
mathematics

Article

An Approach to Building Decision Support Systems Based on
an Ontology Service

Anton Romanov , Julia Stroeva, Aleksey Filippov * and Nadezhda Yarushkina

����������
�������

Citation: Romanov, A.; Stroeva, J.;

Filippov, A.; Yarushkina, N. An

Approach to Building Decision

Support Systems Based on an

Ontology Service. Mathematics 2021, 9,

2946. https://doi.org/10.3390/

math9222946

Academic Editors: Theodore E. Simos

and Charampos Tsitouras

Received: 8 October 2021

Accepted: 16 November 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Systems, Ulyanovsk State Technical University, 32 Severny Venetz Street,
432027 Ulyanovsk, Russia; romanov73@gmail.com (A.R.); stroeva95@mail.ru (J.S.); jng@ulstu.ru (N.Y.)
* Correspondence: al.filippov@ulstu.ru; Tel.: +7-908-485-8390

Abstract: Modern decision support systems (DSSs) need components for storing knowledge. More-
over, DSSs must support fuzzy inference to work with uncertainty. Ontologies are designed to
represent knowledge of complex structures and to perform inference tasks. Developers must use
the OWLAPI and SWRL API libraries to use ontology features. They are impossible to use in DSSs
written in programming languages not for Java Virtual Machines. The FuzzyOWL library and the
FuzzyDL inference engine are required to work with fuzzy ontologies. The FuzzyOWL library is
currently unmaintained and does not have a public Git repository. Thus, it is necessary to develop
the ontology service. The ontology service must allow working with ontologies and making fuzzy
inferences. The article presents ontology models for decision support, fuzzy inference, and the fuzzy
inference algorithm. The article considers examples of DSSs for balancing production capacities and
image analysis. The article also describes the architecture of the ontology service. The proposed
novel ontology models for decision support make it possible to reduce the time of a knowledge base
formation. The ontology service can integrate with external systems with HTTP protocol.

Keywords: decision-making; fuzzy inference; fuzzy ontology; http service

1. Introduction

Different organizations or individuals need timely decision support [1–5]. Decision-
makers must know the specifics of the context of a subject area for decision support. The
context in making decisions determines the conditions and constraints of a subject area [6–8].
The context also describes the characteristics (numerical and non-numerical values) of the
analyzed object and its relationship with other entities of a subject area. The context is
easier to formalize in terms of qualitative rather than quantitative values [9]. Moreover, the
large volume and continuous change of data regarding the analyzed object can prevent
timely decision-making.

DSSs allow improving the efficiency of the decision-making process. Decision-makers
use DSSs for a complete and objective analysis of subject area objects. DSSs take the
values of analyzed object properties and give recommendations to a decision-maker (DM).
Moreover, DSSs allow hiding the complexity of the context from DM to focus on managing
the object. DM only gets objective information and does not process a large amount of data.

The central part of DSS is an inference system [9–17]. An inference system allows
inferring results based on information about an analyzed object within a context. In some
cases, knowledge about the analyzed object and context can be represented with a high
degree of uncertainty. Then the properties of the analyzed object can be described in
linguistic terms. In this case, fuzzy inference systems (FISs) can be used to work with
uncertainty.

A FIS can be implemented based on various methods: machine learning [14,16], fuzzy
controller or simulator [9–13], knowledge base [6–8,15–17].

A trained machine learning model produces a result in a reasonable amount of time [14,16].
A machine learning model is a black box, so it is difficult to explain the reason for its

Mathematics 2021, 9, 2946. https://doi.org/10.3390/math9222946 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5275-7628
https://orcid.org/0000-0003-0008-5035
https://orcid.org/0000-0002-5718-8732
https://doi.org/10.3390/math9222946
https://doi.org/10.3390/math9222946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9222946
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9222946?type=check_update&version=2

Mathematics 2021, 9, 2946 2 of 23

decisions. The results of fuzzy controllers or simulators are formed by inference and based
on a set of fuzzy rules [9–13]. However, such rules are usually not contextualized, which
can produce logical errors and inconsistencies. Knowledge bases require the involvement
of an expert and time for development, but they allow describing the analyzed object
considering context features [6–8,15–17]. Moreover, knowledge bases allow controlling the
logical consistency of facts.

The following main approaches are used for the building of DSS knowledge bases:

• Hybridization of ontological engineering methods with other approaches [16];
• Formation of new inference mechanisms [15];
• Formation of core ontologies to support the DSS building process [15–17].

A significant disadvantage of existing approaches to building a DSS is that it regards
focusing on a specific subject area, which makes it hard to develop a DSS for other subject
areas.

This article describes a service for creating a DSS based on an ontology with support
for fuzzy inference. An ontology forms the basis of a DSS knowledge base. Moreover, the
article discusses novel ontology models for organizing decision support processes and
fuzzy inference. These ontologies reduce the time to a DSS knowledge base formation.
A set of SWRL rules defines the logic of inference in a DSS. The DM must complete the
following steps to receive recommendations from the ontology service:

1. Describe the context based on the proposed ontology.
2. Create a set of SWRL-rules for inference.
3. Send data about the analyzed object to the service.

The developed ontology service allows creating a DSS for any subject area.
The ontology service provides the basis for DSS building. The service also allows

using the resulting knowledge base within any software application. Now, the OWL API
and SWRLAPI libraries are used for full-fledged work with ontologies. These libraries are
written for the JVM platform, which does not allow simple usage within other technological
stacks. Moreover, the JVM platform has significant hardware requirements. The developed
service allows access to inference functions via the HTTP protocol. Thus, the service
allows the building of a DSS that can be used within any software system. The proposed
ontology models and algorithms make it possible to extend the basis for building a DSS.
Any ontology can be used if necessary.

Moreover, the developed service contains a module for fuzzy inference. Currently,
there are no easy-to-use/out-of-the-box tools for working with fuzzy ontologies. An
ontology model to fuzzy logical inference has been developed. This model allows creating
fuzzy sets and describing membership functions and linguistic terms. No additional tools
are needed. Crisp numerical values are fuzzified to linguistic terms in the process of fuzzy
inference. The obtained degrees of membership are used to calculate the truth degree of
the inference result. A user is getting more results (more high recall) within fuzzy inference.
Crisp (binary logic) rules and linguistic terms are used for fuzzy inference, the calculation
of the truth degree is performed transparently for the user.

The organization of the paper is conducted in the following way. Section 2 describes
the basic concepts that the novel developed approach uses. Section 3 describes novel
ontology models for DSS creation and fuzzy inference. Section 3 describes the architecture
of the developed ontology service. Section 4 presents examples of DSS for balancing
production capacities and image analysis created with the ontology service. In Section 5,
the approach is discussed in detail. The paper ends with the conclusions.

2. Preliminaries

This section discusses the basic concepts that the proposed approach uses. Section 2.1
contains an introduction to ontologies and descriptive logic. Section 2.2 covers the basics
of fuzzy inference.

Mathematics 2021, 9, 2946 3 of 23

2.1. Ontologies

Ontological models of knowledge representation allow combining the advantages of
declarative and production models [18]. Ontologies can describe the features of a subject
area and a set of inference rules. Atoms of logical rules are objects of a subject area.

The following expression can represent any ontology [18]:

O = 〈C, I, R, F〉,

where C is a set of ontology classes. Classes describe entities of a subject area;
I is a set of ontology individuals. Individuals describe instances of ontology classes;
R is a set of ontology properties:

R = {RC, RD},

where RC is a tie between ontology classes (object property); RD is a tie between ontology
class and data type (data property). Ontology ties describe the properties of subject area
objects represented by classes. F is a set of ontology interpretation functions. Interpretation
functions infer new knowledge based on the knowledge already contained in the ontology.

