2

)[∫ ∞
1 (y− η2)

−ε−1dy−O(1)
]
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=
1
ε

B
(
λ1 −

ε

p
, λ2 +

ε

p

)[
(1− η2)

−ε − εO(1)
]
.

Then, we obtain the following.

B
(
λ1 − ε

p , λ2 +
ε
p

)[
(1− η2)

−ε − εO(1)
]

< ε Ĩ < M
[
ε(1− η1)

−ε−1 + (1− η1)
−ε
] 1

p
[
ε(1− η2)

−ε−1 + (1− η2)
−ε
] 1

q .

Now, letting ε→ 0+ at both sides of the above inequality, in view of the continuity
of the Beta function, we find B(λ1, λ2) ≤ M. Hence, M = B(λ1, λ2) is the best possible
constant factor in (14). This completes the proof for Lemma 3. �

Remark 2. Settingλ̃1 := λ−λ2
p + λ1

q , λ̃2 := λ−λ1
q + λ2

p in inequality (11), we find the follow-
ing case:

λ̃1 + λ̃2 =
λ− λ2

p
+

λ1

q
+

λ− λ1

q
+

λ2

p
=

λ

p
+

λ

q
= λ

and the following is also the case.

λ̃1 =
λ− λ2

p
+

λ1

q
> 0, λ̃1 <

λ

p
+

λ

q
= λ, 0 < λ̃2 = λ− λ̃1 < λ.

Hence, it follows that B(λ̃1, λ̃2) ∈ R+ = (0, ∞). Note that for the following case:

λ− λ1 − λ2 ∈ [(λ− λ1 −
3
2
)p, (

3
2
− λ1)p],

we have λ̃1, λ̃2 ≤ 3
2 ; thus, we can rewrite inequality (14) in the following form.

I =
∞
∑

n=1

∞
∑

m=1

ambn
(m+n−η)λ

< B(λ̃1, λ̃2)

×
{

∞
∑

m=1
(m− η1)

p(1−λ̃1)−1ap
m

} 1
p
{

∞
∑

n=1
(n− η2)

q(1−λ̃2)−1bq
n

} 1
q
.

(16)

Lemma 4. If the constant factorB
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)in (11) is the best possible, then for

the following case:

λ− λ1 − λ2 ∈ [(λ− λ1 −
3
2
)p, (

3
2
− λ1)p],

we have λ1 + λ2 = λ.

Proof. If the constant factor B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) in (11) is the best possible, then

in view of the assumption in (11), we have the following.

B
1
p (λ− λ2, λ2)B

1
q (λ1, λ− λ1) ≤ B

(
λ̃1, λ̃2

)
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By applying Hölder inequality, we have the following case:

B
(
λ̃1, λ̃2

)
= B

(
λ−λ2

p + λ1
q , λ−λ1

q + λ2
p

)
=
∫ ∞

0
1

(1+u)λ
u

λ−λ2
p +

λ1
q −1du =

∫ ∞
0

1
(1+u)λ

(
u

λ−λ2−1
p

)(
u

λ1−1
q

)
du

≤
[∫ ∞

0
1

(1+u)λ
uλ−λ2−1du

] 1
p
[∫ ∞

0
1

(1+u)λ
uλ1−1du

] 1
q

= B
1
p (λ− λ2, λ2)B

1
q (λ1, λ− λ1),

(17)

and then we obtain B(λ̃1, λ̃2) = B
1
p (λ− λ2, λ2)B

1
q (λ1, λ− λ1), namely, (17) retains the form

of equality.
It is easily to observe that (17) keeps the form of equality if and only if there exist

constants A and B such that they are not both zero and (cf. [20]) the following case holds.

Auλ−λ2−1 = Buλ1−1 a.e.in R+.

Assuming that A 6= 0, it follows that uλ−λ2−λ1 = B
A a.e. in R+, which implies λ− λ2 −

λ1 = 0, namely, λ1 + λ2 = λ. Lemma 4 is proved. �

3. Main Results

Our main results are stated in the following theorems.

Theorem 1. Under the assumptions described in (C1), we have the following inequality that is
equivalent to inequality (11).