Ontologies are based on different description logics (DL). DL allow formalizing the
description of the subject area. Moreover, DL can guarantee the logical integrity and
consistency of the ontology. DL have decidability and relatively low computational com-
plexity. The features of DL provide a compromise between expressiveness and decidability.
Moreover, DL differ in terms of expressiveness. The base family of DL is ALC. Extensions
of ALC form new types of logic with a higher level of expressiveness. Any ontology is a
set of terminology and assertions in terms of DL [19]:

O = {TBox, ABox},

where TBox is a terminological box. The TBox contains sentences describing concepts and
relations between concepts; ABox is a assertional box. The ABox contains ground sentences
about relations between individuals and concepts.

The OWL 2 standard is currently used as a formal language for representing ontologies.
OWL 2 provides the expressiveness of SROIQ(D), OWL-DL is based on SHOIN (D),
and for OWL-Lite it is SHIF (D) [19].

SWRL language and its extension SQWRL [20] are used to describe a set of logical
rules in OWL 2.

Table 1 contains DL operators and axioms that can be used to describe terminology
and assertions in ontology [19].

Various ontology reasoners are used to inference. The main functions of reasoners
are [21]:

• Checking the ontology consistency;
• Formation of classes taxonomy;
• Execution of queries to ontology.

Mathematics 2021, 9, 2946 4 of 23

Table 1. DL operators and axioms.

Description DL OWL

top (a special class with every individual as
an instance) > owl: Thing

bottom (an empty class) ⊥ owl: Nothing
class inclusion axiom A v B A owl: SubClassOf B
disjoint classes axiom A u B v ⊥ [A, B] owl: DisjointClasses
equivalence classes axiom (or defining
classes with necessary and sufficient
conditions)

A ≡ B [A, B] owl: equivalentClasses

intersection or conjunction of classes A u B A and B
union or disjunction of classes A t B A or B
universal restriction axiom ∀R.A R only A
existential restriction axiom ∃R.A R some A
cardinality restrictions axiom ≤ nR.A R exactly n A
inverse properties axiom Inv(R1) v R2 [R1, R2] owl: InverseProperties
disjoint properties axiom Dis(R1, R2) [R1, R2] owl: DisjointProperties
concept assertion axiom (a is an instance of
class A) a : A a: A

role assertion axiom (a, b) : R a R b

2.2. Fuzzy Inference

Fuzzy inference is actively used in various intelligent systems [12–14]. Conclusions
about the state of some objects based on the analysis of its current state are formed with fuzzy
inference. The following concepts of the fuzzy sets theory are used for fuzzy inference [22,23]:

• Membership functions;
• Linguistic variables;
• Fuzzy implication methods.

A membership function in fuzzy logic determines a membership degree of the ele-
ments of a universal set to some fuzzy set.

Fuzzy set for a universal set U and a membership function µ : U → [0, 1] is defined
as [22,23]:

Ã = {(u, µA(x))|u ∈ U}.

Membership function µA(x) quantitatively grades the membership of the elements
of a universal set u ∈ U to a fuzzy set Ã. Membership degree 0 means that an element is
not included in a fuzzy set, and membership degree 1 describes a fully included element.
Values between 0 and 1 represent fuzzy included elements.

A linguistic variable in THE fuzzy set theory takes THE semantic of terms in a natural
or formal language. Terms represent fuzzy variables and are described by a fuzzy set.

A linguistic variable can be represented as an expression [23]:

LT = {x, T(x), X, G, M},

where x is a variable name; T(x) is a set of values of a linguistic variable x. Each value of a
set is a fuzzy variable on a set X; G is a is a set of additional features for generating new x
values; M is a mathematical rule for determining the type of membership function for each
value formed based on a G set.

For example, for the linguistic variable ‘age’:

• x is an age;
• X a set of integers from the range [0, 120];
• T(x) is a set of fuzzy variables: ‘young’, ‘mature’, ‘old’. It is necessary to set a

membership function that specifies information about what age should be considered
‘young’, ‘mature’, ‘old’;

• G is a set of additional features: ‘very’, ‘not very’. Additional features are used to
create new fuzzy variables. For example, ‘very young’ and ‘not very old’, etc.

Mathematics 2021, 9, 2946 5 of 23

Fuzzy inference is executed based on fuzzy rules. A set of fuzzy rules form a fuzzy
production system in the context of some subject area. A fuzzy rule can be represented as
the expression:

R = 〈K, E, W〉,

where K is the core of a fuzzy rule of the following form:

K = 〈A⇒ C〉,

where A = {A1, A2, . . . , Ai, . . . , An} is an antecedent of a rule consisting of many atoms
Ai; C = {C1, C2, . . . , Ci, . . . , Ck} is a consequent of a rule consisting of atoms Ci. Atoms of a
fuzzy rule must represent single and compound statements connected by binary operations
AND and OR; E function for determining a truth degree (from range (0; 1)) of a fuzzy rule
result; W is a fuzzy rule weight.

The fuzzy inference consists of the following steps:

1. Fuzzification. Fuzzification is used to switch from numerical indicators of object
properties to linguistic variables. The values of all input variables are associated with
specific values of the membership functions of linguistic terms from antecedents of
fuzzy rules at the fuzzification stage. If the truth degrees of all atoms of antecedents
of a fuzzy rule are found, then fuzzification is considered fulfilled.

2. Aggregation. A truth degree of antecedents for each rule is determined at the ag-
gregation stage. If an antecedent of a fuzzy rule contains one atom, then a truth
degree of an antecedent is a truth degree of this atom. A truth degree of an atom is
calculated based on the value of a membership function of a linguistic variable term.
If an antecedent of a rule contains several atoms, then a truth degree is calculated
based on the truth degrees of the antecedent atoms using fuzzy logic operations. The
fuzzy logical AND (min) operator is usually used.

3. Activation. A truth degree of each consequent atom of the fuzzy rule is determined
at the stage of activation. A truth degree of each consequent atom is equal to the
algebraic product of a rule weight and a truth degree of a rule antecedent. If weights
of production rules are not specified, then their default values are equal to one.
Minimum and average functions can be used to calculate truth degrees in addition to
the algebraic product.

4. Accumulation. A membership function is formed for each linguistic variable from
the consequent fuzzy rules at the accumulation stage. Accumulation is based on the
union of fuzzy sets of all consequent atoms for some linguistic variable.

5. Defuzzification. The result of defuzzification is quantitative (crisp) values for each
output linguistic variable based on the results of the accumulation of all output
linguistic terms from THE consequences of fuzzy rules.

The considered stages of fuzzy inference can be implemented in various ways. Differ-
ent bases of fuzzy logic, different approaches to combining sets, different approaches to
activation and defuzzification, etc., can be used at different stages. The following fuzzy in-
ference algorithms are actively used [9–14,24]: Mamdani algorithm, Tsukamoto algorithm,
Larsen algorithm, Sugeno algorithm, and simplified fuzzy inference algorithm.

3. Novel Ontology Models for Decision Support and Fuzzy Inference

This section presents novel ontology models for decision support and fuzzy inference.
Section 3.1 discusses the model and logical representation of the ontology for decision
support. Section 3.2 describes the proposed mechanism for THE recommendations in-
ference. Section 3.3 discusses the model and logical representation of the ontology for
fuzzy inference. Section 3.4 describes the proposed fuzzy inference algorithm. Section 3.5
presents the architecture of the developed ontology service.

3.1. Model and Logical Representation of the Ontology for Decision Support

The novel model of the ontology for decision support allows to describe:

Mathematics 2021, 9, 2946 6 of 23

• Entities for organizing decision support;
• Entities of a subject area.

The model of the ontology for decision support can be presented by the following
expression:

ODM = 〈Decision, Domain, RDM〉, (1)

where Decision is the component for describing entities for decision support; Domain is
the component for describing the entities of a subject area; RDM is a set of ties between
components.

The Decision component looks as follows:

Decision = 〈States, Recommendations, In f erence, Rules〉, (2)

where States is a set of states of analyzed objects; Recommendations is a set of textual
recommendations for analyzed objects managing; In f erence is a set of inferred states of
analyzed objects; Rules is a set of interpretation functions represented by SWRL rules.

The Domain component looks as follows:

Domain = 〈Objects, Entities, RDomain〉, (3)

where Objects is a set of analyzed objects; Entities is a set of entities from a subject area that
affects on states of analyzed objects; RDomain is a set of ties between the analyzed objects
and entities.

RDM can be represented as:

RDM = {RDM
S , RDM

R },

where RDM
S is a set of ties between an analyzed object and its possible states; RDM

R is a set
of ties between an analyzed object and recommendations for its management.

Logical representation of the ontology for decision support (Equation (1)) in SHOIN (D)
DL notation looks like:

Decision v > Domain v > In f erence v >
Recommendations v Decision States v Decision Entities v Domain

Objects v Domain

Decision u Domain v ⊥ Recommendations u States v ⊥ Entities uObjects v ⊥
Decision v ∃hasDescription.String u ∀hasDescription.Stringu
u = 1hasDescription.String

Domain v ∃hasName.String u ∀hasName.Stringu = 1hasName.String

Entities v ∀connectToObject.Objects u ∀notConnectToObject.Objects

Objects v ∀connectToEntity.Entities u ∀notConnectToEntity.Entitiesu
u ∃hasRecommendation.Recommendationsu
u ∀hasRecommendation.Recommendationsu
u ∀hasNumericValue.Doubleu = 1hasNumericValue.Doubleu
u ∃hasState.State u ∀hasState.State

Dis(connectToObject, notConnectToObject)

Dis(connectToEntity, notConnectToEntity)

Inv(connectToObject) v connectToEntity

Inv(notConnectToObject) v notConnectToEntity

where:

Mathematics 2021, 9, 2946 7 of 23

• Decision is a parent class for decision support entities (Equation (2)). Decision class
has the following properties:

– hasDescription is a functional property for defining a textual description;
– Decision and Domain classes are disjoint classes. The same individual cannot be

an instance of disjoint classes;

• Domain is a parent class for describing entities of a subject area (Equation (3)). Domain
class has the following properties:

– hasName is a functional property for defining the name of an entity;
– Decision and Domain classes are disjoint classes;

• In f erence is a parent class for inferred states of analyzed objects;
• Recommendations is a class for describing recommendations for analyzed objects

managing. Recommendations class inherits properties from parent class Decision.
Recommendations and States classes are disjoint classes;

• States is a class for describing the states of analyzed objects. States class inherits
properties from parent class Decision. Recommendations and States classes are disjoint
classes;

• Entities is a class for describing entities from a subject area that affects on states of
analyzed objects. Entities class has the following properties:

– Entities class inherits properties from parent class Domain;
– Entities and Objects classes are disjoint classes;
– connectToObject is a property for determining ties between individuals of classes

Entities and Objects;
– notConnectToObject is a property for determining non-existence ties between

individuals of classes Entities and Objects;
– connectToObject and notConnectToObject are disjoint properties. The same

individuals cannot be values of disjoint properties at the same time for the
same individual;

– connectToObject property is an inverse property for connectToEntity property
of class Objects. Only one property can be instantiated when using inverse
properties. An instance of the second property for two individuals will be inferred
automatically;

• Objects is a class for describing analyzed objects. The Objects class has the following
properties:

– Objects class inherits properties from parent class Domain;
– Objects and Entities classes are disjoint classes;
– connectToEntity is a property for determining ties between individuals of classes

Objects and Entities;
– notConnectToEntity is a property for determining non-existence ties between

individuals of classes Objects and Entities;
– hasRecommendation is a property for defining recommendations for analyzed

objects managing;
– hasNumericValue is a functional property for determining a numerical value of a

property of analyzed objects;
– hasState is a property for determining the state of analyzed objects;
– connectToEntity and notConnectToEntity are disjoint properties;
– connectToEntity property is inverse property for connectToObject the property of

class Entities.

3.2. Proposed Mechanism for Recommendations Inference

This section describes the mechanism for recommendations inference based on the
decision support ontology. The mechanism for recommendations inference is based on a
set of interpretation functions Rules (Equation (2)). Interpretation functions are represented

Mathematics 2021, 9, 2946 8 of 23

by logical rules in the SWRL and SQWRL languages. These rules are a significant part of
the proposed decision support ontology and are applied all at once.

Let us consider the main types of interpretation functions and examples of their
implementation in the SWRL language:

1. Function for a transition from a numerical value of a property of an analyzed object
to some state of an object:

• Calculating a degree of membership of a numerical value in a fuzzy set (described
in Section 3.4);

• Determining the occurrence of a numeric value in a numeric range:

Object(?o) ∧ hasNumericValue(?o, ?v) ∧ swrlb:greaterThan(?v, 50)∧
∧ swrlb:lessThanOrEqual(?v, 100)⇒ In f erence(?o)

2. Function for assigning a textual description to states of an analyzed object:

In f erence(?o) ∧ State(?s)⇒ hasState(?o, ?s)

3. Function for displaying textual descriptions of states of an analyzed object:

hasState(?o, ?s) ∧ hasDescription(?s, ?d)⇒ sqwrl:select(?o, ?d)

4. Function for assigning textual recommendations for objects managing to an ana-
lyzed object:

hasState(?o1, ?s1) ∧ hasState(?o2, ?s2) ∧ Recommendations(?r)⇒
⇒ hasRecommendation(?o1, ?r) ∧ hasSummarisation(?o2, ?r)

5. Function for displaying textual recommendations for analyzed objects managing:

hasRecommendation(?o, ?r) ∧ hasDescription(?r, ?d)⇒
⇒ sqwrl:selectDistinct(?o, ?r, ?d)

3.3. Model and Logical Representation of the Ontology for Fuzzy Inference

This section discusses the model and logical representation of the ontology for fuzzy
inference. This ontology allows describing fuzzy sets and defining various membership
functions.

The model of the ontology for fuzzy inference can be represented by the following
expression:

OFI = 〈Sets, Functions, Membership, RFI〉, (4)

where Sets is a set of fuzzy sets; Functions is a set of membership functions; Membership is a
set of membership degrees of entities to fuzzy sets; RFI is a set of ties between components.