J :=
{

∞
∑

n=1
(n− η2)

p( λ−λ1
q +

λ2
p )−1

[
∞
∑

m=1

1
(m+n−η)λ

am]
p} 1

p

< B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)

{
∞
∑

m=1
(m− η1)

p[1−( λ−λ2
p +

λ1
q )]−1ap

m

} 1
p
.

(18)

Furthermore, if the constant factor in (11) is the best possible; thus, so is the constant
factor in (18).

Proof. Suppose that (18) is valid. By utilizing the Hölder inequality, we have the follow-
ing case.

I =
∞
∑

n=1
[(n− η2)

−1
p +(

λ−λ1
q +

λ2
p ) ∞

∑
m=1

1
(m+n−η)λ

am][(n− η2)
1
p−(

λ−λ1
q +

λ2
p )bn]

≤ J
{

∞
∑

n=1
(n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1bq

n

} 1
q
.

(19)

Then, by (18), we obtain (11). On the other hand, assuming that (11) is valid, we set
the following.

bn := (n− η2)
p( λ−λ1

q +
λ2
p )−1

[
∞

∑
m=1

1

(m + n− η)λ
am]

p−1

, n ∈ N.
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If J = 0, then (18) is naturally valid; if J = ∞, then it is impossible to make (18) valid,
namely, J < ∞. Suppose that 0 < J < ∞. By (11), we have the following case:

∞
∑

n=1
(n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1bq

n = Jp = I< B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)

×
{

∞
∑

m=1
(m− η1)

p[1−( λ−λ2
p +

λ1
q )]−1ap

m

} 1
p
{

∞
∑

n=1
(n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1bq

n

} 1
q
,

J =
{

∞
∑

n=1
(n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1bq

n

} 1
p

< B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)

{
∞
∑

m=1
(m− η1)

p[1−( λ−λ2
p +

λ1
q )]−1ap

m

} 1
p

namely, inequality (18) holds true, which is equivalent to inequality (11).
If the constant factor in (11) is the best possible, then so is the constant factor in (18).

Otherwise, by (19), we would reach a contradiction that the constant factor in (11) is not
the best possible. This completes the proof for Theorem 1. �

Theorem 2. The following statements (i), (ii), (iii) and (iv) are equivalent:

(i) Both B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) and B(λ−λ2

p + λ1
q , λ−λ1

q + λ2
p ) are independent of

p, q;

(ii) B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) is expressible as a convergent single integral:

B(
λ− λ2

p
+

λ1

q
,
λ− λ1

q
+

λ2

p
) = B(λ̃1, λ̃2) =

∫ ∞

0

uλ̃1−1

(1 + u)λ
du (∈ R+);

(iii) B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) in (11) is the best possible constant factor;

(iv) If λ− λ1 − λ2 ∈ [(λ− λ1 − 3
2 )p, ( 3

2 − λ1)p], then λ1 + λ2 = λ.

If statement (iv) is valid, namely, λ = λ1 + λ2, then we have (14) and the following
equivalent inequality with the best possible constant factor B(λ1, λ2).

{
∞
∑

n=1
(n− η2)

pλ2−1[
∞
∑

m=1

1
(m+n−η)λ

am]
p} 1

p
< B(λ1, λ2)[

∞
∑

m=1
(m− η1)

p(1−λ1)−1ap
m]

1
p
. (20)

Proof. (i) ⇒ (ii). By (i), in view of the continuity of the Beta function, we have the
following case:

B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)

= lim
p→1+

lim
q→∞

B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) = B(λ2, λ− λ2),

B(λ−λ2
p + λ1

q , λ−λ1
q + λ2

p )

= lim
p→1+

lim
q→∞

(λ−λ2
p + λ1

q , λ−λ1
q + λ2

p ) = B(λ− λ2, λ2) = B(λ2, λ− λ2),

thus, B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) can be expressible as a convergent single integral.

B(
λ− λ2

p
+

λ1

q
,
λ− λ1

q
+

λ2

p
) =

∫ ∞

0

uλ̃1−1

(1 + u)λ
du(∈ R+).
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(ii)⇒ (iv). If B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) is expressible as a convergent single integral

B(λ−λ2
p + λ1

q , λ−λ1
q + λ2

p ), then (17) retains the form of equality. In view of the proof of
Lemma 5, it follows that λ1 + λ2 = λ.