At the moment, the ontology service supports the following membership functions:

1. Crisp.
2. Linear.
3. Trapezoidal.
4. Triangular.

Mathematics 2021, 9, 2946 9 of 23

Logical representation of the ontology for fuzzy inference (Equation (4)) in SHOIN (D)
DL notation looks like:

FuzzySet v > MembershipFunction v > MembershipValue v > Term v >
Crisp v MembershipFunction Linear v MembershipFunction

Trapezoidal v MembershipFunction Triangular v MembershipFunction

FuzzySet uMembershipFunction uMembershipValue u Term v ⊥
Crisp u Linear u Trapezoidal u Triangular v ⊥
FuzzySet v ∃hasName.String u ∀hasName.Stringu = 1hasName.Stringu

u ∀hasTerm.Term

MembershipFunction v (Crisp t Linear t Trapezoidal t Triangular)

u ∃crispValues.Double u ∃linearValues.Doubleu
u ∃trapezoidalValues.Double u ∃triangularValues.Double

crispValueMin v crispValues crispValueMax v crispValues

linearValueMin v linearValues linearValueMax v linearValues

trapezoidalValueMin v trapezoidalValues

trapezoidalValueMax v trapezoidalValues

trapezoidalValueMidLow v trapezoidalValues

trapezoidalValueMidHigh v trapezoidalValues

triangularValueMin v triangularValues

triangularValueMid v triangularValues

triangularValueMax v triangularValues

Crisp ≡ (≥ 1crispValueMinu ≥ 1crispValueMax)

Linear ≡ (≥ 1linearValueMinu ≥ 1linearValueMax)

Trapezoidal ≡ (≥ 1trapezoidalValueMinu ≥ 1trapezoidalValueMidLowu
u ≥ 1trapezoidalValueMidHighu ≥ 1trapezoidalValueMax)

Triangular ≡ (≥ 1triangularValueMinu ≥ 1triangularValueMidu
u ≥ 1triangularValueMax)

MembershipValue v ∃membership.Double u ∀membership.Doubleu
u ∃membershipEntity.String u ∀membershipEntity.String

Term v ∃membershipFunction.MembershipFunctionu
u ∀membershipFunction.MembershipFunctionu
u ∃membershipEntity.String u ∀membershipEntity.String

> v≤ 1Inv(hasMembershipValue).MembershipValue

where:

• FuzzySet is a parent class for describing fuzzy sets. FuzzySet class has the following
properties:

– hasName is a functional property for defining a name of a fuzzy set;
– hasTerm is a property for determining a tie between a fuzzy set and a linguistic

term;
– FuzzySet, MembershipFunction, MembershipValue and Term classes are disjoint

classes;

• MembershipFunction is a parent class for describing a membership function.
MembershipFunction class has the following properties:

– MembershipFunction class is covered by classes Crisp, Linear, Trapezoidal and
Triangular;

Mathematics 2021, 9, 2946 10 of 23

– linearValueMin, linearValues, trapezoidalValues, triangularValues are properties
for determining the parameters of membership functions;

– FuzzySet, MembershipFunction, MembershipValue and Term classes are disjoint
classes;

• Crisp is a class for describing a crisp membership function. Crisp class has the
following properties:

– crispValueMin, crispValueMax are functional properties for defining the
parameters of a crisp membership function. These properties are sub-properties
of the crispValues property;

– Crisp, Linear, Trapezoidal and Triangular classes are disjoint classes;

• Linear is a class for describing a linear membership function. Linear class has the
following properties:

– linearValueMin, linearValueMax are functional properties for defining the
parameters of a linear membership function. These properties are sub-properties
of the linearValues property;

– Crisp, Linear, Trapezoidal and Triangular classes are disjoint classes;

• Trapezoidal is a class for describing a trapezoidal membership function. Trapezoidal
class has the following properties:

– trapezoidalValueMin, trapezoidalValueMidLow, trapezoidalValueMidHigh,
trapezoidalValueMax are functional properties for defining the parameters of
a trapezoidal membership function. These properties are sub-properties of the
trapezoidalValues property;

– Crisp, Linear, Trapezoidal and Triangular classes are disjoint classes;

• Triangular is a class for describing a triangular membership function. Triangular class
has the following properties:

– triangularValueMin, triangularValueMid, triangularValueMax are functional
properties for defining the parameters of a triangular membership function.
These properties are sub-properties of the triangularValues property;

– Crisp, Linear, Trapezoidal and Triangular classes are disjoint classes;

• MembershipValue is a class for describing the membership degrees of entities to fuzzy
sets. MembershipValue class has the following properties:

– membership is a property for determining a value of a membership degree;
– membershipEntity is a property for defining a linguistic term. The name of any

entity of the ontology can be used as a term;
– FuzzySet, MembershipFunction, MembershipValue and Term classes are disjoint

classes;

• Term a class for describing a tie between a linguistic term and a membership function.
Term class has the following properties:

– membershipFunction is a property for determining a membership function;
– membershipEntity is a property for defining a linguistic term;
– FuzzySet, MembershipFunction, MembershipValue, and Term classes are disjoint

classes;

• hasMembershipValue is an inverse functional property for determining the degree of
membership of any entity ontology in a fuzzy set.

3.4. Fuzzy Inference Algorithm

This section describes the fuzzy inference algorithm. The proposed algorithm imple-
ments the following stages of fuzzy inference: fuzzification, aggregation, and activation.

Algorithm of the fuzzification stage of a fuzzy inference:

1. A user specifies a fuzzy set for each numeric indicator. A fuzzy set is defined by the
name of an individual of FuzzySet class.

Mathematics 2021, 9, 2946 11 of 23

2. The degree of membership of a quantitative indicator is calculated for each individual
of Term class, specified as a range of the property hasTerm of selected fuzzy set. The
implementation of a membership function is used to calculate a degree of membership,
specified as a range of membershipFunction property of a current linguistic term.

3. The result of fuzzification is added to the ontology by creating individuals of
MembershipValue class. membership property determines a degree of membership,
and a range of membershipEntity property is copied from a corresponding individual
of Term class.

Algorithm of stages of aggregation and activation of fuzzy inference:

1. FT dependencies tree of Rules interpretation functions is formed [25].
2. All rules of level with the highest depth index (i = td(FT)) are processed:

F̃T = {FTj ∈ FT|j = i}.
3. Following values are calculated for each rule (F̃T j = 〈A⇒ C〉) from set F̃T:

• truth degree using the intersection of fuzzy sets of atoms of an antecedent of
a rule: AP = max(A1, A2, . . . , An). If there is no fuzzy set for an atom, then an
atom is skipped;

• truth degree of a consequent of a rule is set equal to the truth degree of an
antecedent condition: CP = AP. If it is impossible to calculate a truth degree of a
consequent, then this step is skipped.

4. Truth degree of consequents and antecedents is calculated, considering calculations
performed at the previous step when moving to a higher level of the tree (i = i− 1).

5. The algorithm continues to run until it reaches the root node of FT dependency tree
(i = 0).

The results of SQWRL queries are displayed in descending order of a truth degree of
consequents.

3.5. Architecture of the Developed Ontology Service

This section discusses the architecture of the ontology service for building decision
support systems. The service is written in the Java language. Moreover, the OWL API
library [26] is used to work with OWL ontologies. The SWRLAPI library [27] is used to
work with SWRL rules. The service API is based on the REST architectural style [28].
Interaction with the service is based on the HTTP protocol. Data is transmitted in JSON
format [29]. PostgreSQL is used as the repository of ontologies. Thus, OWL files are stored
in PostgreSQL as binary data.

The service has several types of methods to:

1. working with ontologies:

• Upload new ontology;
• Update uploaded ontology;
• Delete uploaded ontology;
• Download uploaded ontology;
• Get a list of all uploaded ontologies.

2. Working with SWRL rules:

• Get a list of all SWRL rules contained in the specified ontology;
• Get a list of all SQWRL queries contained in the specified ontology;
• Execution of a user-selected SQWRL query or queries in a specified ontology

(crisp inference);
• Execution of a user-selected SQWRL query or queries in the specified ontology

with the preliminary addition of axioms in the ontology ABox (crisp inference);
• Execution of a user-selected SQWRL query or queries in a specified ontology

(fuzzy inference);
• Execution of a user-selected SQWRL query or queries in the specified ontology

with the preliminary addition of axioms in the ontology ABox (fuzzy inference).

Mathematics 2021, 9, 2946 12 of 23

Figure 1 shows the architectural diagram of the developed ontology service.

Figure 1. Architectural diagram of the developed ontology service.

Algorithm of interaction with the ontology service from an expert point of view:
(Figure 1):

1. Formalization of expert knowledge in the form of ontology.
2. Saving the ontology to an OWL file.
3. Uploading the ontology to the service.
4. Validation of logical integrity and consistency of the ontology.
5. Saving the ontology in PostgreSQL as binary data.

Algorithm of interaction with the ontology service from a user point of view (Figure 1):

6. Execution of SQWRL queries.
7. Selection of a required ontology from a database.
8. Loading a required ontology from PostgreSQL.
9. Fuzzification of numeric values if using fuzzy inference.
10. Aggregation and activation of truth degrees of rules if using fuzzy inference.
11. Output of inference results.

4. Examples of DSSs Created with the Ontology Service

This section presents examples of DSSs created with the ontology service. The ex-
tended ontology of decision support (Section 3.1) is used as a knowledge base. The
extended fuzzy inference ontology (Section 3.3) and proposed fuzzy inference algorithm
(Section 3.4) are used for fuzzy inference.

Moreover, experiments to evaluate the quality of created DSSs are presented in this
section. The quality of the DSS is determined using two indicators: precision and recall.

The precision is calculated as:

P = |Correct|/|Total| × 100, (5)

where |Correct| is a number of correct DSS results; |Total| is a number of DSS results.
The recall is calculated based on the following expression:

R = |Total|/|Rules| × 100, (6)

where |Total| is a number of DSS results; |Rules| is a number of rules assigning textual
descriptions and recommendations.

Section 4.1 presents the example of the DSS for balancing production capacities.
Section 4.2 describes the example of the DSS for image analysis.

Mathematics 2021, 9, 2946 13 of 23

4.1. DSS for Balancing Production Capacities

The capacity management includes the next steps:

• Developing technical passport of the enterprise;
• Calculating the capacities for each production unit and the enterprise as a whole;
• Developing a shortage control strategy;
• Generating a consolidated report with the forecast to implement the product program;
• Calculating the capacity balance.

The balancing of production capacities in this example will be based on the numerical
values of the performance indicators of employees (EmployeePower) and tools (ToolPower).

It is necessary to add the following axioms to the decision support ontology:

• states of production indicators (low, medium, and high) must be added to the the
Decision component (Equation (2)):

High v In f erence Low v In f erence Middle v In f erence

• states of production (bad and good) must be added to the the Decision component
(Equation (2)):

Bad v In f erence Good v In f erence

• textual representations of states of production indicators must be added to the the
Decision component (Equation (2)):

StateHigh : States (StateHigh, “High value”) : hasDescription

StateMiddle : States (StateHigh, “Middle value”) : hasDescription

StateLow : States (StateHigh, “Low value”) : hasDescription

• textual representations of recommendations must be added to the the Decision com-
ponent (Equation (2)):

EPBad : Recommendations

(EPBad, “EPBad recommendation”) : hasRecommendation

EPGood : Recommendations

(EPGood, “EPGood recommendation”) : hasRecommendation

TPBad : Recommendations

(TPBad, “TPBad recommendation”) : hasRecommendation

TPGood : Recommendations

(TPGood, “TPGood recommendation”) : hasRecommendation

EPTPBad : Recommendations

(EPTPBad, “EPTPBad recommendation”) : hasRecommendation

EPTPGood : Recommendations

(EPTPGood, “EPTPGood recommendation”) : hasRecommendation

• production indicators and their numerical values must be added to the Domain
(Equation (3)) component:

EmployeePower v Objects ToolPower v Objects

EmployeePower : EmployeePower

(EmployeePower, 4610.41) : hasNumericValue

ToolPower : ToolPower

(ToolPower, 2700.0) : hasNumericValue

Mathematics 2021, 9, 2946 14 of 23

Consider a set of SWRL rules for the transition from numerical values of production
indicators to individuals of the States class by determining the occurrence of a numeric
value in a numeric range:

• EmployeePower indicator has state Low if its value is in the range of 0 to 2000:

EmployeePower(?ind) ∧ hasNumericValue(?ind, ?val)∧
∧ swrlb:lessThanOrEqual(?val, 2000)⇒ Low(?ind)

• EmployeePower indicator has state Middle if its value is in the range of 2000 to 4000:

EmployeePower(?ind) ∧ hasNumericValue(?ind, ?val)∧
∧ swrlb:greaterThan(?val, 2000) ∧ swrlb:lessThanOrEqual(?val, 4000)⇒
⇒ High(?ind)

• EmployeePower indicator has state High if its value is greater than 4000:

EmployeePower(?ind) ∧ hasNumericValue(?ind, ?val)∧
∧ swrlb:greaterThan(?val, 4000)⇒ High(?ind)

• ToolPower indicator has state Low if its value is in the range of 0 to 1000:

ToolPower(?ind) ∧ hasNumericValue(?ind, ?val)∧
∧ swrlb:lessThanOrEqual(?val, 1000)⇒ Low(?ind)

• ToolPower indicator has state Middle if its value is in the range of 1000 to 3000:

ToolPower(?ind) ∧ hasNumericValue(?ind, ?val)∧
∧ swrlb:greaterThan(?val, 1000) ∧ swrlb:lessThanOrEqual(?val, 3000)⇒
⇒ High(?ind)

• ToolPower indicator has state High if its value is greater than 3000:

ToolPower(?ind) ∧ hasNumericValue(?ind, ?val)∧
∧ swrlb:greaterThan(?val, 3000)⇒ High(?ind)

Next, the following fuzzy sets should be added to the ontology for fuzzy inference:

• for EmployeePower indicator: FuzzEP : FuzzySet;
• for ToolPower indicator: FuzzTP : FuzzySet.

It is necessary to add axioms to the ontology for fuzzy inference to determine the mem-
bership functions for production indicators for fuzzification of the values of production
indicators (Figure 2):

• Linguistic term Low for the EmployeePower indicator is represented by the following
triangular membership function:

(TrEPLow, 0) : triangularValueMin

(TrEPLow, 0) : triangularValueMid

(TrEPLow, 2000) : triangularValueMax

TermEPLow : Term

(TermEPLow, TrEPLow) : membershipFunction

(TermEPLow, “Low”) : membershipEntity

(FuzzEP, TermEPLow) : hasTerm

Mathematics 2021, 9, 2946 15 of 23

Figure 2. Representation of linguistic variables EmployeePower and ToolPower.