(iv)⇒ (i). If λ1 + λ2 = λ, then the following is the case:

B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1) = B(λ1, λ2),

which is independent of p, q. Hence, it follows that (i)⇔(ii)⇔(iv).
(iii)⇒ (iv). By Lemma 5, we have λ1 + λ2 = λ.
(iv)⇒ (iii). By Lemma 4, if λ1 + λ2 = λ, then the following is the case:

B
1
p (λ2, λ− λ2)B

1
q (λ1, λ− λ1)(= B(λ1, λ2))

which is the best possible constant factor in (14). Therefore, we have (iii)⇔ (iv).
Hence, we conclude that the statements (i), (ii), (iii) and (iv) are equivalent. The proof

for Theorem 2 is complete. �

Remark 3. In the following, we illustrate how the inequality obtained can generate some new
Hardy–Hilbert-type inequalities.

(i) Taking η1 = η2 = 0, inequality (20) reduces to the equivalent form of inequality (7) below.

{
∞

∑
n=1

npλ2−1[
∞

∑
m=1

1

(m + n)λ
am]

p} 1
p

< B(λ1, λ2)[
∞

∑
m=1

mp(1−λ1)−1ap
m]

1
p

. (21)

Hence, (18) (resp. (20)) is an extension of (21).
(ii) Taking η1 = η2 = 0, λ1 = λ2 = λ

2 ∈ (0, 3
2 ](0 < λ ≤ 3) in inequalities (14) and (20),

respectively, we have the following equivalent inequalities with the best possible constant
factor B(λ2 , λ2 ).

∞

∑
n=1

∞

∑
m=1

ambn

(m + n)λ
< B(

λ

2
,
λ

2
)[

∞

∑
m=1

mp(1− λ
2 )−1ap

m]

1
p

[
∞

∑
n=1

nq(1− λ
2 )−1bq

n]

1
q

, (22)

{
∞

∑
n=1

n
pλ
2 −1[

∞

∑
m=1

1

(m + n)λ
am]

p} 1
p

< B(
λ

2
,
λ

2
)[

∞

∑
m=1

mp(1− λ
2 )−1ap

m]

1
p

. (23)

(iii) Taking η1 = η2 = 1
4 , λ1 = λ2 = λ

2 ∈ (0, 3
2 ](0 < λ ≤ 3) in inequalities (14) and (20),

respectively, we have the following equivalent inequalities with the best possible constant
factor B(λ2 , λ2 ).

∞
∑

n=1

∞
∑

m=1

ambn

(m+n− 1
2 )

λ < B(λ2 , λ2 )[
∞
∑

m=1
(m− 1

4 )
p(1− λ

2 )−1
ap

m]

1
p
[

∞
∑

n=1
(n− 1

4 )
q(1− λ

2 )−1
bq

n]

1
q
, (24)

{
∞
∑

n=1
(n− 1

4 )
pλ
2 −1

[
∞
∑

m=1

1
(m+n− 1

2 )
λ am]

p} 1
p
< B(λ2 , λ2 )[

∞
∑

m=1
(m− 1

4 )
p(1− λ

2 )−1
ap

m]

1
p
. (25)

In particular, by choosing λ = 3 in inequalities (24) and (25), respectively, we have the
following inequalities.

∞

∑
n=1

∞

∑
m=1

ambn

(m + n− 1
2 )

3 <
π

8
[

∞

∑
m=1

(m− 1
4
)
− p

2−1
ap

m]

1
p

[
∞

∑
n=1

(n− 1
4
)
− q

2−1
bq

n]

1
q

, (26)
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{
∞

∑
n=1

(n− 1
4
)

3p
2 −1

[
∞

∑
m=1

1

(m + n− 1
2 )

3 am]
p} 1

p

<
π

8
[

∞

∑
m=1

(m− 1
4
)
− p

2−1
ap

m]

1
p

. (27)

4. Operator Expressions

We set functions φ(m) := (m− η1)
p[1−( λ−λ2

p +
λ1
q )]−1, ψ(n) := (n− η2)

q[1−( λ−λ1
q +

λ2
p )]−1,

then ψ1−p(n) = (n− η2)
p( λ−λ1

q +
λ2
p )−1

(m, n ∈ N).

Definition 1. Define the following real normed spaces.

lp,φ:= {a ={am}∞
m=1; ‖a‖p,φ :=

(
∞

∑
m=1

φ(m)|am|p
) 1

p

< ∞},

lq,ψ:= {b ={bn}∞
n=1; ‖b‖q,ψ :=

(
∞

∑
n=1

ψ(n)|bn|q
) 1

q

< ∞},

lp,ψ1−p := {c ={cn}∞
n=1; ‖c‖p,ψ1−p :=

(
∞

∑
n=1

ψ1−p (n)|cn|p
) 1

p

< ∞}.

By assuming that a ∈ lp,φ and setting the following case:

c = {cn}∞
n=1, cn :=

∞

∑
m=1

1

(m + n− η)λ
am, n ∈ N,

we can rewrite inequality (18) as follows:∣∣∣∣∣∣∣∣c∣∣∣∣∣∣∣∣p,ψ1−p < (B(λ2, λ− λ2))
1
p (B(λ1, λ− λ1))

1
q

∣∣∣∣∣∣∣∣a∣∣∣∣∣∣∣∣p,φ < ∞,

namely, c ∈ lp,ψ1−p .

Definition 2. Define a more accurate Hardy–Hilbert’s operator T : lp,φ → lp,ψ1−p as follows: For
any a ∈ lp,φ, there exists a unique representation c ∈ lp,ψ1−p . Define the formal inner product of
Ta and b ∈ lq,ψ and the norm of T as follows.

(Ta, b) :=
∞

∑
n=1

[
∞

∑
m=1

1

(m + n− η)λ
am]bn,||T|| := sup

a( 6=0)∈lp,φ

||Ta||p,ψ1−p

||a||p,φ
.

As a direct consequence of Theorems 1 and 2, we obtain the following case.

Theorem 3. If a ∈ lp,φ, b ∈ lq,ψ,
∣∣∣∣a∣∣∣∣p,φ,

∣∣∣∣b∣∣∣∣q,ψ > 0, then we have the following equiva-
lent inequalities.

(Ta, b) < (B(λ2, λ− λ2))
1
p (B(λ1, λ− λ1))

1
q

∣∣∣∣∣∣∣∣a∣∣∣∣∣∣∣∣p,φ

∣∣∣∣∣∣∣∣b∣∣∣∣∣∣∣∣q,ψ, (28)

∣∣∣∣∣∣∣∣Ta
∣∣∣∣∣∣∣∣p,ψ1−p < (B(λ2, λ− λ2))

1
p (B(λ1, λ− λ1))

1
q

∣∣∣∣∣∣∣∣a∣∣∣∣∣∣∣∣p,φ. (29)

Moreover, if λ1 + λ2 = λ, then the constant factor (B(λ2, λ− λ2))
1
p (B(λ1, λ− λ1))

1
q in

(28) and (29) is the best possible; namely, the following is the case.
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||T||= B(λ1, λ2). (30)

If the constant factor (B(λ2, λ− λ2))
1
p (B(λ1, λ− λ1))

1
q in (28) (or (29)) is the best pos-

sible, then for λ− λ1 − λ2 ∈ [(λ− λ1 − 3
2 )p, ( 3

2 − λ1)p], we have λ− λ1 − λ2 = 0, namely,
λ1 + λ2 = λ.

5. Conclusions

In this paper, by means of the construction of weight coefficients, the idea of introduced
parameters, the techniques of real analysis and with the help of the Euler–Maclaurin
summation formula, a more accurate extension of Hardy–Hilbert’s inequality is established
in Theorem 1, which contains parameters composed of a pair of weight coefficients with
their sum. The equivalent conditions of the best possible constant factor related to several
parameters are provided in Theorem 2. We also consider the equivalent forms, the operator
expressions and some particular inequalities in Theorem 3 and Remark 3. The results
provided in lemmas and theorems provide a significant supplement to the inequalities
of the Hardy–Hilbert type. For further study, we may use these results and methods to
establish new Hardy–Hilbert’s inequalities involving partial sums, and this would enable
us to confront the extensions of the results obtained in [21]. We will also investigate some
new generalizations of Hardy–Hilbert’s inequality by using the extended Euler–Maclaurin
summation formula by using the techniques of analytical inequalities (cf. [22,23]).
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