• Linguistic term Middle for the EmployeePower indicator is represented by the follow-
ing triangular membership function:

(TrEPMiddle, 1300) : triangularValueMin

(TrEPMiddle, 3000) : triangularValueMid

(TrEPMiddle, 4700) : triangularValueMax

TermEPMid : Term

(TermEPMid, TrEPMiddle) : membershipFunction

(TermEPMid, “Middle”) : membershipEntity

(FuzzEP, TermEPMid) : hasTerm

• Linguistic term High for the EmployeePower indicator is represented by the following
triangular membership function:

(TrEPHigh, 4000) : triangularValueMin

(TrEPHigh, 6000) : triangularValueMid

(TrEPHigh, 6000) : triangularValueMax

TermEPHigh : Term

(TermEPHigh, TrEPHigh) : membershipFunction

(TermEPHigh, “High”) : membershipEntity

(FuzzEP, TermEPHigh) : hasTerm

• Linguistic term Low for the ToolPower indicator is represented by the following trian-
gular membership function:

(TrTPLow, 0) : triangularValueMin

(TrTPLow, 0) : triangularValueMid

(TrTPLow, 1000) : triangularValueMax

TermTPLow : Term

(TermTPLow, TrTPLow) : membershipFunction

(TermTPLow, “Low”) : membershipEntity

(FuzzTP, TermTPLow) : hasTerm

Mathematics 2021, 9, 2946 16 of 23

• Linguistic term Middle for the ToolPower indicator is represented by the following
triangular membership function:

(TrTPMiddle, 700) : triangularValueMin

(TrTPMiddle, 2000) : triangularValueMid

(TrTPMiddle, 3300) : triangularValueMax

TermTPMid : Term

(TermTPMid, TrTPMiddle) : membershipFunction

(TermTPMid, “Middle”) : membershipEntity

(FuzzTP, TermTPMid) : hasTerm

• Linguistic term High for the ToolPower indicator is represented by the following
triangular membership function:

(TrTPHigh, 3000) : triangularValueMin

(TrTPHigh, 4000) : triangularValueMid

TrTPHigh, 4000) : triangularValueMax

TermTPHigh : Term

(TermTPHigh, TrTPHigh) : membershipFunction

(TermTPHigh, “High”) : membershipEntity

(FuzzTP, TermTPHigh) : hasTerm

The following SWRL rules and SQWRL queries are common to the two inference options.
Rules for assigning textual descriptions to states of production indicators:

Low(?o)⇒ hasState(?o, StateLow)

Middle(?o)⇒ hasState(?o, StateMiddle)

High(?o)⇒ hasState(?o, StateHigh)

Rules for determining the state of production:

EmployeePower(?ep) ∧ Low(?ep)⇒ Bad(?ep)

EmployeePower(?ep) ∧Middle(?ep)⇒ Bad(?ep)

EmployeePower(?ep) ∧ High(?ep)⇒ Good(?ep)

ToolPower(?tp) ∧ Low(?tp)⇒ Bad(?tp)

ToolPower(?tp) ∧Middle(?tp)⇒ Bad(?tp)

ToolPower(?tp) ∧ High(?tp)⇒ Good(?tp)

Rules for assigning textual recommendations for balancing production capacities:

EmployeePower(?ep) ∧ Bad(?ep)⇒ hasRecommendation(?ep, EPBad)

EmployeePower(?ep) ∧ Good(?ep)⇒ hasRecommendation(?ep, EPGood)

ToolPower(?tp) ∧ Bad(?tp)⇒ hasRecommendation(?tp, TPBad)

ToolPower(?tp) ∧ Good(?tp)⇒ hasRecommendation(?tp, TPGood)

Mathematics 2021, 9, 2946 17 of 23

Complex rules for assigning textual recommendations for balancing production ca-
pacities considering several indicators:

EmployeePower(?ep) ∧ Bad(?ep) ∧ ToolPower(?tp) ∧ Bad(?tp)⇒
⇒ hasRecommendation(?ep, EPTPBad) ∧ hasRecommendation(?tp, EPTPBad)

EmployeePower(?ep) ∧ Good(?ep) ∧ ToolPower(?tp) ∧ Bad(?tp)⇒
⇒ hasRecommendation(?ep, EPTPBad) ∧ hasRecommendation(?tp, EPTPBad)

EmployeePower(?ep) ∧ Good(?ep) ∧ ToolPower(?tp) ∧ Good(?tp)⇒
⇒ hasRecommendation(?tp, EPTPGood) ∧ hasRecommendation(?ep, EPTPGood)

The query for displaying text descriptions of the states of production indicators:

hasState(?o, ?s) ∧ hasDescription(?s, ?d)⇒ sqwrl:select(?o, ?d)

The query for displaying textual recommendations for balancing production capacities:

hasRecommendation(?o, ?r) ∧ hasDescription(?r, ?d)⇒ sqwrl:selectDistinct(?o, ?r, ?d)

Results of the query for displaying textual descriptions of production indicator states
with crisp inference:

EmployeePower The indicator value is high
ToolPower The indicator value is middle

Results of the query for displaying textual descriptions of production indicator states
with fuzzy inference:

ToolPower The indicator value is middle 0.462
EmployeePower The indicator value is high 0.305
EmployeePower The indicator value is middle 0.053

Calculated recall (Equation (6)) values for the results of the textual descriptions of
production indicator states with crisp and fuzzy inference are:

RCrisp
1 = 2/10× 100% = 20%.

RFuzzy
1 = 3/10× 100% = 30%.

Results of the query for displaying textual recommendations for balancing production
capacities with crisp inference:

EmployeePower EPGood EPGood recommendation
ToolPower TPBad TPBad recommendation
EmployeePower EPTPBad EPTPBad recommendation
ToolPower EPTPBad EPTPBad recommendation

Results of the query for displaying textual recommendations for balancing production
capacities with fuzzy inference:

ToolPower TPBad TPBad recommendation 0.462
EmployeePower EPTPBad EPTPBad recommendation 0.462
ToolPower EPTPBad EPTPBad recommendation 0.462
EmployeePower EPGood EPGood recommendation 0.305
EmployeePower EPBad EPBad recommendation 0.053

Mathematics 2021, 9, 2946 18 of 23

Calculated recall (Equation (6)) values for results of textual recommendations for
balancing production capacities with crisp and fuzzy inference are:

RCrisp
2 = 4/10× 100% = 40%.

RFuzzy
2 = 5/10× 100% = 50%.

Thus, the average recall value is higher on 10 % with a fuzzy logical inference, which
allows obtaining additional information about the analyzed object.

4.2. DSS for Image Analysis

This section presents an example of the implementation of the DSS for image analysis.
This example covers decision support for determining the state of university classrooms.
The input data for the system are static images of a classroom. Static images are pre-
processed by the YOLO [30] neural network for the entities allocation (Figure 3).

It is necessary to add the following axioms to the decision support ontology:

• Classroom conditions (empty, not empty, and for checking) must be added to the the
Decision component (Equation (2)):

Empty v In f erence NotEmpty v In f erence ForChecking v In f erence

• Classrooms must be added to the Domain (Equation (3)) component:

Classroom v Objects

LectureClassroom v Classroom PracticalClassroom v Classroom

411 : LectureClassroom (411, “room 411”) : hasName

420 : LectureClassroom (420, “room 420”) : hasName

431 : PracticalClassroom (431, “room 431”) : hasName

• Entities allocated by YOLO (person and display) must be added to the Domain
(Equation (3)) component:

Display v Entities Person v Entities

Display v ∀hasAreaValue.Double

Display : Display Person : Person

(Display, 22,000) : hasSquareValue

hasAreaValue role has been added to store the display area because only situations
with a running projector should be handled.

• Then it is necessary to indicate in which classrooms the entities are located:

(411, Display) : notConnectToEntity

(411, Person) : notConnectToEntity

(420, Display) : notConnectToEntity

(420, Person) : connectToEntity

(431, Display) : connectToEntity

(431, Person) : notConnectToEntity

Mathematics 2021, 9, 2946 19 of 23

Figure 3. Example of the YOLO neural network results with different scene settings.

Mathematics 2021, 9, 2946 20 of 23

Rules for determining the state of classrooms:

Classroom(?c) ∧ Person(?p) ∧ notConnectToEntity(?c, ?p)∧
∧ Display(?d) ∧ notConnectToEntity(?c, ?d)⇒ Empty(?c)

Classroom(?c) ∧ Person(?p) ∧ connectToEntity(?c, ?p)⇒ NotEmpty(?c)

Classroom(?c) ∧ Person(?p) ∧ notConnectToEntity(?c, ?p)∧
∧ Display(?d) ∧ connectToEntity(?c, ?d)∧
∧ hasAreaValue(?d, ?s) ∧ swrlb:greaterThan(?s, 15, 000)⇒ ForChecking(?c)

The query for displaying empty classrooms:

Empty(?c) ∧ hasName(?c, ?n) ∧ abox:caa(?t, ?c)⇒ sqwrl : select(?n, ?t)

The query for displaying not empty classrooms:

NotEmpty(?c) ∧ hasName(?c, ?n) ∧ abox:caa(?t, ?c)⇒ sqwrl : select(?n, ?t)

The query for displaying classrooms for checking:

ForChecking(?c) ∧ hasName(?c, ?n) ∧ abox:caa(?t, ?c)⇒ sqwrl : select(?n, ?t)

The following states of the classrooms are determined after the execution of these
queries:

• 411 is the empty classroom;
• 420 is the not empty classroom;
• 431 is the classroom for checking.

The precision of the DSS was determined by an expert. The expert evaluates the
condition of the classrooms based on a review of a set of static images. The number of
experiments is 108, the number of correct DSS results is 99. The quality of the DSS was
influenced by the YOLO neural network. In some cases, YOLO detected that the projector
was on when the projector was turned off.

Thus, the precision value (Equation (5)) is:

P = 99/108× 100% = 91%.

5. Discussion

This article discussed an approach to building DSSs based on an ontology service.
Knowledge bases allow formalizing the experience of an expert in the decision-making
process. The complex process of knowledge base formation is the main disadvantage of
knowledge bases. The main advantage of knowledge bases is the ability to explain the
reason for the decision. Moreover, the advantage of knowledge bases involves the easy
adaptation to changes in a subject area.

The main aim of the study was to create tools for DSS creation. The proposed approach
has the following advantages:

• The proposed approach does not depend on a subject area. Existing approaches to
build a DSS are focused on a specific subject area, which makes it hard to develop a
DSS for other subject areas;

• The developed ontology service allows performing inference functions from any
software system using the HTTP protocol. Developers must use the OWLAPI and
SWRL API libraries to get all ontology features and abilities. These libraries are written
in the Java language, so they cannot be used in systems built on other technologies or
systems with a limited set of resources;

Mathematics 2021, 9, 2946 21 of 23

• The service API is based on the REST architectural style and the OpenAPI specification.
The OpenAPI Specification is a specification for machine-readable interface files for
describing, producing, consuming, and visualizing REST API;

• The developed service contains a module for fuzzy inference. The proposed imple-
mentation of fuzzy inference is the absence of dependencies on third-party solutions.
The proposed ontology for fuzzy inference and the fuzzy inference algorithm imple-
ments the fuzzy inference function. Several implementations of fuzzy ontologies are
currently available. The most famous implementation of fuzzy ontology is Fuzzy-
OWL [31–33]. Now, the FuzzyOWL library is unmaintained and does not have a
public Git repository. Moreover, the plugin for the Protege editor is required to de-
velop fuzzy ontologies for FuzzyOWL. This plugin works only in the 4th version [34]
of the Protege editor and does not work in the current 5th version [35].

The proposed approach has the following disadvantages:

• The proposed ontology service only has the unfriendly developer-oriented service
API and does not have a user interface;

• The service supports a limited number of membership functions: crisp, linear, trape-
zoidal, and triangular;

• The proposed approach to the DSS creation cannot be considered production use ready.
The tests of the ontology service with a large volume of data and a large number of
concurrent requests were not executed;

• The service is based on REST API and does not save request states (stateless). Thus, it
is necessary to load an ontology and initialize the inference engine for each request,
which requires 2–3 s.

• The ontologies are loaded and processed in RAM. One axiom takes about 0.34 KB of
RAM; therefore, 1 GB of RAM can hold about 3 million axioms. Thus, the service is
not designed to use large ontologies.

As future work:

• Add support for multi-user mode;
• Add the ability to user register and login;
• Add user ontology repositories (public and private);
• Add a user interface;
• Add the ability to edit and create ontologies through the user interface;
• Publish a service to the public access.

The proposed approach to DSS creation will be improved. The presented ontology
service was in its initial state and has been developed for testing purposes. More features
and conceptualizations will be added to it.

6. Conclusions

The article discusses an approach to DSS creation based on an ontology service. The
article proposes novel ontology models for decision support and fuzzy inference. The
ontology of decision support allows describing the features of a subject area and entities
for the decision-making. Expert rules are described using SWRL and SQWRL languages.
The ontology for fuzzy inference allows describing fuzzy sets, membership functions, and
linguistic terms.

The HTTP protocol and REST API are used to work with the ontology service. First, a
user needs to create an ontology in the Protege editor. Afterward, a user can upload the
created ontology to the service. Decision support is implemented based on an inference
mechanism. A user needs to specify which SQWRL query from the ontology needs to be
executed to get the result. It is also possible to add axioms to the ontology ABox before
executing the SQWRL query. Several alternative solutions can be obtained with varying
truth degrees in the case of fuzzy inference.

The article discusses examples of using the proposed approach to create DSSs, for
balancing production capacities and for analyzing static images.

Mathematics 2021, 9, 2946 22 of 23

Author Contributions: Conceptualization, A.R. and A.F.; methodology, A.R. and A.F.; software, A.R.,
J.S. and A.F.; validation, A.R., J.S., and A.F.; formal analysis, A.R. and A.F.; investigation, A.R., J.S. and
A.F.; resources, J.S.; data curation, A.R. and A.F.; writing—original draft preparation, A.F. and A.R.;
writing—review and editing, A.R. and N.Y.; supervision, N.Y.; project administration, N.Y.; funding
acquisition, N.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation in the framework of the state task no.075-00233-20-05 “Research of intelligent predictive
multimodal analysis of big data, and the extraction of knowledge from different sources”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kukar, M.; Vračar, P.; Košir, D.; Pevec, D.; Bosnić, Z. AgroDSS: A decision support system for agriculture and farming. Comput.

Electron. Agric. 2019, 161, 260–271.
2. Sztubecka, M.; Skiba, M.; Mrówczyńska, M.; Bazan-Krzywoszańska, A. An innovative decision support system to improve the

energy efficiency of buildings in urban Areas. Remote Sens. 2020, 12, 259. [CrossRef]
3. Situmorang, E.; Rindari, F. Decision Support System For Selection Of The Best Doctors In Sari Mutiara Hospital Using Fuzzy

Tsukamoto Method. J. Tek. Inform. CIT Med. 2019, 11, 45–50.
4. Fenu, G.; Malloci, F.M. DSS LANDS: A decision support system for agriculture in Sardinia. HighTech Innov. J. 2020, 1, 129–135.

[CrossRef]
5. Tyler, N.S.; Mosquera-Lopez, C.M.; Wilson, L.M.; Dodier, R.H.; Branigan, D.L.; Gabo, V.B.; Jacobs, P.G. An artificial intelligence

decision support system for the management of type 1 diabetes. Nat. Metab. 2020, 2, 612–619. [CrossRef] [PubMed]
6. Khong, P.C.B.; Lee, L.N.; Dawang, A.I. Modeling the construct of an expert evidence-adaptive knowledge base for a pressure

injury clinical decision support system. Informatics 2017, 4, 20. [CrossRef]
7. Müller, L.; Gangadharaiah, R.; Klein, S.C.; Perry, J.; Bernstein, G.; Nurkse, D.; Aronoff-Spencer, E. An open access medical

knowledge base for community driven diagnostic decision support system development. BMC Med. Inform. Decis. Mak. 2019,
19, 93. [CrossRef]

8. Singh, S.; Ghosh, S.; Jayaram, J.; Tiwari, M.K. Enhancing supply chain resilience using ontology-based decision support system.
Comput. Integr. Manuf. 2019, 32, 642–657. [CrossRef]

9. Vilela, M.; Oluyemi, G.; Petrovski, A. A fuzzy inference system applied to value of information assessment for oil and gas
industry. Decis. Mak. Appl. Manag. Eng. 2019, 2, 1–18. [CrossRef]

10. Precup, R.E.; Preitl, S.; Petriu, E.; Bojan-Dragos, C.A.; Szedlak-Stinean, A.I.; Roman, R.C.; Hedrea, E.L. Model-based fuzzy control
results for networked control systems. Rep. Mech. Eng. 2020, 1, 10–25. [CrossRef]

11. Prasenjit, C. Model for selecting a route for the transport of hazardous materials using a fuzzy logic system. J. Vojnoteh. Glas.
2021, 69, 355–390.

12. Roy, A.; Razia, S.; Parveen, N.; Rao, A.S.; Nayak, S.R.; Poonia, R.C. Fuzzy rule based intelligent system for user authentication
based on user behaviour. J. Discret. Math. Sci. Cryptogr. 2020, 23, 409–417. [CrossRef]

13. Nagarajan, D.; Lathamaheswari, M.; Jacob, K.; Deenadayalan, E. Intelligent system stability using type-2 fuzzy controller. Int. J.
Integr. Eng. 2019, 11, 270–282. [CrossRef]

14. Espinilla, M.; Medina, J.; García-Fernández, Á.L.; Campaña, S.; Londoño, J. Fuzzy intelligent system for patients with preeclampsia
in wearable devices. Mob. Inf. Syst. 2017, 2017, 7838464. [CrossRef]

15. El-Sappagh, S.; Alonso, J.M.; Ali, F.; Ali, A.; Jang, J.H.; Kwak, K.S. An ontology-based interpretable fuzzy decision support system
for diabetes diagnosis. IEEE Access 2018, 6, 37371–37394. [CrossRef]

16. Alkahtani, M.; Choudhary, A.; De, A.; Harding, J.A. A decision support system based on ontology and data mining to improve
design using warranty data. Comput. Ind. Eng. 2019, 128, 1027–1039. [CrossRef]

17. Mabkhot, M.M.; Al-Samhan, A.M.; Hidri, L. An ontology-enabled case-based reasoning decision support system for manufactur-
ing process selection. Adv. Mater. Sci. Eng. 2019, 2019, 2505183. [CrossRef]

18. Gruber, T.R. The role of common ontology in achieving sharable, reusable knowledge bases. In Proceedings of the Second
International Conference on Principles of Knowledge Representation and Reasoning, Cambridge, MA, USA, 22–25 April 1991;
pp. 601–602.

19. Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; Patel-Schneider, P.F. The Description Logic Handbook: Theory, Implementation,
and Applications; Cambridge University Press: Cambridge, UK, 2003.

20. O’Connor, M.J.; Das, A.K. SQWRL: A query language for OWL. In Proceedings of the OWLED, Chantilly, VA, USA, 23–24 October
2009.

http://doi.org/10.3390/rs12020259
http://dx.doi.org/10.28991/HIJ-2020-01-03-05
http://dx.doi.org/10.1038/s42255-020-0212-y
http://www.ncbi.nlm.nih.gov/pubmed/32694787
http://dx.doi.org/10.3390/informatics4030020
http://dx.doi.org/10.1186/s12911-019-0804-1
http://dx.doi.org/10.1080/0951192X.2019.1599443
http://dx.doi.org/10.31181/dmame1902001v
http://dx.doi.org/10.31181/rme200101010p
http://dx.doi.org/10.1080/09720529.2020.1728894
http://dx.doi.org/10.30880/ijie.2019.11.01.027
http://dx.doi.org/10.1155/2017/7838464
http://dx.doi.org/10.1109/ACCESS.2018.2852004
http://dx.doi.org/10.1016/j.cie.2018.04.033
http://dx.doi.org/10.1155/2019/2505183

Mathematics 2021, 9, 2946 23 of 23

21. Dentler, K.; Cornet, R.; Ten Teije, A.; De Keizer, N. Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semant.
Web 2011, 2, 71–87. [CrossRef]

22. Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [CrossRef]
23. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249.

[CrossRef]
24. Ojha, V.; Abraham, A.; Snášel, V. Heuristic design of fuzzy inference systems: A review of three decades of research. Eng. Appl.

Artif. Intell. 2019, 85, 845–864. [CrossRef]
25. Hassanpour, S.; O’Connor, M.J.; Das, A.K. Visualizing Logical Dependencies in SWRL Rule Bases. In International Workshop on

Rules and Rule Markup Languages for the Semantic Web; Springer: Berlin/Heidelberg, Germany, 2010; pp. 259–272.
26. Horridge, M.; Bechhofer, S. The OWL API: A Java API for Working with OWL 2 Ontologies. In Proceedings of the OWLED,

Chantilly, VA, USA, 23–24 October 2009; pp. 11–21.
27. O’Connor, M.J.; Shankar, R.D.; Nyulas, C.; Tu, S.W.; Das, A.K. Developing a Web-Based Application using OWL and SWRL. In

Proceedings of the AAAI Spring Symposium: AI Meets Business Rules and Process Management, Stanford, CA, USA, 24–26
March 2008; pp. 93–98.

28. Wilde, E.; Pautasso, C. REST: From Research to Practice; Springer Science & Business Media: New York, NY, USA, 2011.
29. Crockford, D. The Application/JSON Media Type for JavaScript Object Notation (JSON). Available online: http://tools.ietf.org/

html/rfc4627 (accessed on 10 September 2021).
30. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
31. Bobillo, F.; Straccia, U. An OWL ontology for fuzzy OWL 2. In Proceedings of the International Symposium on Methodologies for

Intelligent Systems, Prague, Czech Republic, 14–17 September 2009; pp. 151–160.
32. Bobillo, F.; Delgado, M.; Gómez-Romero, J. DeLorean: A reasoner for fuzzy OWL 2. Expert Syst. Appl. 2012, 39, 258–272.

[CrossRef]
33. Fuzzy OWL2 Tools Software & Documentation. Available online: http://www.umbertostraccia.it/cs/software/fuzzyDL/

download.html (accessed on 14 September 2021).
34. Protege Wiki. Available online: https://protegewiki.stanford.edu/wiki/FuzzyOWL2 (accessed on 1 September 2021).
35. OWL API Github. Available online: https://github.com/owlcs/owlapi/issues/750 (accessed on 20 September 2021).

http://dx.doi.org/10.3233/SW-2011-0034
http://dx.doi.org/10.1109/2.53
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/j.engappai.2019.08.010
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://dx.doi.org/10.1016/j.eswa.2011.07.016
http://www.umbertostraccia.it/cs/software/fuzzyDL/download.html
http://www.umbertostraccia.it/cs/software/fuzzyDL/download.html
https://protegewiki.stanford.edu/wiki/FuzzyOWL2
https://github.com/owlcs/owlapi/issues/750

	Introduction
	Preliminaries
	Ontologies
	Fuzzy Inference

	Novel Ontology Models for Decision Support and Fuzzy Inference
	Model and Logical Representation of the Ontology for Decision Support
	Proposed Mechanism for Recommendations Inference
	Model and Logical Representation of the Ontology for Fuzzy Inference
	Fuzzy Inference Algorithm
	Architecture of the Developed Ontology Service

	Examples of DSSs Created with the Ontology Service
	DSS for Balancing Production Capacities
	DSS for Image Analysis

	Discussion
	Conclusions
	References

